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ABSTRACT

It has been a major challenge to systematically evaluate and compare how pharmacological perturbations
influence social behavioral outcomes. Although some pharmacological agents are known to alter social
behavior, precise description and quantification of such effects have proven difficult. The complexity of
brain functions regulating sociality makes it challenging to predict drug effects on social behavior without
testing in live animals, and most existing behavioral assays are low-throughput and provide only
unidimensional readouts of social function. To achieve richer characterization of drug effects on sociality,
we developed a scalable social behavioral assay for zebrafish named ZeChat based on unsupervised deep
learning. High-dimensional and dynamic social behavioral phenotypes are automatically classified using
this method. By screening a neuroactive compound library, we found that different classes of chemicals
evoke distinct patterns of social behavioral fingerprints. By examining these patterns, we discovered that
dopamine D3 agonists possess a social stimulative effect on zebrafish. The D3 agonists pramipexole,
piribedil, and 7-hydroxy-DPAT-HBr rescued social deficits in a valproic acid-induced zebrafish autism
model. The ZeChat platform provides a promising approach for dissecting the pharmacology of social
behavior and discovering novel social-modulatory compounds.


mailto:yijie.geng@pharm.utah.edu
mailto:randall.peterson@pharm.utah.edu
https://doi.org/10.1101/2021.09.24.461752
http://creativecommons.org/licenses/by-nc-nd/4.0/

27

28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66

67

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461752; this version posted October 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Sociality is broadly conserved across the animal kingdom, facilitating cooperation, reproduction, and
protection from predation. In humans, social dysfunction is a hallmark of several neuropsychiatric disorders
such as autism, schizophrenia, bipolar disorder, and Williams syndrome, to name a few. In particular, social
communication impairment is considered a core symptom of autism. Despite its importance, we lack a
comprehensive understanding of how the diverse classes of neuroactive drugs impact social behavior. This
is evidenced by the fact that although certain antipsychotics, antidepressants, and stimulants medications
are used clinically to help manage some symptoms of autism', no treatment is currently available to
ameliorate the disease-relevant social deficit.

It has been a major challenge to comprehensively assess and compare how chemicals affect complex
behaviors such as sociality. Simple in vitro assays cannot effectively model drug effects on whole
organisms, especially on brain activity. Rodent models lack sufficient throughput and are cost-prohibitive
for a comprehensive examination of the hundreds of neuroactive drugs currently available, limiting their
uses to small-scale hypothesis-driven testing. On the other hand, the zebrafish has become an increasingly
important model organism for social behavioral research?®, and recent developments in zebrafish behavioral
profiling have demonstrated a promising alternative approach to meeting this challenge. Indeed,
multidimensional behavioral profiling in zebrafish has been used to systematically assess thousands of
chemicals for effects on motor responses*®, rest/wake behavior®, and appetite’.

Current methods of social behavioral analysis in zebrafish are mostly limited to quantifying the average
measurement of a human-defined simplex trait such as social preference®, social orienting’, and group
cohesion'®, or a collection of several simplex traits!!, with limited throughput. Restricted by their
unidimensional nature, these measurements often fail to adequately represent the complex and
multidimensional nature of social behavior in space and time. To comprehensively assess social behavior
for behavioral profiling, we sought to develop an automated method to classify the real-time dynamics of
social behavior based solely on information provided by the data, without any human intervention, in a
scalable format. To achieve this goal, we adopted an unsupervised deep learning approach: deep learning
based on a convolutional autoencoder can automatically extract social-relevant features from a behavioral
recording, while unsupervised learning allows for unbiased classification of real-time behavioral
phenotypes; both processes were conducted free of human instructions.

Here, we report a fully automated and scalable social behavioral profiling platform named ZeChat. Built
on an unsupervised deep learning backbone, ZeChat embeds the high-dimensional and dynamical social
behavioral data into a 2-dimensional space and assigns the embedded datapoints to distinct behavioral
categories, thus converting a fish’s entire social behavioral recording to a behavioral fingerprint in the form
of a numerical vector. Screening 237 known neuroactive compounds using the ZeChat system generated a
rich set of social-relevant behavioral phenotypes which enabled unbiased clustering and classification of
drug-treated animals. Based on the social behavioral profile compiled from the screen, we discovered a
social stimulative effect of dopamine D3 receptor agonists (D3 agonists). Acute exposure to D3 agonists
rescued social deficits in a valproic acid-induced zebrafish autism model. Our results demonstrate that
multidimensional social behavioral phenotypes can be distilled into simple behavioral fingerprints to
classify the effect of psychotropic chemicals on sociality.
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68 RESULTS
69  Rationale and overview of the ZeChat behavioral analysis framework

70  The ZeChat workflow is summarized in Figure 1a. We probed social interaction in a 2-chamber setup, in
71  which each fish swims freely in a square arena with visual access to its partner fish through a transparent
72  window. In this setup, a fish’s position inside the arena, as well as its posture and movement dynamics,
73 were deemed relevant for social interaction. Inspired by Berman et al.'?, we sought to describe social
74  behavior as a point moving through a high-dimensional space of positional, postural, and motional features,
75  and to assign segmented subspaces to sub-behaviors. First, a preprocessing step distilled social-relevant
76  information from the recorded images. A convolutional autoencoder then unbiasedly extracted key features
77  from the preprocessed images to a latent vector, which is then projected onto its first 40 principal
78  components. We converted the time series of each principal component to a wavelet spectrogram to
79  incorporate behavioral dynamics into a feature vector. Finally, each feature vector was embedded into a 2-
80  dimensaional map and classified to distinct behavioral categories.

81
82  Social-relevant information can be extracted via behavioral recording and image preprocessing

83  The zebrafish becomes socially active at 3 weeks of age® while remaining small in size (~ 1 cm long),
84  enabling us to visualize social interaction in a confined space. To allow easy separation of individual fish
85  for subsequent analysis, pairs of fish were each placed in a separate 2 cm x 2 c¢cm arena and allowed to
86 interact only through a transparent window (Supplementary Fig. 1a; Supplementary Video 1). A custom-
87  Dbuilt high-throughput imaging platform was used to record 40 pairs of fish simultaneously with sufficient
88  spatiotemporal resolution to capture dynamic changes of the fish’s postures and positions (Fig. 1b-c &
89  Supplementary Video 2). Sexual dimorphism is not readily apparent at this stage, so fish were paired
90  without sex distinction.

91  For image preprocessing, images of each arena were cropped with the transparent window always in the
92  upright position to preserve fish’s positional information. Each fish was first tracked to be isolated from the
93  background (Fig. 1d & Supplementary Video 3: tracked). Consecutive frames were subtracted to show
94  postural changes between consecutive frames in the resulting silhouette (Fig. 1d & Supplementary Video
95  3: silhouette). In parallel, we colored each fish based on its instantaneous direction and velocity of
96 movement calculated by dense optical flow" (Fig. 1d & Supplementary Video 3: dense optical flow).
97  Finally, each dense optical flow image was masked by its corresponding silhouette to generate a merged
98  image (Fig. lc & Supplementary Video 3: merge; Supplementary Fig. 1c).

99

100  Preprocessed images can be transformed to feature vectors by feature extraction and time-frequency
101  analysis

102  Without any human intervention, convolutional autoencoders can automatically “learn” to extract useful
103  features from input images into a latent vector, which is then used to reconstruct these images. We therefore
104  used this deep learning architecture to extract key features of the preprocessed images into the latent vector
105  for subsequent analyses. As part of the initial setup, we first pre-trained the convolutional autoencoder using
106  a training set of preprocessed images (Fig. 1e & Supplementary Fig. 1d). The resulting latent vectors were
107  projected onto the first 40 principal components by a principal component analysis (PCA), preserving ~ 95%
108  of'the total variance. When running the ZeChat analysis, preprocessed images were converted to time series
109  of 40 principal components by the pre-trained autoencoder and PCA models.
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111 Figure 1. The general framework of ZeChat behavioral analysis. (a) To analyze a ZeChat recording, a separate video clip is
112 first generated for each fish by cropping out the ZeChat arena where it is located in. Each cropped video clip is orientated so that
113 the transparent window is always aligned to the top edge of the clip. Each frame is then Preprocessed to preserve positional,
114 postural, and motion related information. The preprocessed images are fed into an autoencoder for Feature Extraction. The main
115 principal components of the extracted feature vector are each converted to a spectrogram by Time-Frequency Analysis. The
116 resulting spectral feature vectors are embedded into a 2-dimensional map and classified to distinct behavioral categories by
117 Nonlinear Embedding and Classification. (b) The 3D design of the 40-unit ZeChat testing array. (¢) A screenshot of ZeChat
118 recording. Also zoom in to show an independent testing unit. (d) Intermediate and resulting images of the preprocessing procedure.
119 Fish is first tracked to remove background (tracked). Consecutive tracked frames are subtracted (silhouette). In parallel, the tracked
120 fish is colored by dense optical flow (dense optical flow). Finally, the dense optical flow image is masked by the silhouette to
121 generate a merged image (merge). (e) Training the convolutional autoencoder. Preprocessed images (left, Input Images) are fed
122 into the 7-layer convolutional autoencoder (middle) to be reconstructed (right, Reconstructed Images). The Encoder layers are
123 responsible for compressing the input image into a latent representation space in the form of a Latent Vector, which is then used to
124 reconstruct the input image by the Decoder layers. (f) Training dataset embedded into a 2D ZeChat map. A reference map
125 containing 3000 datapoints (red) was first embedded using t-SNE. Kernel t-SNE was then used to embed an additional 60,000
126 datapoints (blue). (g) Probability density function (PDF) of ZeChat map containing 10,000 randomly selected datapoints. Generated
127 by convolving the ZeChat map with a Gaussian. (h) PDF of the ZeChat map was segmented into 80 distinct behavioral categories
128 by performing a watershed transform.

129  Behaviors happen in durations, necessitating time to be taken into consideration to properly interpret
130  information extracted from the behavioral recordings. To embed time-related information into the final
131  feature vector, we adopted the method of applying continuous wavelet transform (CWT) on the time series
132 of each of the 40 principal components to capture oscillations across many timescales'?. From the 40
133 resulting spectrograms, 25 amplitudes at each timepoint were concatenated into a single vector of length
134 40 x 25. Up to this point, each original recorded frame was converted to a single 1,000-dimensional feature
135  vector (Supplementary Fig. 2).

136
137  Feature vectors are assigned to behavioral categories by nonlinear embedding and classification

138  Finally, we adopted a method developed by Berman et al.'?, with modifications, to assign feature vectors
139  to behavioral categories through nonlinear embedding and classification. The high dimensional feature
140  vectors were embedded to a 2-dimensional space by nonlinear dimensionality reduction using #-distributed
141  stochastic neighbor embedding (+-SNE)!*. Due to computational limitations, we first embedded a small
142  subset of randomly sampled feature vectors to create a reference map. Because -SNE is non-parametric,
143 we applied a parametric variant of -~SNE named kernel /~SNE'* to embed additional datapoints onto the
144  reference map. We named the resulting 2-dimensional behavioral space ZeChat map (Fig. 1f).

145  Calculating the probability density function (PDF) of ZeChat map identified regions with high datapoint
146  density as local maxima (Fig. 1g), marking the locations of potential behavioral categories'?. We segmented
147  ZeChat map into 80 regions based on locations of the local maxima using a watershed transform algorithm,
148  allowing each original recorded frame — now embedded as a datapoint in ZeChat map — to be assigned to a
149  particular behavioral category (Fig. 1h).

150
151  The pause-move dynamic of ZeChat map

152  We made videos to help visualize how a fish’s real-time behavioral changes translate to datapoint
153  trajectories on the ZeChat map (Supplementary Video 4). We found that the trajectory of the 2-dimensional
154  embedding alternates between sustained pauses within certain regions of the map and rapid movements
155  from one region to a distant region on the map. Plotting the velocity of the trajectory revealed a “pause-
156  move” dynamic (Fig. 2a). The low-velocity points were localized in distinguishable peaks that often
157  overlapped with the ZeChat map’s local maxima (Fig. 2b & 1g). In contrast, the high-velocity points were
158  more uniformly distributed (Fig. 2b). This result supports the idea that the social-relevant behavioral
159  changes can be represented by a course through a high-dimensional space of postural, motional, and
160  positional features in which the course halts at locations that correspond to discrete sub-behaviors!2.
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162 Figure 2. The pause-move dynamic of ZeChat map. (a) A typical datapoint trajectory in the Z; and Z> axes of ZeChat map.
163 Showing a pause-move dynamic. (b) PDF maps of low velocity (< 1) and high velocity (> 1) datapoints. Local maxima positions
164 of the low velocity PDF map closely match local maxima positions in Fig. 2g, whereas the high velocity datapoints showed a more
165 uniform distribution pattern.
166

167  Neuroactive compound screening reveals diverse social behavioral responses

168  To systematically assess how neuroactive compounds modulate social behavior, we conducted a screen of
169 237 compounds including modulators of the dopamine, serotonin, and opioid-related pathways. These
170  pathways were selected because they have been implicating in influencing social behavior!®'8, Briefly, 3-
171  week-old juvenile fish were treated with compounds by bath exposure for 1-3 hours prior to ZeChat
172 recording. Ten fish were treated with each compound, and fish treated with the same compound were paired
173  with each other for ZeChat recording (Fig. 3a). A set of DMSO control fish was included in every recording.

174  Counting the number of times a fish’s behavior is classified to each behavioral category generated a
175  behavioral fingerprint in the form of an 80-dimensional numerical vector. Fish treated with the same
176  compound showed highly similar behavioral fingerprints (Fig. 3b), suggesting that the behavioral
177  fingerprints produced by a given compound are consistent across multiple individual animals. To
178  consolidate data, we combined the behavioral fingerprints of fish treated with the same compound by
179  keeping the median value of each behavioral category. All 237 consolidated behavioral fingerprints plus
180  DMSO controls were normalized, and the medians of DMSO controls were subtracted from all samples to
181  help visualize changes in behavioral fingerprints compared to wild type behavior.

182  Hierarchical clustering reveals a diversity of behavioral responses (Fig. 4 & Supplementary Fig. 3). We
183  found that compounds belonging to the same functional class consistently evoked highly similar behavioral
184  fingerprints (Fig. 5a and Supplementary Fig. 4 & 5). To compare the typical behavioral fingerprints of
185  major drug classes, we calculated the median value of each behavioral category for all behavioral
186  fingerprints elicited by functionally similar molecules. Only drug classes with no fewer than 3 compounds
187  tested in the screen were included in this analysis. Hierarchical clustering of the resulting behavioral
188  fingerprints again revealed distinct behavioral phenotypes (Fig. 5b). Remarkably, compounds targeting the
189 3 major neurotransmitter pathways, e.g., the serotonin, dopamine, and opioid pathways, were naturally
190  separated by hierarchical clustering (Fig. 5b: functional classes of drugs are color coded to distinguish the
191 3 major pathways).
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193 Figure 3. Neuroactive compounds produce highly reproducible behavioral fingerprints. (a) A schematic of the screening
194 procedure. (b) Behavioral fingerprints of individual fish treated by different chemicals. Each row represents the behavior fingerprint
195 of an individual fish. Each square represents the total number of times a fish is assigned to a behavioral category. Horizontal axis:
196 the 80 behavioral categories. Color bar: cumulated number of times a fish is assigned to a behavioral category.
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198 Figure 4. Hierarchical clustering reveals distinct drug-induced behavioral responses. Hierarchical clustering of behavioral
199 fingerprints generated by the screen. Each behavioral fingerprint (row) represents the median value of the individual fingerprints
200 of all fish (n<10 per treatment) treated by the same compound. The behavioral fingerprints are normalized for each behavioral
201 category and subtracted by the median DMSO fingerprint. Horizontal axis labels the 80 behavioral categories.
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203 Figure 5. Functionally similar molecules evoke similar behavioral responses. (a) Neuroactive compounds with similar
204 annotated functions elicit similar behavioral fingerprints. (b) Behavioral fingerprints of functionally similar molecules are
205 consolidated to a single behavioral fingerprint by calculating the median value of each behavioral category, and the resulting
206 behavior fingerprints are hierarchically clustered. Only groups of drugs containing no less than 3 compounds sharing the same
207 annotated function are included in the analysis. The group labels are colored by the targeted pathway. Black arrows point to
208 behavioral fingerprints of dopamine D1, D2, and D3 receptor agonists, respectively.
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209  Dopamine D3 receptor agonists rescue social deficits in a VPA-induced autism model

210  Surprisingly, we noticed that the dopamine D1, D2, and D3 receptor agonists were clustered well apart
211  from each other (Fig. 5b: black arrows), suggesting that selected activations of the dopamine D1, D2, and
212 D3 receptor-related neuronal circuits elicited distinct social behavioral phenotypes. The five D3 agonists
213 tested in the 237-compound screen generated highly similar behavioral fingerprints sharing a unique pattern
214  in which strong signals are observed in the higher-number behavioral categories (Fig. 6a-b). In contrast, the
215 DI and D2 agonists elicited very different behavioral fingerprints with no enrichment in these higher-
216  number behavioral categories (Fig. 6a). By examining raw behavioral recordings, we noticed that the D3-
217  agonist-treated fish tend to spend a significant amount of time swimming intensively while pressing against
218  the transparent window. Compared to wild type animals, these fish demonstrated persistent and strong high-
219  frequency tail beats, fast swim velocity, and quick and frequent turns; they also rarely retreated from
220  proximity to the transparent window (Supplementary Video 5 and Fig. 6¢). We hypothesized that these D3
221  agonist-associated behaviors may signify enhanced sociality.

222  We attempted to validate the hypothesized social stimulative property of D3 agonists in a zebrafish autism
223 model with a social deficit phenotype. Embryonic exposure to valproic acid (VPA) is an established model
224  of autism in rodents'® and zebrafish®®. Using a simple zebrafish social preference assay?!, we observed a
225  clear social deficit phenotype in VPA-treated zebrafish (Supplementary Fig. 6a). To test the effect of D3
226  agonists against social deficits, we acquired 3 structurally diverse D3 agonists, pramipexole, piribedil, and
227  7-hydroxy-DPAT-HBr (Supplementary Fig. 6b). Both pramipexole and piribedil are FDA-approved
228  antiparkinsonian agents. We found that exposure to D3 agonists for 1 hour by simple submersion prior to
229  the social preference assay effectively rescued the social deficit in the VPA-treated fish (Fig. 6d).


https://doi.org/10.1101/2021.09.24.461752
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461752; this version posted October 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

231
232

234
235
236
237
238
239

240

available under aCC-BY-NC-ND 4.0 International license.

a D1 agonists

(AA)-SKF-82958 HBr < N |
A 68930 -
A-77636 HCl = .
208243 =

Fenoldopam HBr

R(+)-6-8romo-APB HB H fE'E |

R(+)-5KF-81297 = ' | | . | |

SKF 38393 HBr =

12345678 61011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

D2 agonists
()-Quinpirole HCl =
(B.A)-2-(N-Phenylethyl-N-propyl)amino-5-hydroxytetralin) <\ NN | 1] [ | | | | | | ] |
B-HT 920 2HCI =
1¥-163,502 = | [ | [ |
R(112,10,11Tihydroxy-N-propyl-noraporphine Hor = u u u
R Propyorapomorshine HO - ] u D Em EE u

S(-)-Lisuride =

123456738 91011121314151517181920212223242526272529303132333435363738394041424344450647484950515253545556575859606162636455566768697071727374757677787980

D3 agonists
1
(4)-PD 128907 HCI - u m
" (AAx)-PD 128,907 HCI = I | .- [ | - 1
0 7-Hydroxy-DPAT HBr =
u Piribedil Hl - u u u u N |
1338485 b b dodtioiararsie ih o dodid s de ds de s o051 52 323 o5 oo 37 do 3o o g da s e 5 47 da do S0 51 25 54 95 9o 57 o5 6 6 o2 63 606 e 6 o 60 70 7 72 73 74 75 76 7 7a 79 80
DMSO D3 agonists
1.04
0.5+
®
Q
» 3
— 0.04
S
[53
o
. ' 2
a’ . ’ N
. -
- v ar »
3 : —
2 N N
PP FS®
NI P %
T F &
x &@ XQ OQ
K L s &
¥ N O
&
0 2.2x 10 o
C &

WT: DMSO 0.5 second intervals between consecutive images

TNy yyge

D3 agonist: Piribedil

Figure 6. Dopamine D3 agonists rescue social deficits in VPA-treated fish. (a) Comparing the behavioral fingerprints of D1,
D2, and D3 agonists. The behavioral fingerprints are normalized and subtracted by the median DMSO fingerprint. (b) PDF maps
of DMSO-treated fish (n=356) and fish treated by D3 agonists (n=49). (¢) Series of images taken at 0.5 second intervals reveal
different swim dynamics between wild type treated by DMSO and fish treated by the D3 agonist piribedil (10 pM). Arrows in red
and yellow point to fish’s direction of movement in the current frame. (d) Boxplot showing social preference (social score) of
DMSO-treated fish (n=12) or VPA-treated fish acutely exposed to DMSO (n=16) or 10 uM D3 agonist including pramipexole
(n=17), piribedil (n=20), and 7-hydroxy-DPAT-HBr (n=24) for 1 hour before social preference test. In each boxplot, box encloses
data points from the 25" percentile to the 75™ percentile, the horizontal line and cross mark the median and the mean, the lines
above and below the box reach datapoints with the maximum and minimum values. *: p<0.05, ***: p<0.001.
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241 DISCUSSION

242 ZeChat is a deep learning-based behavioral assessment tool enabling scalable and low-cost zebrafish
243  behavioral profiling to characterize changes in sociality. The in vivo ZeChat platform combines advantages
244  of in vitro and rodent models, enabling scalable testing with high behavioral resolution. Compared to
245  previous zebrafish behavioral profiling methods, the ZeChat analysis method specifically processes and
246  analyzes social behavior-relevant information, linking known neuroactive drugs with complex but distinct
247  social behavioral outcomes.

248  Apart from unsupervised machine learning, alternative approaches are available for improving the
249  resolution of social behavioral analysis, but not without drawbacks. For example, supervised machine
250  learning methods have been widely adopted to analyze social interactions in fruit fly?>?, zebrafish?*, and
251  mouse®. However, this method still relies on human interpretation of animal behavior to classify and assign
252 behavior and is likely unable to fully reveal the complexity and subtilty of social behavior. Another
253 approach uses predefined measurement criteria to mathematically model and classify social interaction*?’,
254  which reduces human biases in the analysis, but the quality of its outcome is highly dependent upon the
255  validity of the model. In comparison, unsupervised methods have successfully revealed stereotypic
256  behavioral motifs in individual animals of C. elegans®=*, fruit fly'>¥-°, zebrafish***>, and mouse**, as
257  well as paired interactions in fruit fly*+, without any human interventions or a priori assumptions,
258  providing a viable approach for our purpose.

259  However, all these approaches still rely on manual selection of features for data preprocessing, which
260  requires strong domain knowledge in the behaving animal. These prerequisites are not always met,
261  especially when faced with complex problems such as analyzing subtle behavioral changes in a video or
262  analyzing sequences of behaviors, as it is difficult for a human observer to exhaustively extract useful
263  features from an image or a sequence of images. Deep learning methods, on the other hand, can
264  automatically learn to extract abstract features from images. As behavioral recordings are sequences of
265  images, the potential benefit for applying deep learning to process these data is apparent. In fact, several
266  recent studies have successfully utilized deep learning to facilitate individual animal identification®’,
267  tracking®®, and movement prediction® in zebrafish, paving the way for its application in ZeChat.

268  In alignment with our findings, the D3 receptor has been previously implicated in social behavioral
269  regulation. In humans, pramipexole alleviates social anxiety in selective serotonin reuptake inhibitor
270  (SSRI)-treated patients™. In rodents, two D3 agonists 7-OH-DPAT and PD 128907 were reported to cause
271  a variety of complex alterations in social behavior’*2, Further investigations are needed to validate these
272  findings in rodents using other D3 agonists and under different test conditions, drug doses, and genetic
273  Dbackgrounds of the animals, but the results in zebrafish, rats, and humans all point to an important role of
274 D3 receptors in modulating social behavior. In addition, because both pramipexole and piribedil are FDA-
275  approved antiparkinsonian agents, it may be worthwhile examining their impact on the social behavior of
276  patients receiving these drugs.

277  Future studies using the ZeChat platform may expand to screening other neuroactive compounds,
278  compounds with no known neuroactivity, and uncharacterized compounds, in the hope of identifying
279  additional phenotypes and drug classes with social-modulatory properties. The characteristic behavioral
280  fingerprint of the D3 agonists may be used to discover novel compounds with similar behavioral effects. In
281  addition to wild type fish, fish carrying mutations relevant to human psychiatric disorders can also be
282  assayed, and their behavioral fingerprints compared to the neuroactive compound clustergram to associate
283  genetic mutations with perturbations of neuronal pathways. As demonstrated by Hoffman et al.>, small
284  molecules evoking an anti-correlated behavioral fingerprint may ameliorate social deficits in the mutant
285  fish. Hence, by providing a rapid, high-resolution means of characterizing and categorizing zebrafish with
286  altered social behaviors, ZeChat represents a useful tool for investigating the role of genes and
287  pharmacological agents in modulating complex social behaviors.
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288 MATERIALS AND METHODS
289  The ZeChat imaging system setup

290  The basic unit of this system is a 10 mm deep, 20 mm wide, and 41.5 mm long (internal dimension)
291  rectangular chamber with 2 mm thick walls. A 10 x 4 array consist of 40 independent testing units was 3D
292  printed using white PLA at 100% infill. The printed test arena was glued onto a 3/16" thick white translucent
293 (43% light transmission) acrylic sheet (US Plastic) using a silicone sealer (Marineland). Each unit was then
294  divided into two square-shaped compartments by inserting a 1.5 mm thick transparent acrylic window —
295  precision cut to 10 mm x 41 mm pieces using a laser cutter — into 0.5 mm deep printed slots located in the
296  middle of each unit on the side of the 41.5 mm wall and fastened using the silicone sealer.

297  The key component of the imaging system is a 322 mm diameter bi-telecentric lens (Opto Engineering)
298  with an IR (850 nm) bandpass filter (Opto Engineering). A telecentric lens only allows passing of light that
299 s parallel to the optical axis, thus avoiding parallax error in imaging, and enables all test units — being
300 located either in the middle or close to the edge of the field of view — to be imaged without distortion.
301  Videos were taken at 50 frames per second (fps) by a 75 FPS Blackfly S Mono 5.0 MP USB3 Vision camera
302  (PointGrey) with a resolution of 2448 x 2048. The tail beat frequency (TBF) for adult zebrafish is ~ 20 Hz>,
303 therefore images taken at 50 Hz by the camera should adequately sample motion-relevant features based
304  on the Nyquist—-Shannon sampling theorem. The imaging platform was back-illuminated with an infrared
305 (850 nm) LED array (EnvironmentalLights) to provide light for video recording. The infrared LED array
306  was positioned on top of a heat sink (H S Marston). The imaging platform was also illuminated from two
307  opposing sides using white LED arrays (EnvironmentalLights) to provide ambient light for the test subjects.
308  Structural supports and enclosure were custom built using parts purchased from Thorlabs, McMaster Carr,
309  and US Plastic.

310
311 ZeChat test

312  Test subjects were individually placed into each unit — one on each side of the transparent window — using
313  a transfer pipette with its tip cut off. Their visual access to each other was temporarily blocked by a 3-D
314  printed nontransprent comb-like structure (Supplementary Fig. 1b) prior to each recording session. Once
315  all test subjects were placed into test arenas, the entire test apparatus was transferred into the imaging station
316  and the combs were removed to allow visual access between each pair of fish.

317  The 2-compartment social interaction setup allows the behavior of each fish to be recorded and analyzed
318  independently without having to go through complex and often computationally demanding and time-
319  consuming tracking procedures to separate each fish. Videos were streamed and recorded using the software
320 Bonsai®*. A 10 min test session was video recorded for each test. To give fish an acclimation period at the
321  Dbeginning of each test and to take into consideration that the effects of some of the drugs tend to wear off
322  quickly, only the 5 min video segment between 2.5 min and 7.5 min was used for subsequent analyses. All
323  subsequent data processing and analyses were conducted in Python using packages including OpenCV,
324  scikit-learn, Keras, PyWavelets, and imutils.

325
326  Data preprocessing

327  For data preprocessing, individual fish were first separated from the background using the K-nearest
328  neighbors method®. A separate video segment was cropped out for each fish which contains a recording of
329  the entire square compartment where the fish is located. Because the relative position of a fish to its
330 compartment is relevant to social interaction dynamics, each compartment was analyzed as a whole. And
331  because each compartment is polarized, with only one of the four sides being transparent to another fish,
332 for each pair of compartments, the video containing fish in the “top” compartment is flipped vertically by
333  rotating 180 degrees to match the orientation of video recording the “bottom” compartment, so that the side
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334  of the compartment facing the transparent widow always faces upward in each video.

335  To capture changes in each fish’s posture between consecutive frames, we subtracted every current frame
336  from its previous frame. The resulting images were binary-thresholded to generate silhouette-like masks.
337 In parallel, we calculated each fish’s direction of movement between consecutive frames using the
338  Franeback Method of dense optical flow'3 and used this information to color the fish; motionless fish appear
339  dark after applying this method, thus restricting our analysis to fish in motion. Finally, we applied the mask
340 acquired by subtracting consecutive frames to the dense optical flow image so that the image colored by
341  dense optical flow is cropped by the subtracted silhouette-like mask.

342
343  Training the convolutional autoencoder and feature extraction

344  The architecture of the convolutional autoencoder consists of three encoding layers each containing 64, 32,
345  and 16 filters, and three decoding layers each containing 16, 32, and 64 filters. We used a training set of
346  preprocessed images to pre-train the convolutional autoencoder. The preprocessed images with a dimension
347  of 220 pixels x 220 pixels were first resized to 56 pixels x 56 pixels to reduce computational requirements.
348  Because a wild type fish typically spends most of the time interacting with its paired fish by staying close
349  to the transparent window, causing the position of the fish in input images to be highly polarized, we
350  enriched the training dataset by rotating each resized image by 90°, 180°, and 270° to generate input images
351  with more postural and positional variations.

352 The autoencoder forces input images to pass through a “bottleneck” before reconstruction. The bottleneck,
353  or the latent representation space, has a dimension of 784. We then applied principal component analysis
354  (PCA) to this 784-dimensional feature vector and extracted 40 principal components which preserved ~ 95%
355  of total variance.

356
357  Time-frequency analysis of feature dynamics

358  Calculating the 40 principal components for each video frame yields 40 timeseries for each video. Each
359 timeseries was then expanded into a spectrogram by applying the Continuous Wavelet Transform (CWT).
360 The Morlet wavelet was used as the mother wavelet and 25 scales were chosen to match frequencies
361  spanning from 0.38 Hz to 5 Hz, with the range of frequencies empirically determined to preserve the
362  strongest signals. The time-frequency representation augments the instantaneous representation by
363  capturing oscillations across many timescales. The spectral amplitudes of each time point were then
364  concatenated into a vector of length 40 x 25, giving rise to a 1,000-dimensional representation for each
365  original video frame. Each 1,000-dimensional vector was normalized to having a sum of 1 in order to treat
366  ecach vector as a probability distribution for subsequent calculation.

367
368  Nonlinear embedding and segmentation

369  We then performed nonlinear dimensionality reduction on these high dimensional vectors using the popular
370  nonlinear manifold embedding algorithm ¢-distributed stochastic neighbor embedding (-SNE)'*. We
371  randomly selected and embedded 3,000 feature vectors from 60 fish to generate a reference map. The #-
372 SNE algorithm is non-parametric. Therefore, additional datapoints were embedded onto the reference map
373  using a parametric kernel --SNE'> method to form the ZeChat map. As the feature vectors are normalized
374  and treated as probability distributions, we calculated the Jensen—Shannon distance (the square root of the
375 Jensen—Shannon divergence) between each pair of vectors as a distance metric for both ~-SNE and kernel
376  -SNE. We chose the Jensen—Shannon distance as a metric for calculating distances due to it being
377  symmetric and bounded by 0 and 1 which avoids the generation of infinite values.

378  We calculated the probability density function (PDF) of this map by convolving with a Gaussian kernel.
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379  Due to computational limitations, this calculation was conducted using a ZeChat map containing 10,000
380 randomly selected datapoints. The resulting probability density map was then inverted to turn local maxima
381 into “valleys”. The “ridges” between valleys were detected using Laplacian transform. Finally, a watershed
382 transform was applied to mark the borders between each valley to unbiasedly segment the ZeChat map into
383 80 behavioral categories.

384  For ZeChat analysis, to reduce computation time, we randomly sampled 5000 frames from each fish for
385  kernel -SNE embedding and subsequent analyses.

386
387  Behavioral fingerprint calculation and hierarchical clustering

388  Each frame is assigned a watershed region (behavioral category) based on ZeChat map segmentation. For
389  cach fish, the total number of frames assigned to each watershed region was counted, giving rise to a
390 Dbehavioral fingerprint in the form of an 80-dimensional vector. Behavioral fingerprints of fish treated by
391  each drug were combined into one fingerprint by calculating the median of each behavioral category. All
392  combined raw behavioral fingerprints were normalized so that the signals of each behavioral category were
393  between 0 and 1. To help visualize the difference in behavioral patterns between drug treatments and DMSO
394  control, we calculated the median of each behavioral category of all DMSO controls to generate a
395  representative fingerprint for DMSO control, and subtracted this fingerprint from all drug treatment samples.
396  Finally, the normalized and DMSO-subtracted fingerprints of each drug treatment were clustered using the
397  clustermap function (metric="euclidean', method="complete’) of Python’s Seaborn library.

398
399  Zebrafish chemical treatment and screening

400  For ZeChat testing, 21 dpf zebrafish were collected from nursery tanks. Fish of roughly average size were
401  selected to minimize the effect of size differences. For the screen, 10 fish were picked into a 60 mm petri
402  dish containing 10 ml E3 medium. Compounds were then added to each dish at a final concentration of 10
403  uM (non-peptide molecules) or 1 uM (endogenous neuropeptides and their analogs). Fish were incubated
404  for 1-3 hours prior to ZeChat testing. Immediately before testing fish in a petri dish, the content of the petri
405  dish was poured through a nylon tea strainer to remove liquid while keeping fish in the tea strainer. The tea
406  strainer was then consecutively dipped into 3 petri dishes containing E3 to wash the residual chemical away
407  from the fish. The fish were then poured into a petri dish containing clean E3 and each individual was
408 transferred into the ZeChat test arena using a plastic transfer pipette for testing.

409
410  Rescue of VPA fish and social preference testing

411  VPA treatment was conducted by submerging embryos in 1 uM VPA in E3 medium from O to 3 dpf. The
412  drug treated embryos were washed at 3 dpf and transferred to petri dishes containing clean E3 medium. At
413  5-7 dpf, larvae were transferred into nursery tanks and raised to 21 dpf for behavioral testing of social
414  preference using a 3-chamber assay apparatus®'. For the D3 agonist rescue experiment, 20 VPA-treated fish
415  were picked into a 25 mm deep 10 cm petri dish containing 30 ml E3 medium. Compounds were then added
416  to each dish and fish were incubated for 1 hour. Immediately before testing, fish were washed as described
417  above, and individually placed into the social preference testing arenas for behavioral testing.

418
419  Chemical library and other compounds

420  All screening compounds were acquired from the Biomol neuroactive compound library (Biomol) which
421  contains a total of 700 neuroactive drugs dissolved in DMSO at a stock concentration of 10 mM or | mM
422  (for only a small subset of drugs). Valproic acid was purchased from Sigma-Aldrich. Pramipexole was
423  purchased from Cayman Chemical. Piribedil was purchased from Selleck Chemicals. 7-hydroxy-DPAT-
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HBr was purchased from Santa Cruz. All individually purchased compounds were dissolved in DMSO.
Chemical structures were generated using PubChem Sketcher.

Zebrafish husbandry

Fertilized eggs (up to 10,000 embryos per day) were collected from group mating of EkkWill strain
zebrafish (Danio rerio) (EkkWill Waterlife Resources). Embryos were raised in HEPES (10 mM) buffered
E3 medium at 28°C, with or without compound treatment, during the first 3 days. At 3 days post fertilization
(dpf), chorion debris was removed, and larvae were transferred into petri dishes containing fresh E3 medium.
At 5 —7 dpf, larvae were transferred into nursery tanks and raised at 28°C on a 14/10 hr on/off light cycle.

Statistical analysis

Graphs were generated using GraphPad Prism or Python using the Matplotlib package. Data were analyzed
using the 2-tailed Student’s ¢-test. P values less than 0.05 were considered significant.

Code availability

Code is available on the GitHub repository at https://github.com/yijie-geng/ZeChat and is archived on
Zenodo under DOI: 10.5281/zenodo.5519964.
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457 SUPPLEMENTARY DATA
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459  Supplementary Figure 1. (a) The 3D design of one ZeChat unit. (b) The 3D design of a comb-like insert
460  for blocking the views of fish before ZeChat test. (¢) Example preprocessed images. (d) Example input
461 images, latent vectors, and reconstructed images.
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463  Supplementary Figure 2. An example of spectrograms generated by time-frequency analysis of 40
464  principal components of a latent vector. PC1-40: principal components 1-40. Horizontal axis: frames.
465  Vertical axis: frequencies. Color bar: amplitudes.
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467  Supplementary Figure 3. Hierarchical clustering of 237 behavioral fingerprints generated by the screen.
468  The behavioral fingerprints are normalized and subtracted by the median DMSO fingerprint. Labels on the
469  right show: drug classification [drug name].
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471  Supplementary Figure 4. Behavioral fingerprints of dopamine pathway and opioid pathway modulators,
472 grouped by drug effects.
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Supplementary Figure 5. Behavioral fingerprints of serotonin pathway modulators, grouped by drug
effects.
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479  Supplementary Figure 6. (a) Boxplot showing social preference (social score) of fish treated by DMSO
480  (n=25) or valproic acid (VPA; n=21) during the first 3 days of embryonic development. *: p<0.05. (b)
481  Chemical structures of the D3 agonists pramipexole, piribedil, and 7-hydroxy-DPAT-HBr.

482

483  Supplementary Video 1. Video recording of a pair of fish interacting in a ZeChat unit. Each unit is divided
484  into two arenas by a transparent window.

485
486  Supplementary Video 2. Video recording of 40 pairs of fish interacting in a full-sized ZeChat test array.
487

488  Supplementary Video 3. A combination of 4 processed clips of the same video recording, showing the
489 intermediate and final outcomes of image preprocessing.

490

491  Supplementary Video 4. Side-by-side view of fish’s behavioral recording and its trajectory on ZeChat
492  map in real-time to visualize how a fish’s behavior translates to datapoint embeddings in the ZeChat map.

493

494  Supplementary Video 5. Video recordings of wild type (DMSO) and dopamine D3 agonist-treated (10
495  uM piribedil) fish. Demonstrating a more intense interaction pattern between pairs of D3 agonist-treated
496  fish compared to the wild type.
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