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SUMMARY 
Although numerous promising therapeutic targets for human diseases 
have been discovered, most have not been successfully translated into 
clinical practice1. A bottleneck in the application of basic research 
findings to patients is the enormous cost, time, and effort required for 
high-throughput screening of potential drugs2 for given therapeutic 
targets. Recent advances in 3D docking simulations have not solved this 
problem, given that 3D protein structures with sufficient resolution are not 
always available and that they are computationally expensive to obtain. 
Here we have developed LIGHTHOUSE, a graph-based deep learning 
approach for discovery of the hidden principles underlying the 
association of small-molecule compounds with target proteins, and we 
present its validation by identifying potential therapeutic compounds for 
various human diseases. Without any 3D structural information for 
proteins or chemicals, LIGHTHOUSE estimates protein-compound scores 
that incorporate known evolutionary relations and available experimental 
data. It identified novel therapeutics for cancer, lifestyle-related disease, 
and bacterial infection. Moreover, LIGHTHOUSE predicted ethoxzolamide 
as a therapeutic for coronavirus disease 2019 (COVID-19), and this agent 
was indeed effective against alpha, beta, gamma, and delta variants of 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that are 
rampant worldwide. Given that ethoxzolamide is already approved for 
several diseases, it could be rapidly deployed for the treatment of patients 
with COVID-19. We envision that LIGHTHOUSE will bring about a 
paradigm shift in translational medicine, providing a bridge from bench 
side to bedside. 
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INTRODUCTION 
Despite enormous efforts to eradicate serious medical conditions such as 
cancer and infectious diseases, the translation of innovative research results 
into clinical practice progresses slowly1, leaving a large gap between bench 
side and bedside. The difficulty in identifying bioactive chemicals for a given 
target protein is one reason for this slow progress, with high-throughput 
screening (HTS) of a sufficiently diverse compound library being required for 
each target. About 1060 natural compounds with a molecular mass of <500 Da 
are thought to exist2, but only ~106 of these molecules are available for HTS. 
Over the past few decades, molecular docking simulations have become widely 
adopted to reduce the cost, time, and effort required for HTS. This approach 
has been successful for some proteins whose crystal structures have been 
solved. However, given that high-resolution three-dimensional (3D) structural 
data are not available for most proteins to date and the high computational 
requirements of this approach, its application has been limited. 

Recent advances in artificial intelligence (AI) have demonstrated its 
potential in the pharmaceutical industry3. Although many AI-based drug 
discovery methods have been proposed4–6, they have had limited success in 
translational medicine, with almost all existing studies having been based solely 
on in silico simulations. In addition, most platforms to date have been trained 
with small data sets, such as Directory of Useful Decoys Enhanced (DUD-E), 
that have known biases7 and are far from reflecting real-world data. 
Furthermore, many existing methods are based on a single network structure, 
whereas ensemble learning, which combines multiple network structures with 
different properties, would be more accurate and appropriate for AI-based drug 
discovery8. As far as we are aware, no published study has described the 
discovery and validation of therapeutics for multiple human diseases based on 
the use of a single AI platform. 

With this background, we have developed a new AI-based drug 
discovery platform, designated LIGHTHOUSE (Lead Identification with a 
GrapH-ensemble network for arbitrary Targets by Harnessing Only Underlying 
primary SEquence), an ensemble, end-to-end, graph-based deep learning tool 
that can predict chemicals able to interact with any protein of interest without 3D 
structural information. We have applied LIGHTHOUSE to malignant, infectious, 
and metabolic diseases. In addition, we show that LIGHTHOUSE successfully 
discovered a drug effective against wild-type and variant forms of severe acute 
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respiratory syndrome coronavirus 2 (SARS-CoV-2), with this drug already 
having been approved for other purposes. We therefore believe that 
LIGHTHOUSE will revolutionize drug discovery by identifying, from the vast 
chemical space, candidate compounds for a given protein with a reduced cost, 
time, and effort and with a wide range of potential biomedical applications. 
 
RESULTS 
LIGHTHOUSE predicts confidence and IC50-related scores for any protein-
chemical pair 
We developed an end-to-end framework that relies on a message passing 
neural network (MPNN) for compound embedding9 to calculate scores for the 
association between any protein and any chemical. This chemical encoder 
takes simplified molecular-input line-entry system (SMILES) chemical encoding 
as input, considers the compounds as (mathematical) graph structures, and 
transforms them into low-dimensional vector representations. We adopted three 
different embedding methods for protein sequences: CNN (convolutional neural 
network)4, Transformer10, and AAC (amino acid composition up to 3-mers)11. 
These methods take amino acid sequences and embed them in numerical 
vectors that take into account nearby (CNN) or distant (Transformer) sequences 
or physicochemical properties (AAC). The products of these chemical and 
protein encoding steps are then concatenated and entered into a feed-forward 
dense neural decoder network. Each chemical-protein pair is converted into a 
single score after this series of computations (Fig. 1a). We used this 
architecture to estimate both the confidence level for chemical-protein pairs and 
their median inhibitory concentration (IC50) values. 

To train the platform to estimate confidence, we used ~1.3 million 
compound–(human) protein interactions (CPIs) stratify-sampled from STITCH 
(Supplementary Table 1), which is one of the largest CPI databases12 and 
registers compound-protein pairs together with confidence scores. These 
scores are based on experimental data, evolutionary evidence such as 
homologous protein and compound relations, and co-occurrence frequencies in 
literature abstracts (scores range from 0 to 1, with 1 being the most reliable). To 
avoid overfitting, we divided the overall data into training (80%), validation 
(10%), and test (10%) data sets (Extended Data Fig. 1a). 

We fed the network with protein primary structures and chemicals and 
trained it to output the scores from the STITCH training data set (Fig. 1b). When 
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we trained the three models (CNN, AAC, and Transformer for protein encoders) 
separately, the mean squared error (MSE) for the validation data was gradually 
decreased, and the area under the receiver operating characteristic curve 
(AUROC) was also improved (Extended Data Fig. 1b–g). These findings 
indicated that our AI models correctly learned the hidden 1D relation underlying 
the compound-protein pairs without overfitting the training data. We examined 
the performance of the models with the test data set at the end of the training 
and (epoch-wise) validation phases, and we discovered that the AUROC for all 
three models was >0.80 (Supplementary Table 2). These scores are equivalent 
to or better than those of cutting-edge 3D docking simulations13-15. It is of note 
that our AI models can be applied to proteins for which 3D structural information 
is not available. We took the harmonic mean of the three scores to define the 
confidence score (Fig. 1b). 

We also trained the models to predict scores based on IC50 values. For 
this purpose, we used data from BindingDB16, which collects a variety of 
experimental findings, and we divided the data into training (80%), validation 
(10%), and test (10%) data sets (Extended Data Fig. 2a). The same 
architecture was adopted to train the AI models to predict scaled IC50 values 
(Fig. 1c), yielding an interaction score, and we confirmed that the models 
adequately learned how to predict IC50 from amino acid sequence–chemical 
pairs (Extended Data Fig. 2b-g). Finally, we assessed the performance of the 
models with undisclosed test data, finding that they performed well in predicting 
IC50 (Supplementary Table 3). 
 
In silico verification of LIGHTHOUSE 
We next evaluated the performance of LIGHTHOUSE in terms of its ability to 
predict known CPIs. We generated two data sets for this purpose: a “Positive” 
data set consisting of reliable CPIs (STITCH confidence score of >0.9), and a 
“Negative” data set in which the amino acid sequences of the “Positive” data set 
were inverted so that they would no longer be expected to interact with the 
corresponding chemicals. Calculation by LIGHTHOUSE of the confidence 
scores for both data sets revealed that those for the "Positive" data set were 
heavily skewed toward 1 (Fig. 2a). Receiver operating characteristic (ROC) 
curve analysis showed that the two data sets could be distinguished on the 
basis of their LIGHTHOUSE confidence scores (Fig. 2b). Given that the 
STITCH database used for the training of LIGHTHOUSE relies not only on 
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experimental CPI data but also on co-appearance of chemicals and proteins in 
the literature, some well-studied molecules, such as ATP, have high values 
even in the “Negative" data set. Despite the presence of such false positives, 
LIGHTHOUSE proved to be effective in predicting the degree of association 
between protein-chemical pairs solely on the basis of protein primary structure. 

We next validated the effectiveness of LIGHTHOUSE for well-studied 
compound-protein pairs. LIGHTHOUSE yielded high confidence scores for 
adrenergic receptors (α1, α2, β1, β2, and β3) and epinephrine (Fig. 2c). 
Histamine receptors are classified into four subtypes17, with HRH1 and HRH2 
being targets of antiallergy and antiulcer drugs, respectively. LIGHTHOUSE 
predicted that the HRH1 antagonist fexofenadine would associate to a greater 
extent with HRH1 than with HRH2, whereas the HRH2 inhibitor famotidine 
would associate to a greater extent with HRH2 than with HRH1 (Fig. 2d). These 
results suggested that LIGHTHOUSE is able to accurately discriminate receptor 
subtype–level differences solely on the basis of amino acid sequences. 

LIGHTHOUSE also proved informative both for macrocyclic chemicals 
such as rapamycin, yielding a high confidence score for this drug and 
mechanistic target of rapamycin (MTOR) (Fig. 2e), as well as for peptide drugs 
such as bortezomib (used for treatment of multiple myeloma), leuprorelin 
(hormone-responsive cancers), and semaglutide (type 2 diabetes) (Fig. 2f), 
yielding high confidence scores for these drugs and their known targets: 
proteasome subunit PSMB118, gonadotropin-releasing hormone receptor 
(GNRHR)19, and glucagon-like peptide–1 (GLP-1) receptor (GLP1R)20, 
respectively. Given the rapidly growing demand for peptide drugs21, 
LIGHTHOUSE will prove useful for the development of novel peptide 
therapeutics for a variety of promising targets. 

We also applied LIGHTHOUSE to five drugs that were approved by the 
U.S. Food and Drug Administration (FDA) in 2020 but which had not yet been 
registered in the STITCH database. LIGHTHOUSE successfully predicted the 
association between these new drugs and their target proteins (Fig. 2g), 
indicating the expandability of LIGHTHOUSE to a much larger exploration 
space than that encompassed by STITCH. This series of findings thus 
demonstrated the ability of LIGHTHOUSE to discover new drugs for a broad 
spectrum of diseases. 
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LIGHTHOUSE discovers an inhibitor of PPAT, a key metabolic enzyme for 
cancer treatment 
We investigated whether LIGHTHOUSE can identify compounds for novel and 
potentially important therapeutic targets. As such a target, we chose 
phosphoribosyl pyrophosphate amidotransferase (PPAT), a rate-limiting 
enzyme in the de novo nucleotide synthesis pathway, given that its expression 
is most correlated among all metabolic enzymes with poor prognosis in various 
human cancers and that its depletion markedly inhibits tumor growth22. 
Although no PPAT inhibitor has been developed and the 3D structure of the 
protein has not been solved, we attempted to discover an inhibitor for PPAT by 
LIGHTHOUSE solely on the basis of its amino acid sequence. We virtually 
screened ~109 commercially available compounds in the ZINC database23 
(Extended Data Fig. 3). To reduce the calculation time, we adopted a step-by-
step application of LIGHTHOUSE (Fig. 3a). The MPNN_CNN model excluded 
most of the chemicals unrelated to PPAT, with only 2.41% of the starting 
compounds having a score of >0.5 in this initial screening (Fig. 3b). The 
selected compounds were then processed by the MPNN_AAC and 
MPNN_Transformer models, which reduced the number of candidate chemicals 
to 0.0356% of the initial compounds. We also calculated interaction scores by 
LIGHTHOUSE and visualized them in a 2D plot (Fig. 3c, left). The best 
candidates would be expected to have high confidence and interaction scores, 
appearing in the upper right corner of the plot. Indeed, this criterion was met by 
several well-known drug-target combinations (Fig. 3c, right). 

The top candidate for a PPAT inhibitor in terms of confidence score was 
ZINC8551105 (riboflavin 5¢-monophosphate), with a predicted IC50 of 1 to 10 
μM (Fig. 3d). We performed a biochemical assay to test this prediction and 
found that riboflavin 5¢-monophosphate indeed markedly inhibited PPAT activity 
with an actual IC50 of 7 μM (Fig. 3e). This compound, discovered by 
LIGHTHOUSE solely on the basis of the PPAT amino acid sequence, is thus a 
potential lead compound for the development of new therapeutics targeted to a 
variety of cancers. 

 
LIGHTHOUSE identifies an inhibitor of drug-resistant bacterial growth 
Bacterial infections pose a clinical problem worldwide, especially in developing 
countries, and the emergence of drug-resistant bacterial strains as a result of 
the overuse of antibiotics has exacerbated this problem. β-Lactamase enzymes 
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produced by antibiotic-resistant bacteria24 target the β-lactam ring of antibiotics 
of the penicillin family. We therefore applied LIGHTHOUSE to search for 
antibiotics not dependent on β-lactam structure. 

LIGHTHOUSE predicted that pyridoxal 5'-phosphate might associate 
with penicillin binding proteins such as PBP2 (mrdA), PBP3 (ftsL), and PBP5 
(dacA), all of which are essential for cell wall synthesis in Escherichia coli25 (Fig. 
3f). This compound indeed suppressed the growth of E. coli strain JM109 in a 
concentration-dependent manner (Extended Data Fig. 4). Importantly, pyridoxal 
5'-phosphate also markedly inhibited the growth of an ampicillin-resistant E. coli 
transformant that produces β-lactamase (Fig. 3g). These results thus suggested 
that, even though it was trained with human proteins, LIGHTHOUSE can also 
be applied to nonhuman (even bacterial) proteins. 
 
LIGHTHOUSE informs optimization of lead compounds 
Diabetes mellitus is also a serious public health concern, with the number of 
affected individuals expected to increase markedly in the coming decades26. 
Dipeptidyl peptidase–4 (DPP-4) cleaves and inactivates the incretin hormones 
GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), and DPP-4 
inhibitors are a new class of antidiabetes drug27. Given that LIGHTHOUSE also 
predicts interaction scores, we examined whether it might also contribute to the 
optimization step of drug development. Indeed, LIGHTHOUSE accurately 
predicted the rank order of potency for several recently identified DPP-4 
inhibitor derivatives28 (Extended Data Fig. 5a). Furthermore, LIGHTHOUSE 
predicted that removal of the phosphate group would reduce the inhibitory 
potency of riboflavin 5¢-monophosphate for PPAT (Fig. 3e), and this prediction 
was confirmed correct by the finding that the IC50 value was increased from 7 to 
49.9 µM (Extended Data Fig. 5b). 

LIGHTHOUSE is also able to estimate the effect of point mutations on 
CPIs. For example, the T315I mutation of ABL1 in leukemia cells reduces the 
efficacy of imatinib29, and LIGHTHOUSE accurately predicted the effect of this 
mutation (Extended Data Fig. 5c). LIGHTHOUSE is able to provide such insight 
from only wild-type amino acid sequences, given the lack of variant information 
in the original training data set. Our results suggest that LIGHTHOUSE is able 
to predict the effects of small changes in protein or chemical structure, and that 
this will be the case even if such variants do not exist in nature. 
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LIGHTHOUSE identifies potential on- and off-targets of given compounds 
Opposite to the mode of drug discovery for a given protein, LIGHTHOUSE 
should also be able to identify proteins as potential on- or off-targets for a given 
compound. To verify this notion, we examined statins, which are HMG-CoA 
reductase inhibitors widely administered for the treatment of hyperlipidemia. 
Epidemiological studies have shown that statins not only lower cholesterol, 
however, but also have effects on cancer, although the target molecules for 
these effects have remained unclear30. We therefore applied LIGHTHOUSE to 
three representative statins (atorvastatin, cerivastatin, and fluvastatin) and 
computed confidence scores for all human protein-coding genes (Fig. 4a, 
Extended Data Fig. 6a, Supplementary Table 4). We then sorted the genes on 
the basis of these confidence scores and performed Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis for the top 500 
potential statin targets. In addition to lipid-related pathways such as 
atherosclerosis and fatty liver, “pathways in cancer” was one of the most 
enriched KEGG pathways (Extended Data Fig. 6b), consistent with previous 
findings31–34. Potential targets of statins for cancer treatment identified by 
LIGHTHOUSE included STAT3, CCND1, AKT1, and CCL2 (Extended Data Fig. 
6c). 

Given that side effects of drugs often manifest in organs that express 
target proteins, we hypothesized that LIGHTHOUSE might be able to identify 
which organs are at risk of damage from a given drug. We performed another 
enrichment analysis for the same top 500 potential statin target genes to 
determine which organs or cell types preferentially express these genes. The 
top three candidates were the liver, adipocytes, and lung (Extended Data Fig. 
6d), consistent with the liver being the primary site of statin metabolism and 
interstitial pneumonia being one of the most severe side effects of statins35. 
Prediction of potential target proteins for a given drug by LIGHTHOUSE will 
thus provide insight into which organs warrant close monitoring by physicians 
during treatment with the drug, especially in first-in-human clinical trials. 
 
LIGHTHOUSE identifies novel potential therapeutics for COVID-19 
SARS-CoV-2 emerged at the end of 2019 and has caused a pandemic of 
infectious pulmonary disease, COVID-1936. We noticed that genes whose 
expression is up-regulated after SARS-CoV-2 infection37–39 were enriched in the 
list of potential statin targets identified by LIGHTHOUSE (Fig. 4b). Indeed, 
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previous studies have shown that statins prevent exacerbation of COVID-
1940,41. With this finding that LIGHTHOUSE is also effective for COVID-19 drug 
discovery, we applied it to the virtual screening of ~10,000 approved drugs, 
given that drug repurposing may allow faster delivery of effective agents to 
patients in need. We calculated scores for angiotensin-converting enzyme 2 
(ACE2), which is targeted by SARS-CoV-2 for infection of host cells42, and the 
top drug candidate, ethoxzolamide, was selected for validation analysis (Fig. 
4c). Immunocytofluorescence analysis revealed that ethoxzolamide blocks 
proliferation of SARS-CoV-2 in Vero-TMPRSS2 cells (Extended Data Fig. 7). 
Furthermore, ethoxzolamide was effective against not only the wild-type 
(Wuhan) virus but also the  alpha (U.K.), beta (South Africa), gamma (Brazil), 
and delta (India) variants. It thus rescued virus-challenged cells in a 
concentration-dependent manner without affecting noninfected cells (median 
cytotoxicity concentration > 50 μM) (Extended Data Fig. 8, Supplementary 
Table 5), and it reduced the virus load present in the culture supernatant of the 
cells (Fig. 4d, e; Extended Data Fig. 9). Ethoxzolamide is approved for the 
treatment of seizures and glaucoma43,44, and its pharmacodynamics are 
therefore known. It is therefore immediately available for repurposing for the 
treatment of patients with COVID-19, with its further optimization having the 
potential to save many lives. 
 
DISCUSSION 
Although recent advances in biological and medical research have uncovered 
various proteins as promising therapeutic targets in a variety of diseases, the 
clinical application of these research findings has been limited because of the 
difficulty in identifying therapeutic chemicals for these targets in a cost-effective 
and high-throughput manner. Acquisition of 3D structural data for target 
proteins has been labor-intensive, and processing of such data requires a huge 
amount of computer capacity and time, resulting in a delay in the translation of 
research findings from the laboratory to the clinic. We have now shown that 
LIGHTHOUSE facilitates the identification, from a vast chemical space, of 
candidate compounds for given target proteins solely on the basis of the 
primary structure of these proteins. Furthermore, the AUROC for LIGHTHOUSE 
is equivalent to or better than that for state-of-the-art 3D docking simulation 
methods. 
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We have applied LIGHTHOUSE to attractive targets for various 
diseases, including cancer, bacterial infection, metabolic diseases, and COVID-
19, with some of the suggested chemicals being determined experimentally to 
be effective for inhibition of the corresponding targets. LIGHTHOUSE can be 
applied not only for the identification of lead compounds but also for their 
subsequent optimization, which requires extensive work to identify more potent 
and specific or less toxic derivatives. One promising method to support such 
optimization is to apply LIGHTHOUSE and either reinforcement learning45 
(Extended Data Fig. 10) or Metropolis-Hasting (MH) approaches together. 
Virtual libraries can be generated from identified lead compounds in an 
intensive manner with the use of sophisticated chemoinformatics algorithms 
such as RECAP (Retrosynthetic Combinatorial Analysis Procedure)46. Given 
the recent success of the MH approach in various life science fields47,48, 
LIGHTHOUSE should also facilitate optimization of drug candidates. 

A limitation of LIGHTHOUSE is the generation of false positives, which 
is due in part to the fact that the confidence score provided by STITCH is not 
based solely on experimental data but also on other factors such as co-
occurrence in the literature. Well-studied molecules are thus prone to score 
higher than others. This drawback can be mitigated partially by combining the 
three different models (CNN, AAC, and Transformer). It may also be important 
to perform a counter–virtual screening to determine whether an identified small 
molecule reacts specifically with the target protein or whether it scores highly 
with many proteins. Such an approach has the potential to reduce the number 
of false positives and provide more accurate guidance. 

Despite this limitation, LIGHTHOUSE proved to be effective for the 
identification of lead compounds for all conditions tested. It can theoretically be 
applied to any protein of any organism, and even to proteins that do not exist 
naturally. This is an advantage over 3D docking simulation methods, which 
require prior 3D structural knowledge of the protein of interest. LIGHTHOUSE 
computes and embeds structural information in numerical vectors, which are 
then readily retrieved by the subsequent decoding module. Given the 
accelerating development of protein embedding technologies49 and graph-
based chemoinformatics approaches, LIGHTHOUSE has the potential to be a 
cornerstone of drug discovery. 
 In summary, we have developed LIGHTHOUSE as a means to discover 
promising lead compounds for any target protein irrespective of its 3D structural 
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information. Furthermore, we have demonstrated the power of LIGHTHOUSE 
by identifying and validating novel therapeutics for various global health 
concerns including COVID-19. LIGHTHOUSE will serve as a guide for 
researchers in all areas of biomedicine, paving the way for a wide range of 
future applications. 
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FIGURE LEGENDS 
Fig. 1 Development of LIGHTHOUSE for discovery of drug candidates 
without 3D structural data. a, The basic network structure of LIGHTHOUSE 
consists of encoder and decoder networks. The basic network encodes the 
amino acid sequence of the protein of interest as numerical vectors by one of 
three independent methods: CNN, AAC, and Transformer. It also takes the 
SMILES representation of each small-molecule compound and computes the 
neural representation with the MPNN algorithm. The network then concatenates 
the protein and compound representations and calculates a “Score.” b, c, 
LIGHTHOUSE consists of two modules. Module 1 estimates the association 
between a given compound-protein pair, and module 2 predicts a scaled IC50 
value for the pair. In each module, the three different streams of the basic 
network (MPNN_CNN, MPNN_AAC, and MPNN_Transformer) are used, and 
the harmonic mean of the three scores is presented as the final ensemble 
score. Each of the three streams in module 1 (b) is trained to minimize the error 
between the predicted “Score” and the score registered in the STITCH 
database, which contains millions of known and estimated CPIs. The higher the 
confidence score (closer to 1), the more confident LIGHTHOUSE is that there is 
some relation between the compound and the protein; conversely, the lower the 
confidence score (closer to 0), the more confident LIGHTHOUSE is that there is 
no such relation. Each of the three streams in module 2 (c) is trained to predict 
scaled IC50 values with the use of BindingDB data. For instance, an interaction 
score of 4 means that, if the compound has inhibitory activity, the IC50 would be 
~100 μM, whereas an interaction score of 9 means that, if the compound has 
inhibitory activity, the IC50 would be ~1 nM. Note that module 2 only works if the 
compound and protein interact, so this module is auxiliary to module 1. 
 
Fig. 2 In silico verification of LIGHTHOUSE. a, For investigation of whether 
LIGHTHOUSE is able to enrich for compounds with known targets, two data 
sets were generated from STITCH: a “Positive” data set consisting of CPIs with 
high scores (>0.9), and a “Negative” data set consisting of the same CPIs but 
with the amino acid sequences of the proteins reversed (for example, MTSAVM 
to MVASTM). Proteins in the “Negative” data set would not be expected to 
interact with the corresponding compounds. LIGHTHOUSE tended to yield 
higher confidence scores for CPIs in the “Positive” data set, with the exception 
of the rightmost peak for the “Negative” data set, presumably because these 
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chemicals (such as ATP) are well known and frequently mentioned in the 
PubMed literature. b, ROC curve showing that LIGHTHOUSE was able to 
distinguish the “Positive” and “Negative” data sets. c–f, Known CPIs and their 
confidence scores predicted by LIGHTHOUSE. c, Epinephrine and a-
adrenergic (ADRA) and b-adrenergic (ADRB) receptors. d, Fexofenadine and 
the histamine receptor HRH1, and famotidine and the histamine receptor HRH2. 
e, The macrocyclic drug rapamycin and MTOR. f, The peptide drugs 
bortezomib, leuprorelin, and semaglutide and their targets PSMB1, GNRHR, 
and GLP1R, respectively. g, Application of LIGHTHOUSE to five drugs 
approved by the FDA in 2020 that were not included in the training data set 
(published in 2016). FNTA, protein 
farnesyltransferase/geranylgeranyltransferase type–1 subunit a; COMT, 
catechol O-methyltransferase; S1PR1, sphingosine 1-phosphate receptor 1; 
DRD2, D2 dopamine receptor. 
 
Fig. 3 Discovery of lead compounds for treatment of cancer or bacterial 
infection. a, Scheme for PPAT inhibitor discovery. The amino acid sequence of 
PPAT (517 residues) and the SMILE representation for each chemical were 
entered into the MPNN_CNN model. If the predicted score was >0.5, the 
compound was entered into MPNN_AAC, and if the new predicted score was 
>0.5, the compound was entered into MPNN_Transformer. The harmonic mean 
of the three scores was then computed to obtain the confidence score. b, 
Almost 1 billion compounds in the ZINC database were processed as in a. The 
first filter (MPNN_CNN score > 0.5) and subsequent two filters (MPNN_AAC 
score > 0.5, MPNN_Transformer score > 0.5) greatly reduced the initial 
chemical space (to 0.0356%). The interaction scores for these selected 
candidates were then also calculated. c, A 2D map of the 333,290 selected 
candidates from b is shown on the left. Ideal candidates would be expected to 
have high confidence and interaction scores and would be plotted in the upper 
right corner of the map. Indeed, some well-known drug-target pairs meet this 
criterion, as shown on the right, with compounds represented by the blue circles 
in the shaded area potentially possessing inhibitory activity for PPAT. ABL1, 
ABL proto-oncogene 1; COX1, cyclooxygenase 1; HMG-CoA, 3-hydroxy-3-
methylyglutaryl–coenzyme A. d, The top hit compound, ZINC8551105 
(riboflavin 5¢-monophosphate), is shown together with its confidence score and 
estimated IC50 value. e, In vitro PPAT activity assay performed in the presence 
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of various concentrations of riboflavin 5¢-monophosphate, with the determined 
IC50 value being within the range predicted by LIGHTHOUSE. Data are shown 
for four biological replicates. f, LIGHTHOUSE predicted that pyridoxal 5¢-
phosphate would associate with several penicillin binding proteins of E. coli 
(strain K12). mrdA and ftsl are peptidoglycan D,D-transpeptidases, whereas 
dacA is a D-alanyl-D-alanine carboxypeptidase. g, The JM109 strain of E. coli 
was transformed with the pBlueScript II SK+ plasmid, which contains an 
ampicillin resistance gene as a selection marker, and the cells were plated on 
LB agar plates containing ampicillin in the absence or presence of pyridoxal 5¢-
phosphate (3 mg/ml) and were incubated overnight. 
 
 
Fig. 4 LIGHTHOUSE-based drug repurposing. a, Identification of statin 
targets by LIGHTHOUSE. LIGHTHOUSE was applied to calculate confidence 
scores for all human protein-coding genes in the UniProt database and 
fluvastatin, atorvastatin, and cerivastatin. The harmonic mean of these 
confidence scores (FluvastatinScore, AtorvastatinScore, and CerivastatinScore) 
was calculated as an affinity score for statins. Sorting on the basis of this affinity 
score yielded a list of potential statin target proteins. HMGCR (HMG-CoA 
reductase), a known key target of statins, was ranked 136th with a score of 
0.790. The top 500 identified genes were then subjected to enrichment 
analysis. LDLR, low-density lipoprotein receptor; APOE, apolipoprotein E; SCD, 
stearoyl-CoA desaturase; STAT3, signal transducer and activator of 
transcription 3. b, Enrichment analysis of the top 500 potential statin targets for 
COVID-19–associated gene sets. Minus log10-transformed q values are shown. 
c, Prediction by LIGHTHOUSE of ethoxzolamide as a potential therapeutic for 
SARS-CoV-2 infection on the basis of its confidence and interaction scores for 
ACE2. d, e, Effect of ethoxzolamide on the SARS-CoV-2 load in culture 
supernatants of Vero-TMPRSS2 cells challenged with Wuhan (WK-521) or India 
(delta) strains of the virus, respectively. Data are from four independent 
experiments, with the graph line connecting mean values. TCID50, median 
tissue culture infectious dose; N.D., not detected. 
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METHODS 
Generation of a data set for the training phase of LIGHTHOUSE 
The compound SMILES strings of the data set were extracted from the 
PubChem compound database on the basis of compound names and 
PubChem compound IDs (CIDs). The protein sequences of the data set were 
extracted from the UniProt protein database on the basis of gene 
names/RefSeq accession numbers or the UniProt IDs. We downloaded the 
protein-chemical link data set of Homo sapiens (Taxonomy ID 9606) from the 
STITCH database (version 5.0). Given that the STITCH score is heavily biased 
toward 0, we separated the data into nine bins on the basis of the score and 
stratify-extracted the same number of CPIs (140,000 each), yielding 1,260,000 
CPIs (Supplementary Table 1). We then randomly separated these data into 
training (80%), validation (10%), and test (10%) data sets (Extended Data Fig. 
1a). With regard to IC50, we downloaded data from BindingDB, obtained 
SMILES expressions and amino acid sequences similarly, and again separated 
the data into training (80%), validation (10%), and test (10%) data sets 
(Extended Data Fig. 2a). Given that IC50 values differ widely, we scaled the 
values by log transformation (Eq. 1) and used the transformed values for 
BindingDB training. 

 
(1) 

 
LIGHTHOUSE architecture and training 
The proposed overall model comprises two encoder networks (for chemicals 
and proteins) and one decoder network. MPNN is a message passing graph 
neural network that operates on compound molecular graphs9. In brief, MPNN 
conveys latent information among the atoms and edges. The message passing 
phase runs for t time steps and is defined in terms of message functions Mt and 
vertex update functions Ut. During this phase, hidden states hvt (128 dimensions 
in our model) at each node in the chemical graph are updated with the incoming 
messages mvt+1 according to the following equations (Eqs. 2 and 3): 
 
 

   
  
(2) 
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(3) 
 

where evw represents edge feature between nodes v and w, N(v) denotes the 
neighbor nodes of vertex v in graph G, and message functions Mt and update 
functions Ut are learned differentiable functions. After T (= 3) cycles of message 
passing and subsequent update, a readout function (average) is used to extract 
the embedding vectors at the graph level.  

CNN is powerful for computer vision, but here we used a multilayer 1D 
CNN for protein sequence, as described previously4. In brief, the target amino 
acid is decomposed to each individual character and is encoded with an 
embedding layer and then fed into the CNN convolutions. We used three 
consecutive 1D convolutional layers with an increasing number of filters, with 
the second layer having double and the third layer having triple the number of 
filters in the first layer (32, 64, and 96 filters for the three layers). The 
convolution layers are followed by a global max-pooling layer. follows a global 
max-pooling layer. AAC is an 8,420-length vector in which each position 
corresponds to a sequence of three amino acids11. Transformer uses a self-
attention–based transformer encoder10 that operates on the substructure 
partition fingerprint of proteins. Algorithmically speaking, Transformer follows 
O(n4) in computation time and memory, where n is the input size10. This 
bottleneck prevented us from considering each amino acid as a token. We 
therefore used partition fingerprints to decompose amino acid sequence into 
protein substructures of moderate size and then fed each of the partitions into 
the model as a token5. 

As for the decoder, we exploited a previously described architecture4. In 
brief, encoder outputs are concatenated and entered into a three-layer feed-
forward dense neural network (1024,1024, and 512 nodes), which finally 
outputs one value. We used Rectified Linear Unit (ReLU)50, g(x) = max(0,x), as 
the activation function in the decoder network. 

We defined our loss function with MSE (Eq. 4): 
 
 
(4) 
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where Pi is the LIGHTHOUSE-predicted score for the ith compound-protein pair 
and Yi is the true label in the corresponding training data, with a batch size of 
128. We trained three architectures (MPNN_CNN, MPNN_AAC, 
MPNN_Transformer) separately for the STITCH and BindingDB training data 
with the Adam optimizer and a learning rate of 0.001. For evaluation metrics, we 
used MSE, concordance index, and Pearson correlation as well as AUROC. For 
every 10 epochs, we compared the current loss (in the validation data set) with 
that of 10 epochs ago; if the loss was not decreasing, we terminated the training 
for that model. As a result of this early termination, we trained MPNN_CNN for 
40 epochs, MPNN_AAC for 70 epochs, and MPNN_Transformer for 100 epochs 
with regard to the confidence score (Extended Data Fig. 1b–g). As for the 
models for the interaction score, we trained MPNN_CNN for 70 epochs, 
MPNN_AAC for 100 epochs, and MPNN_Transformer for 70 epochs (Extended 
Data Fig. 2b–g), according to the same guidelines. After the training was 
completed, we finally evaluated the models with the test data sets, which were 
kept aside during the training and so had not previously been seen by the 
models. 
 
Generation of virtual chemical libraries and prediction by LIGHTHOUSE 
We prepared nearly 1 billion purchasable substances, which were downloaded 
from the ZINC database23 as of 30 July 2020, for virtual PPAT inhibitor 
screening. For drug repurposing, we obtained approved drugs from the KEGG-
DRUG database51 as of 24 January 2021. For calculation of confidence and 
interaction scores, we fixed the proteins of interest (PPAT or ACE2) and 
changed the compounds iteratively, which yielded lists of predicted scores for 
all the compounds tested. 
 
PPAT activity assay  
Sf21 cells were cultured in Sf-900TM Ⅱ SFM (Gibco, Cat# 10902-088) 
supplemented with 10 μM ferric ammonium citrate. They were transfected with 
a bacmid encoding human PPAT for 64 h, harvested, washed three times with 
phosphate-buffered saline, and lysed in a solution containing 150 mM NaCl, 25 
mM Tris-HCl (pH 7.4), 0.5% Triton X-100, and 5 mM EDTA. The lysate was 
centrifuged at 10,000 × g for 6 min at 4°C, and the resulting supernatant (100 
ng/ml) was incubated for 4 h at 37°C together with 5 mM glutamine (Gibco, 
Cat# 25030-081), 1 mM phosphoribosyl pyrophosphate (Sigma, Cat# P8296), 
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10 mM MgCl2, 50 mM Tris-HCl (pH 7.4), and various concentrations of riboflavin 
5¢-monophosphate (Sigma, Cat# F2253-10 mg). Enzyme activity was assessed 
on the basis of glutamate production as measured with a glutamate assay kit 
(Abcam, Cat# 138883). The IC50 value was estimated from biological 
quadruplicates with a four-parameter logistic model52 and with the use of JMP 
pro 15 software (version 15.1.0). 
 
Assay of E. coli growth 
Portions (20 µl) of E. coli strain JM109 (1 ´ 1010 colony-forming units (CFU)/ml) 
were cultured for various times in 2 ml of 2xYT liquid medium (BD Difco, Cat# 
244020) containing various concentrations of pyridoxal 5¢-phosphate (pH 7.0), 
after which OD600 was measured with a GENESYS 30 visible 
spectrophotometer (ThermoFisher Scientific, Cat# 840-277000). In addition, the 
JM109 strain was transformed with 1 μg of the pBlueScript II SK+ plasmid 
(Invitrogen), which harbors an ampicillin resistance gene as a selection marker, 
and was then spread on LB agar plates containing ampicillin (100 μg/ml) 
(Wako, Cat# 012-23303) with or without pyridoxal 5¢-phosphate (3 mg/ml) and 
incubated overnight.  
 
Virtual identification of statin targets and enrichment analyses 
Three representative statins were fixed as chemical inputs, and all human 
protein-coding genes in the UniProt database were iteratively changed. The 
harmonic mean of the three confidence scores was calculated as an affinity 
score for statins, and the human protein-coding genes were sorted on the basis 
of this score. The resulting top 500 potential targets were then subjected to 
enrichment analyses with the use of the Metascape Web server53. 
 
SARS-CoV-2 assays 
Vero-TMPRSS2 cells54 were maintained in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 10% fetal bovine serum. The WK-521 
strain of SARS-CoV-2 (EPI_ISL_408667) as well as the alpha (QK002, 
EPI_ISL_768526), beta (TY7-501, EPI_ISL_833366), gamma (TY8-612, 
EPI_ISL_1123289), and delta (TY11-927, EPI_ISL_2158617) variants were 
obtained from National Institute of Infectious Diseases in Japan. Stocks of these 
viruses were prepared by inoculation of Vero-TMPRSS2 cell cultures as 
described previously54. The MTT assay was performed to evaluate cell viability 
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after virus infection also as previously described54. In brief, serial twofold 
dilutions of ethoxzolamide in minimum essential medium (MEM) supplemented 
with 2% fetal bovine serum were added in duplicate to 96-well microplates. 
Vero-TMPRSS2 cells infected with wild-type or variant SARS-CoV-2 at 4 to 10 
TCID50 (median tissue culture infectious dose) were also added to the plates, 
which were then incubated at 37°C for 3 days. The viability of the cells was then 
determined with the MTT assay, and the culture supernatants were harvested 
for determination of the TCID50 value as a measure of viral load. For indirect 
immunofluorescence analysis, cells infected with wild-type SARS-CoV-2 at a 
multiplicity of infection (MOI) of 0.0001 were cultured in the presence of various 
concentrations of ethoxzolamide for 64 h, fixed with 3.7% buffered 
formaldehyde, permeabilized with 0.05% Triton X-100, and incubated with 
antibodies to SARS-CoV-2 N protein (GeneTex, Cat# GTX635679). Immune 
complexes were detected with Alexa Fluor Plus 488–conjugated goat 
antibodies to rabbit immunoglobulin G (Invitrogen–ThermoFisher Scientific, 
Cat# A32731). Nuclei were stained with Hoechst 33342 (Invitrogen). 
Fluorescence images were captured with an IX73 fluorescence microscope 
(Olympus).  
 
Methods references 
50. Shimizu, H. & Nakayama, K.I. Artificial intelligence in oncology. Cancer 
Sci. 111, 1452–1460 (2020). 
51. Kanehisa, M., Furumichi, M., Sato, Y. Ishiguro-Watanabe, M. & Tanabe, 
M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, 
D545–D551 (2021). 
52. Pries, V. et al. Target identification and mechanism of action of 
picolinamide and benzamide chemotypes with antifungal properties. Cell Chem. 
Biol. 25, 279–290 (2018). 
53. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the 
analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019). 
54. Sasaki, M. et al. SARS-CoV-2 variants with mutations at the S1/S2 
cleavage site are generated in vitro during propagation in TMPRSS2-deficient 
cells. PLoS Pathog. 17, e1009233 (2021). 
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