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ABSTRACT 11 

It has been a major challenge to systematically evaluate and compare how pharmacological perturbations 12 
influence social behavioral outcomes. Although some pharmacological agents are known to alter social 13 
behavior, precise description and quantification of such effects have proven difficult. The complexity of 14 
brain functions regulating sociality makes it challenging to predict drug effects on social behavior without 15 
testing in live animals, and most existing behavioral assays are low-throughput and provide only 16 
unidimensional readouts of social function. To achieve richer characterization of drug effects on sociality, 17 
we developed a scalable social behavioral assay for zebrafish named ZeChat based on unsupervised deep 18 
learning. High-dimensional and dynamic social behavioral phenotypes are automatically classified using 19 
this method. By screening a neuroactive compound library, we found that different classes of chemicals 20 
evoke distinct patterns of social behavioral fingerprints. By examining these patterns, we discovered that 21 
dopamine D3 agonists possess a social stimulative effect on zebrafish. The D3 agonists pramipexole, 22 
piribedil, and 7-hydroxy-DPAT-HBr rescued social deficits in a valproic acid-induced zebrafish autism 23 
model. The ZeChat platform provides a promising approach for dissecting the pharmacology of social 24 
behavior and discovering novel social-modulatory compounds.  25 
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INTRODUCTION 27 

Sociality is broadly conserved across the animal kingdom, facilitating cooperation, reproduction, and 28 
protection from predation. In humans, social dysfunction is a hallmark of several neuropsychiatric disorders 29 
such as autism, schizophrenia, bipolar disorder, and Williams syndrome, to name a few. In particular, social 30 
communication impairment is considered a core symptom of autism. Despite its importance, we lack a 31 
comprehensive understanding of how the diverse classes of neuroactive drugs impact social behavior. This 32 
is evidenced by the fact that although certain antipsychotics, antidepressants, and stimulants medications 33 
are used clinically to help manage some symptoms of autism1,2, no treatment is currently available to 34 
ameliorate the disease-relevant social deficit.  35 

It has been a major challenge to comprehensively assess and compare how chemicals affect complex 36 
behaviors such as sociality. Simple in vitro assays cannot effectively model drug effects on whole 37 
organisms, especially on brain activity. Rodent models lack sufficient throughput and are cost-prohibitive 38 
for a comprehensive examination of the hundreds of neuroactive drugs currently available, limiting their 39 
uses to small-scale hypothesis-driven testing. On the other hand, the zebrafish has become an increasingly 40 
important model organism for social behavioral research3, and recent developments in zebrafish behavioral 41 
profiling have demonstrated a promising alternative approach to meeting this challenge. Indeed, 42 
multidimensional behavioral profiling in zebrafish has been used to systematically assess thousands of 43 
chemicals for effects on motor responses4,5, rest/wake behavior6, and appetite7.  44 

Current methods of social behavioral analysis in zebrafish are mostly limited to quantifying the average 45 
measurement of a human-defined simplex trait such as social preference8, social orienting9, and group 46 
cohesion10, or a collection of several simplex traits11, with limited throughput. Restricted by their 47 
unidimensional nature, these measurements often fail to adequately represent the complex and 48 
multidimensional nature of social behavior in space and time. To comprehensively assess social behavior 49 
for behavioral profiling, we sought to develop an automated method to classify the real-time dynamics of 50 
social behavior based solely on information provided by the data, without any human intervention, in a 51 
scalable format. To achieve this goal, we adopted an unsupervised deep learning approach: deep learning 52 
based on a convolutional autoencoder can automatically extract social-relevant features from a behavioral 53 
recording, while unsupervised learning allows for unbiased classification of real-time behavioral 54 
phenotypes; both processes were conducted free of human instructions.  55 

Here, we report a fully automated and scalable social behavioral profiling platform named ZeChat. Built 56 
on an unsupervised deep learning backbone, ZeChat embeds the high-dimensional and dynamical social 57 
behavioral data into a 2-dimensional space and assigns the embedded datapoints to distinct behavioral 58 
categories, thus converting a fish’s entire social behavioral recording to a behavioral fingerprint in the form 59 
of a numerical vector. Screening 237 known neuroactive compounds using the ZeChat system generated a 60 
rich set of social-relevant behavioral phenotypes which enabled unbiased clustering and classification of 61 
drug-treated animals. Based on the social behavioral profile compiled from the screen, we discovered a 62 
social stimulative effect of dopamine D3 receptor agonists (D3 agonists). Acute exposure to D3 agonists 63 
rescued social deficits in a valproic acid-induced zebrafish autism model. Our results demonstrate that 64 
multidimensional social behavioral phenotypes can be distilled into simple behavioral fingerprints to 65 
classify the effect of psychotropic chemicals on sociality.  66 

 67 
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RESULTS 68 

Rationale and overview of the ZeChat behavioral analysis framework 69 

The ZeChat workflow is summarized in Figure 1a. We probed social interaction in a 2-chamber setup, in 70 
which each fish swims freely in a square arena with visual access to its partner fish through a transparent 71 
window. In this setup, a fish’s position inside the arena, as well as its posture and movement dynamics, 72 
were deemed relevant for social interaction. Inspired by Berman et al.12, we sought to describe social 73 
behavior as a point moving through a high-dimensional space of positional, postural, and motional features, 74 
and to assign segmented subspaces to sub-behaviors. First, a preprocessing step distilled social-relevant 75 
information from the recorded images. A convolutional autoencoder then unbiasedly extracted key features 76 
from the preprocessed images to a latent vector, which is then projected onto its first 40 principal 77 
components. We converted the time series of each principal component to a wavelet spectrogram to 78 
incorporate behavioral dynamics into a feature vector. Finally, each feature vector was embedded into a 2-79 
dimensaional map and classified to distinct behavioral categories.  80 

 81 

Social-relevant information can be extracted via behavioral recording and image preprocessing 82 

The zebrafish becomes socially active at 3 weeks of age8 while remaining small in size (~ 1 cm long), 83 
enabling us to visualize social interaction in a confined space. To allow easy separation of individual fish 84 
for subsequent analysis, pairs of fish were each placed in a separate 2 cm × 2 cm arena and allowed to 85 
interact only through a transparent window (Supplementary Fig. 1a; Supplementary Video 1). A custom-86 
built high-throughput imaging platform was used to record 40 pairs of fish simultaneously with sufficient 87 
spatiotemporal resolution to capture dynamic changes of the fish’s postures and positions (Fig. 1b-c & 88 
Supplementary Video 2). Sexual dimorphism is not readily apparent at this stage, so fish were paired 89 
without sex distinction.  90 

For image preprocessing, images of each arena were cropped with the transparent window always in the 91 
upright position to preserve fish’s positional information. Each fish was first tracked to be isolated from the 92 
background (Fig. 1d & Supplementary Video 3: tracked). Consecutive frames were subtracted to show 93 
postural changes between consecutive frames in the resulting silhouette (Fig. 1d & Supplementary Video 94 
3: silhouette). In parallel, we colored each fish based on its instantaneous direction and velocity of 95 
movement calculated by dense optical flow13 (Fig. 1d & Supplementary Video 3: dense optical flow). 96 
Finally, each dense optical flow image was masked by its corresponding silhouette to generate a merged 97 
image (Fig. 1c & Supplementary Video 3: merge; Supplementary Fig. 1c).  98 

 99 

Preprocessed images can be transformed to feature vectors by feature extraction and time-frequency 100 
analysis 101 

Without any human intervention, convolutional autoencoders can automatically “learn” to extract useful 102 
features from input images into a latent vector, which is then used to reconstruct these images. We therefore 103 
used this deep learning architecture to extract key features of the preprocessed images into the latent vector 104 
for subsequent analyses. As part of the initial setup, we first pre-trained the convolutional autoencoder using 105 
a training set of preprocessed images (Fig. 1e & Supplementary Fig. 1d). The resulting latent vectors were 106 
projected onto the first 40 principal components by a principal component analysis (PCA), preserving ~ 95% 107 
of the total variance. When running the ZeChat analysis, preprocessed images were converted to time series 108 
of 40 principal components by the pre-trained autoencoder and PCA models.  109 
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Figure 1. The general framework of ZeChat behavioral analysis. (a) To analyze a ZeChat recording, a separate video clip is 111 
first generated for each fish by cropping out the ZeChat arena where it is located in. Each cropped video clip is orientated so that 112 
the transparent window is always aligned to the top edge of the clip. Each frame is then Preprocessed to preserve positional, 113 
postural, and motion related information. The preprocessed images are fed into an autoencoder for Feature Extraction. The main 114 
principal components of the extracted feature vector are each converted to a spectrogram by Time-Frequency Analysis. The 115 
resulting spectral feature vectors are embedded into a 2-dimensional map and classified to distinct behavioral categories by 116 
Nonlinear Embedding and Classification. (b) The 3D design of the 40-unit ZeChat testing array. (c) A screenshot of ZeChat 117 
recording. Also zoom in to show an independent testing unit. (d) Intermediate and resulting images of the preprocessing procedure. 118 
Fish is first tracked to remove background (tracked). Consecutive tracked frames are subtracted (silhouette). In parallel, the tracked 119 
fish is colored by dense optical flow (dense optical flow). Finally, the dense optical flow image is masked by the silhouette to 120 
generate a merged image (merge). (e) Training the convolutional autoencoder. Preprocessed images (left, Input Images) are fed 121 
into the 7-layer convolutional autoencoder (middle) to be reconstructed (right, Reconstructed Images). The Encoder layers are 122 
responsible for compressing the input image into a latent representation space in the form of a Latent Vector, which is then used to 123 
reconstruct the input image by the Decoder layers. (f) Training dataset embedded into a 2D ZeChat map. A reference map 124 
containing 3000 datapoints (red) was first embedded using t-SNE. Kernel t-SNE was then used to embed an additional 60,000 125 
datapoints (blue). (g) Probability density function (PDF) of ZeChat map containing 10,000 randomly selected datapoints. Generated 126 
by convolving the ZeChat map with a Gaussian. (h) PDF of the ZeChat map was segmented into 80 distinct behavioral categories 127 
by performing a watershed transform. 128 

Behaviors happen in durations, necessitating time to be taken into consideration to properly interpret 129 
information extracted from the behavioral recordings. To embed time-related information into the final 130 
feature vector, we adopted the method of applying continuous wavelet transform (CWT) on the time series 131 
of each of the 40 principal components to capture oscillations across many timescales12. From the 40 132 
resulting spectrograms, 25 amplitudes at each timepoint were concatenated into a single vector of length 133 
40 × 25. Up to this point, each original recorded frame was converted to a single 1,000-dimensional feature 134 
vector (Supplementary Fig. 2).  135 

 136 

Feature vectors are assigned to behavioral categories by nonlinear embedding and classification 137 

Finally, we adopted a method developed by Berman et al.12, with modifications, to assign feature vectors 138 
to behavioral categories through nonlinear embedding and classification. The high dimensional feature 139 
vectors were embedded to a 2-dimensional space by nonlinear dimensionality reduction using t-distributed 140 
stochastic neighbor embedding (t-SNE)14. Due to computational limitations, we first embedded a small 141 
subset of randomly sampled feature vectors to create a reference map. Because t-SNE is non-parametric, 142 
we applied a parametric variant of t-SNE named kernel t-SNE15 to embed additional datapoints onto the 143 
reference map. We named the resulting 2-dimensional behavioral space ZeChat map (Fig. 1f).  144 

Calculating the probability density function (PDF) of ZeChat map identified regions with high datapoint 145 
density as local maxima (Fig. 1g), marking the locations of potential behavioral categories12. We segmented 146 
ZeChat map into 80 regions based on locations of the local maxima using a watershed transform algorithm, 147 
allowing each original recorded frame – now embedded as a datapoint in ZeChat map – to be assigned to a 148 
particular behavioral category (Fig. 1h).  149 

 150 

The pause-move dynamic of ZeChat map 151 

We made videos to help visualize how a fish’s real-time behavioral changes translate to datapoint 152 
trajectories on the ZeChat map (Supplementary Video 4). We found that the trajectory of the 2-dimensional 153 
embedding alternates between sustained pauses within certain regions of the map and rapid movements 154 
from one region to a distant region on the map. Plotting the velocity of the trajectory revealed a “pause-155 
move” dynamic (Fig. 2a). The low-velocity points were localized in distinguishable peaks that often 156 
overlapped with the ZeChat map’s local maxima (Fig. 2b & 1g). In contrast, the high-velocity points were 157 
more uniformly distributed (Fig. 2b). This result supports the idea that the social-relevant behavioral 158 
changes can be represented by a course through a high-dimensional space of postural, motional, and 159 
positional features in which the course halts at locations that correspond to discrete sub-behaviors12. 160 
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Figure 2. The pause-move dynamic of ZeChat map. (a) A typical datapoint trajectory in the Z1 and Z2 axes of ZeChat map. 162 
Showing a pause-move dynamic. (b) PDF maps of low velocity (< 1) and high velocity (≥ 1) datapoints. Local maxima positions 163 
of the low velocity PDF map closely match local maxima positions in Fig. 2g, whereas the high velocity datapoints showed a more 164 
uniform distribution pattern.  165 

 166 

Neuroactive compound screening reveals diverse social behavioral responses  167 

To systematically assess how neuroactive compounds modulate social behavior, we conducted a screen of 168 
237 compounds including modulators of the dopamine, serotonin, and opioid-related pathways. These 169 
pathways were selected because they have been implicating in influencing social behavior16-18. Briefly, 3-170 
week-old juvenile fish were treated with compounds by bath exposure for 1-3 hours prior to ZeChat 171 
recording. Ten fish were treated with each compound, and fish treated with the same compound were paired 172 
with each other for ZeChat recording (Fig. 3a). A set of DMSO control fish was included in every recording.  173 

Counting the number of times a fish’s behavior is classified to each behavioral category generated a 174 
behavioral fingerprint in the form of an 80-dimensional numerical vector. Fish treated with the same 175 
compound showed highly similar behavioral fingerprints (Fig. 3b), suggesting that the behavioral 176 
fingerprints produced by a given compound are consistent across multiple individual animals. To 177 
consolidate data, we combined the behavioral fingerprints of fish treated with the same compound by 178 
keeping the median value of each behavioral category. All 237 consolidated behavioral fingerprints plus 179 
DMSO controls were normalized, and the medians of DMSO controls were subtracted from all samples to 180 
help visualize changes in behavioral fingerprints compared to wild type behavior.  181 

Hierarchical clustering reveals a diversity of behavioral responses (Fig. 4 & Supplementary Fig. 3). We 182 
found that compounds belonging to the same functional class consistently evoked highly similar behavioral 183 
fingerprints (Fig. 5a and Supplementary Fig. 4 & 5). To compare the typical behavioral fingerprints of 184 
major drug classes, we calculated the median value of each behavioral category for all behavioral 185 
fingerprints elicited by functionally similar molecules. Only drug classes with no fewer than 3 compounds 186 
tested in the screen were included in this analysis. Hierarchical clustering of the resulting behavioral 187 
fingerprints again revealed distinct behavioral phenotypes (Fig. 5b). Remarkably, compounds targeting the 188 
3 major neurotransmitter pathways, e.g., the serotonin, dopamine, and opioid pathways, were naturally 189 
separated by hierarchical clustering (Fig. 5b: functional classes of drugs are color coded to distinguish the 190 
3 major pathways).  191 
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Figure 3. Neuroactive compounds produce highly reproducible behavioral fingerprints. (a) A schematic of the screening 193 
procedure. (b) Behavioral fingerprints of individual fish treated by different chemicals. Each row represents the behavior fingerprint 194 
of an individual fish. Each square represents the total number of times a fish is assigned to a behavioral category. Horizontal axis: 195 
the 80 behavioral categories. Color bar: cumulated number of times a fish is assigned to a behavioral category. 196 
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Figure 4. Hierarchical clustering reveals distinct drug-induced behavioral responses. Hierarchical clustering of behavioral 198 
fingerprints generated by the screen. Each behavioral fingerprint (row) represents the median value of the individual fingerprints 199 
of all fish (n≤10 per treatment) treated by the same compound. The behavioral fingerprints are normalized for each behavioral 200 
category and subtracted by the median DMSO fingerprint. Horizontal axis labels the 80 behavioral categories.  201 
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Figure 5. Functionally similar molecules evoke similar behavioral responses. (a) Neuroactive compounds with similar 203 
annotated functions elicit similar behavioral fingerprints. (b) Behavioral fingerprints of functionally similar molecules are 204 
consolidated to a single behavioral fingerprint by calculating the median value of each behavioral category, and the resulting 205 
behavior fingerprints are hierarchically clustered. Only groups of drugs containing no less than 3 compounds sharing the same 206 
annotated function are included in the analysis. The group labels are colored by the targeted pathway. Black arrows point to 207 
behavioral fingerprints of dopamine D1, D2, and D3 receptor agonists, respectively.  208 
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Dopamine D3 receptor agonists rescue social deficits in a VPA-induced autism model 209 

Surprisingly, we noticed that the dopamine D1, D2, and D3 receptor agonists were clustered well apart 210 
from each other (Fig. 5b: black arrows), suggesting that selected activations of the dopamine D1, D2, and 211 
D3 receptor-related neuronal circuits elicited distinct social behavioral phenotypes. The five D3 agonists 212 
tested in the 237-compound screen generated highly similar behavioral fingerprints sharing a unique pattern 213 
in which strong signals are observed in the higher-number behavioral categories (Fig. 6a-b). In contrast, the 214 
D1 and D2 agonists elicited very different behavioral fingerprints with no enrichment in these higher-215 
number behavioral categories (Fig. 6a). By examining raw behavioral recordings, we noticed that the D3-216 
agonist-treated fish tend to spend a significant amount of time swimming intensively while pressing against 217 
the transparent window. Compared to wild type animals, these fish demonstrated persistent and strong high-218 
frequency tail beats, fast swim velocity, and quick and frequent turns; they also rarely retreated from 219 
proximity to the transparent window (Supplementary Video 5 and Fig. 6c). We hypothesized that these D3 220 
agonist-associated behaviors may signify enhanced sociality.  221 

We attempted to validate the hypothesized social stimulative property of D3 agonists in a zebrafish autism 222 
model with a social deficit phenotype. Embryonic exposure to valproic acid (VPA) is an established model 223 
of autism in rodents19 and zebrafish20. Using a simple zebrafish social preference assay21, we observed a 224 
clear social deficit phenotype in VPA-treated zebrafish (Supplementary Fig. 6a). To test the effect of D3 225 
agonists against social deficits, we acquired 3 structurally diverse D3 agonists, pramipexole, piribedil, and 226 
7-hydroxy-DPAT-HBr (Supplementary Fig. 6b). Both pramipexole and piribedil are FDA-approved 227 
antiparkinsonian agents. We found that exposure to D3 agonists for 1 hour by simple submersion prior to 228 
the social preference assay effectively rescued the social deficit in the VPA-treated fish (Fig. 6d).  229 
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Figure 6. Dopamine D3 agonists rescue social deficits in VPA-treated fish. (a) Comparing the behavioral fingerprints of D1, 231 
D2, and D3 agonists. The behavioral fingerprints are normalized and subtracted by the median DMSO fingerprint. (b) PDF maps 232 
of DMSO-treated fish (n=356) and fish treated by D3 agonists (n=49). (c) Series of images taken at 0.5 second intervals reveal 233 
different swim dynamics between wild type treated by DMSO and fish treated by the D3 agonist piribedil (10 µM). Arrows in red 234 
and yellow point to fish’s direction of movement in the current frame. (d) Boxplot showing social preference (social score) of 235 
DMSO-treated fish (n=12) or VPA-treated fish acutely exposed to DMSO (n=16) or 10 µM D3 agonist including pramipexole 236 
(n=17), piribedil (n=20), and 7-hydroxy-DPAT-HBr (n=24) for 1 hour before social preference test. In each boxplot, box encloses 237 
data points from the 25th percentile to the 75th percentile, the horizontal line and cross mark the median and the mean, the lines 238 
above and below the box reach datapoints with the maximum and minimum values. *: p<0.05, ***: p<0.001. 239 
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DISCUSSION 241 

ZeChat is a deep learning-based behavioral assessment tool enabling scalable and low-cost zebrafish 242 
behavioral profiling to characterize changes in sociality. The in vivo ZeChat platform combines advantages 243 
of in vitro and rodent models, enabling scalable testing with high behavioral resolution. Compared to 244 
previous zebrafish behavioral profiling methods, the ZeChat analysis method specifically processes and 245 
analyzes social behavior-relevant information, linking known neuroactive drugs with complex but distinct 246 
social behavioral outcomes.  247 

Apart from unsupervised machine learning, alternative approaches are available for improving the 248 
resolution of social behavioral analysis, but not without drawbacks. For example, supervised machine 249 
learning methods have been widely adopted to analyze social interactions in fruit fly22,23, zebrafish24, and 250 
mouse25. However, this method still relies on human interpretation of animal behavior to classify and assign 251 
behavior and is likely unable to fully reveal the complexity and subtilty of social behavior. Another 252 
approach uses predefined measurement criteria to mathematically model and classify social interaction26,27, 253 
which reduces human biases in the analysis, but the quality of its outcome is highly dependent upon the 254 
validity of the model. In comparison, unsupervised methods have successfully revealed stereotypic 255 
behavioral motifs in individual animals of C. elegans28-34, fruit fly12,35-39, zebrafish40-42, and mouse43,44, as 256 
well as paired interactions in fruit fly45,46, without any human interventions or a priori assumptions, 257 
providing a viable approach for our purpose.  258 

However, all these approaches still rely on manual selection of features for data preprocessing, which 259 
requires strong domain knowledge in the behaving animal. These prerequisites are not always met, 260 
especially when faced with complex problems such as analyzing subtle behavioral changes in a video or 261 
analyzing sequences of behaviors, as it is difficult for a human observer to exhaustively extract useful 262 
features from an image or a sequence of images. Deep learning methods, on the other hand, can 263 
automatically learn to extract abstract features from images. As behavioral recordings are sequences of 264 
images, the potential benefit for applying deep learning to process these data is apparent. In fact, several 265 
recent studies have successfully utilized deep learning to facilitate individual animal identification47, 266 
tracking48, and movement prediction49 in zebrafish, paving the way for its application in ZeChat.  267 

In alignment with our findings, the D3 receptor has been previously implicated in social behavioral 268 
regulation. In humans, pramipexole alleviates social anxiety in selective serotonin reuptake inhibitor 269 
(SSRI)-treated patients50. In rodents, two D3 agonists 7-OH-DPAT and PD 128907 were reported to cause 270 
a variety of complex alterations in social behavior51,52. Further investigations are needed to validate these 271 
findings in rodents using other D3 agonists and under different test conditions, drug doses, and genetic 272 
backgrounds of the animals, but the results in zebrafish, rats, and humans all point to an important role of 273 
D3 receptors in modulating social behavior.  In addition, because both pramipexole and piribedil are FDA-274 
approved antiparkinsonian agents, it may be worthwhile examining their impact on the social behavior of 275 
patients receiving these drugs.  276 

Future studies using the ZeChat platform may expand to screening other neuroactive compounds, 277 
compounds with no known neuroactivity, and uncharacterized compounds, in the hope of identifying 278 
additional phenotypes and drug classes with social-modulatory properties. The characteristic behavioral 279 
fingerprint of the D3 agonists may be used to discover novel compounds with similar behavioral effects. In 280 
addition to wild type fish, fish carrying mutations relevant to human psychiatric disorders can also be 281 
assayed, and their behavioral fingerprints compared to the neuroactive compound clustergram to associate 282 
genetic mutations with perturbations of neuronal pathways. As demonstrated by Hoffman et al.53, small 283 
molecules evoking an anti-correlated behavioral fingerprint may ameliorate social deficits in the mutant 284 
fish.  Hence, by providing a rapid, high-resolution means of characterizing and categorizing zebrafish with 285 
altered social behaviors, ZeChat represents a useful tool for investigating the role of genes and 286 
pharmacological agents in modulating complex social behaviors. 287 
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MATERIALS AND METHODS 288 

The ZeChat imaging system setup 289 

The basic unit of this system is a 10 mm deep, 20 mm wide, and 41.5 mm long (internal dimension) 290 
rectangular chamber with 2 mm thick walls. A 10 × 4 array consist of 40 independent testing units was 3D 291 
printed using white PLA at 100% infill. The printed test arena was glued onto a 3/16" thick white translucent 292 
(43% light transmission) acrylic sheet (US Plastic) using a silicone sealer (Marineland). Each unit was then 293 
divided into two square-shaped compartments by inserting a 1.5 mm thick transparent acrylic window – 294 
precision cut to 10 mm x 41 mm pieces using a laser cutter – into 0.5 mm deep printed slots located in the 295 
middle of each unit on the side of the 41.5 mm wall and fastened using the silicone sealer.  296 

The key component of the imaging system is a 322 mm diameter bi-telecentric lens (Opto Engineering) 297 
with an IR (850 nm) bandpass filter (Opto Engineering). A telecentric lens only allows passing of light that 298 
is parallel to the optical axis, thus avoiding parallax error in imaging, and enables all test units – being 299 
located either in the middle or close to the edge of the field of view – to be imaged without distortion. 300 
Videos were taken at 50 frames per second (fps) by a 75 FPS Blackfly S Mono 5.0 MP USB3 Vision camera 301 
(PointGrey) with a resolution of 2448 x 2048. The tail beat frequency (TBF) for adult zebrafish is ~ 20 Hz54, 302 
therefore images taken at 50 Hz by the camera should adequately sample motion-relevant features based 303 
on the Nyquist–Shannon sampling theorem. The imaging platform was back-illuminated with an infrared 304 
(850 nm) LED array (EnvironmentalLights) to provide light for video recording. The infrared LED array 305 
was positioned on top of a heat sink (H S Marston). The imaging platform was also illuminated from two 306 
opposing sides using white LED arrays (EnvironmentalLights) to provide ambient light for the test subjects. 307 
Structural supports and enclosure were custom built using parts purchased from Thorlabs, McMaster Carr, 308 
and US Plastic.   309 

 310 

ZeChat test 311 

Test subjects were individually placed into each unit – one on each side of the transparent window – using 312 
a transfer pipette with its tip cut off. Their visual access to each other was temporarily blocked by a 3-D 313 
printed nontransprent comb-like structure (Supplementary Fig. 1b) prior to each recording session. Once 314 
all test subjects were placed into test arenas, the entire test apparatus was transferred into the imaging station 315 
and the combs were removed to allow visual access between each pair of fish.  316 

The 2-compartment social interaction setup allows the behavior of each fish to be recorded and analyzed 317 
independently without having to go through complex and often computationally demanding and time-318 
consuming tracking procedures to separate each fish. Videos were streamed and recorded using the software 319 
Bonsai55. A 10 min test session was video recorded for each test. To give fish an acclimation period at the 320 
beginning of each test and to take into consideration that the effects of some of the drugs tend to wear off 321 
quickly, only the 5 min video segment between 2.5 min and 7.5 min was used for subsequent analyses. All 322 
subsequent data processing and analyses were conducted in Python using packages including OpenCV, 323 
scikit-learn, Keras, PyWavelets, and imutils.  324 

 325 

Data preprocessing 326 

For data preprocessing, individual fish were first separated from the background using the K-nearest 327 
neighbors method56. A separate video segment was cropped out for each fish which contains a recording of 328 
the entire square compartment where the fish is located. Because the relative position of a fish to its 329 
compartment is relevant to social interaction dynamics, each compartment was analyzed as a whole. And 330 
because each compartment is polarized, with only one of the four sides being transparent to another fish, 331 
for each pair of compartments, the video containing fish in the “top” compartment is flipped vertically by 332 
rotating 180 degrees to match the orientation of video recording the “bottom” compartment, so that the side 333 
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of the compartment facing the transparent widow always faces upward in each video.   334 

To capture changes in each fish’s posture between consecutive frames, we subtracted every current frame 335 
from its previous frame. The resulting images were binary-thresholded to generate silhouette-like masks. 336 
In parallel, we calculated each fish’s direction of movement between consecutive frames using the 337 
Franeback Method of dense optical flow13 and used this information to color the fish; motionless fish appear 338 
dark after applying this method, thus restricting our analysis to fish in motion. Finally, we applied the mask 339 
acquired by subtracting consecutive frames to the dense optical flow image so that the image colored by 340 
dense optical flow is cropped by the subtracted silhouette-like mask.  341 

 342 

Training the convolutional autoencoder and feature extraction 343 

The architecture of the convolutional autoencoder consists of three encoding layers each containing 64, 32, 344 
and 16 filters, and three decoding layers each containing 16, 32, and 64 filters. We used a training set of 345 
preprocessed images to pre-train the convolutional autoencoder. The preprocessed images with a dimension 346 
of 220 pixels × 220 pixels were first resized to 56 pixels × 56 pixels to reduce computational requirements. 347 
Because a wild type fish typically spends most of the time interacting with its paired fish by staying close 348 
to the transparent window, causing the position of the fish in input images to be highly polarized, we 349 
enriched the training dataset by rotating each resized image by 90°, 180°, and 270° to generate input images 350 
with more postural and positional variations.  351 

The autoencoder forces input images to pass through a “bottleneck” before reconstruction. The bottleneck, 352 
or the latent representation space, has a dimension of 784. We then applied principal component analysis 353 
(PCA) to this 784-dimensional feature vector and extracted 40 principal components which preserved ~ 95% 354 
of total variance.  355 

 356 

Time-frequency analysis of feature dynamics 357 

Calculating the 40 principal components for each video frame yields 40 timeseries for each video. Each 358 
timeseries was then expanded into a spectrogram by applying the Continuous Wavelet Transform (CWT). 359 
The Morlet wavelet was used as the mother wavelet and 25 scales were chosen to match frequencies 360 
spanning from 0.38 Hz to 5 Hz, with the range of frequencies empirically determined to preserve the 361 
strongest signals. The time-frequency representation augments the instantaneous representation by 362 
capturing oscillations across many timescales. The spectral amplitudes of each time point were then 363 
concatenated into a vector of length 40 × 25, giving rise to a 1,000-dimensional representation for each 364 
original video frame. Each 1,000-dimensional vector was normalized to having a sum of 1 in order to treat 365 
each vector as a probability distribution for subsequent calculation. 366 

 367 

Nonlinear embedding and segmentation 368 

We then performed nonlinear dimensionality reduction on these high dimensional vectors using the popular 369 
nonlinear manifold embedding algorithm t-distributed stochastic neighbor embedding (t-SNE)14. We 370 
randomly selected and embedded 3,000 feature vectors from 60 fish to generate a reference map. The t-371 
SNE algorithm is non-parametric. Therefore, additional datapoints were embedded onto the reference map 372 
using a parametric kernel t-SNE15 method to form the ZeChat map. As the feature vectors are normalized 373 
and treated as probability distributions, we calculated the Jensen–Shannon distance (the square root of the 374 
Jensen–Shannon divergence) between each pair of vectors as a distance metric for both t-SNE and kernel 375 
t-SNE. We chose the Jensen–Shannon distance as a metric for calculating distances due to it being 376 
symmetric and bounded by 0 and 1 which avoids the generation of infinite values. 377 

We calculated the probability density function (PDF) of this map by convolving with a Gaussian kernel. 378 
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Due to computational limitations, this calculation was conducted using a ZeChat map containing 10,000 379 
randomly selected datapoints. The resulting probability density map was then inverted to turn local maxima 380 
into “valleys”. The “ridges” between valleys were detected using Laplacian transform. Finally, a watershed 381 
transform was applied to mark the borders between each valley to unbiasedly segment the ZeChat map into 382 
80 behavioral categories.  383 

For ZeChat analysis, to reduce computation time, we randomly sampled 5000 frames from each fish for 384 
kernel t-SNE embedding and subsequent analyses.  385 

 386 

Behavioral fingerprint calculation and hierarchical clustering 387 

Each frame is assigned a watershed region (behavioral category) based on ZeChat map segmentation. For 388 
each fish, the total number of frames assigned to each watershed region was counted, giving rise to a 389 
behavioral fingerprint in the form of an 80-dimensional vector. Behavioral fingerprints of fish treated by 390 
each drug were combined into one fingerprint by calculating the median of each behavioral category. All 391 
combined raw behavioral fingerprints were normalized so that the signals of each behavioral category were 392 
between 0 and 1. To help visualize the difference in behavioral patterns between drug treatments and DMSO 393 
control, we calculated the median of each behavioral category of all DMSO controls to generate a 394 
representative fingerprint for DMSO control, and subtracted this fingerprint from all drug treatment samples. 395 
Finally, the normalized and DMSO-subtracted fingerprints of each drug treatment were clustered using the 396 
clustermap function (metric='euclidean', method=’complete’) of Python’s Seaborn library.  397 

 398 

Zebrafish chemical treatment and screening 399 

For ZeChat testing, 21 dpf zebrafish were collected from nursery tanks. Fish of roughly average size were 400 
selected to minimize the effect of size differences. For the screen, 10 fish were picked into a 60 mm petri 401 
dish containing 10 ml E3 medium. Compounds were then added to each dish at a final concentration of 10 402 
µM (non-peptide molecules) or 1 µM (endogenous neuropeptides and their analogs). Fish were incubated 403 
for 1-3 hours prior to ZeChat testing. Immediately before testing fish in a petri dish, the content of the petri 404 
dish was poured through a nylon tea strainer to remove liquid while keeping fish in the tea strainer. The tea 405 
strainer was then consecutively dipped into 3 petri dishes containing E3 to wash the residual chemical away 406 
from the fish. The fish were then poured into a petri dish containing clean E3 and each individual was 407 
transferred into the ZeChat test arena using a plastic transfer pipette for testing. 408 

 409 

Rescue of VPA fish and social preference testing 410 

VPA treatment was conducted by submerging embryos in 1 µM VPA in E3 medium from 0 to 3 dpf. The 411 
drug treated embryos were washed at 3 dpf and transferred to petri dishes containing clean E3 medium. At 412 
5-7 dpf, larvae were transferred into nursery tanks and raised to 21 dpf for behavioral testing of social 413 
preference using a 3-chamber assay apparatus21. For the D3 agonist rescue experiment, 20 VPA-treated fish 414 
were picked into a 25 mm deep 10 cm petri dish containing 30 ml E3 medium. Compounds were then added 415 
to each dish and fish were incubated for 1 hour. Immediately before testing, fish were washed as described 416 
above, and individually placed into the social preference testing arenas for behavioral testing.  417 

 418 

Chemical library and other compounds 419 

All screening compounds were acquired from the Biomol neuroactive compound library (Biomol) which 420 
contains a total of 700 neuroactive drugs dissolved in DMSO at a stock concentration of 10 mM or 1 mM 421 
(for only a small subset of drugs). Valproic acid was purchased from Sigma-Aldrich. Pramipexole was 422 
purchased from Cayman Chemical. Piribedil was purchased from Selleck Chemicals. 7-hydroxy-DPAT-423 
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HBr was purchased from Santa Cruz. All individually purchased compounds were dissolved in DMSO. 424 
Chemical structures were generated using PubChem Sketcher. 425 

 426 

Zebrafish husbandry 427 

Fertilized eggs (up to 10,000 embryos per day) were collected from group mating of EkkWill strain 428 
zebrafish (Danio rerio) (EkkWill Waterlife Resources). Embryos were raised in HEPES (10 mM) buffered 429 
E3 medium at 28°C, with or without compound treatment, during the first 3 days. At 3 days post fertilization 430 
(dpf), chorion debris was removed, and larvae were transferred into petri dishes containing fresh E3 medium. 431 
At 5 – 7 dpf, larvae were transferred into nursery tanks and raised at 28°C on a 14/10 hr on/off light cycle.  432 

 433 

Statistical analysis 434 

Graphs were generated using GraphPad Prism or Python using the Matplotlib package. Data were analyzed 435 
using the 2-tailed Student’s t-test. P values less than 0.05 were considered significant. 436 

 437 

Code availability 438 

Code is available on the GitHub repository at https://github.com/yijie-geng/ZeChat and is archived on 439 
Zenodo under DOI: 10.5281/zenodo.5519964. 440 

 441 

 442 
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SUPPLEMENTARY DATA 457 

Supplementary Figure 1. (a) The 3D design of one ZeChat unit. (b) The 3D design of a comb-like insert 459 
for blocking the views of fish before ZeChat test. (c) Example preprocessed images. (d) Example input 460 
images, latent vectors, and reconstructed images.  461 
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Supplementary Figure 2. An example of spectrograms generated by time-frequency analysis of 40 463 
principal components of a latent vector. PC1-40: principal components 1-40. Horizontal axis: frames. 464 
Vertical axis: frequencies. Color bar: amplitudes.   465 
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Supplementary Figure 3. Hierarchical clustering of 237 behavioral fingerprints generated by the screen. 467 
The behavioral fingerprints are normalized and subtracted by the median DMSO fingerprint. Labels on the 468 
right show: drug classification [drug name].  469 
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Supplementary Figure 4. Behavioral fingerprints of dopamine pathway and opioid pathway modulators, 471 
grouped by drug effects.  472 

 473 
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Supplementary Figure 5. Behavioral fingerprints of serotonin pathway modulators, grouped by drug 475 
effects.  476 

 477 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.09.24.461752doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461752
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 6. (a) Boxplot showing social preference (social score) of fish treated by DMSO 479 
(n=25) or valproic acid (VPA; n=21) during the first 3 days of embryonic development. *: p<0.05. (b) 480 
Chemical structures of the D3 agonists pramipexole, piribedil, and 7-hydroxy-DPAT-HBr.  481 

 482 

Supplementary Video 1. Video recording of a pair of fish interacting in a ZeChat unit. Each unit is divided 483 
into two arenas by a transparent window.  484 

 485 

Supplementary Video 2. Video recording of 40 pairs of fish interacting in a full-sized ZeChat test array.  486 

 487 

Supplementary Video 3. A combination of 4 processed clips of the same video recording, showing the 488 
intermediate and final outcomes of image preprocessing.  489 

 490 

Supplementary Video 4. Side-by-side view of fish’s behavioral recording and its trajectory on ZeChat 491 
map in real-time to visualize how a fish’s behavior translates to datapoint embeddings in the ZeChat map.   492 

 493 

Supplementary Video 5. Video recordings of wild type (DMSO) and dopamine D3 agonist-treated (10 494 
µM piribedil) fish. Demonstrating a more intense interaction pattern between pairs of D3 agonist-treated 495 
fish compared to the wild type.  496 
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