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What are the spatial and temporal scales of brainwide neuronal
activity, and how do activities at different scales interact? We
used SCAPE microscopy to image a large fraction of the central
brain of adult Drosophila melanogaster with high spatiotempo-
ral resolution while flies engaged in a variety of behaviors, in-
cluding running, grooming and flailing. This revealed neural
representations of behavior on multiple spatial and temporal
scales. The activity of most neurons across the brain corre-
lated (or, in some cases, anticorrelated) with running and flailing
over timescales that ranged from seconds to almost a minute.
Grooming elicited a much weaker global response. Although
these behaviors accounted for a large fraction of neural activity,
residual activity not directly correlated with behavior was high
dimensional. Many dimensions of the residual activity reflect
the activity of small clusters of spatially organized neurons that
may correspond to genetically defined cell types. These clus-
ters participate in the global dynamics, indicating that neural
activity reflects a combination of local and broadly distributed
components. This suggests that microcircuits with highly speci-
fied functions are provided with knowledge of the larger context
in which they operate, conferring a useful balance of specificity
and flexibility.
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Introduction
What are the spatial and temporal scales of activity in the
brain? In nematodes, flies, zebrafish and mice (1), the exoge-
nous activation of small clusters of neurons can drive behav-
ioral sequences, providing a causal link between the activity
of small groups of cells and specific behaviors. In Drosophila
melanogaster, the identification of local circuits that govern
specific behaviors has suggested a view of the fly brain as a
collection of highly specialized microcircuits. On the other
hand, brainwide recording of neural activity in multiple or-
ganisms reveals global activity associated with behavior (2–
16) and task-related variables (17–19). Moreover, the activ-
ity of non-motor circuits is modulated by behavior (20–25).
How do these observations relate to the view of the brain as
composed of functionally specialized microcircuits? What is
the relationship between signals that are broadly distributed
and those that are local?

The analysis of brainwide activity at both a global and
local scale requires that we simultaneously observe the ac-

tivity of neurons distributed throughout the brain at sufficient
temporal resolution to reveal correlations between neurons.
We used SCAPE microscopy (26, 27), a single-objective
form of light-sheet microscopy that permits high-speed volu-
metric imaging, to record activity in a significant fraction of
the neurons across a large and contiguous portion of the brain
of behaving Drosophila. This provides a comprehensive pic-
ture of activity in the fly brain. The principal patterns of neu-
ral activity (flygenvectors) comprise multiple spatial and tem-
poral scales. We observe that signals related to some but not
all behaviors engage the majority of neurons throughout the
brain. Moreover, although most neurons are correlated with
current behavior, a significant fraction are correlated with be-
havioral dynamics on longer timescales.

Although a small number of behavior-related signals
dominates global activity, neural activity is rich and high-
dimensional. Most of these dimensions are sparse and spa-
tially organized, consistent with each dimension correspond-
ing to localized activity of specific cell types. Therefore, neu-
ral activity in the behaving fly reflects the coordination of
broadly distributed and local dynamics.

Results
Brainwide functional imaging at single neuron res-
olution. We used SCAPE microscopy to examine activity
across a large fraction of the central brain of behaving adult
Drosophila. This enabled dual-color imaging of the dorsal
third of the central brain in the behaving fly at more than 10
volumes per second (Fig. 1A-B, G). We imaged flies express-
ing the nuclear calcium reporter nuc-GCaMP6s and the static
nuclear dsRed under control of the panneuronal driver NSyb-
Gal4. Expression is poor in Kenyon cells and they were omit-
ted from our analyses (Fig. S1). Electron microscopy of
the fly brain reveals approximately 30,000 cells in the central
brain (30). We imaged the dorsal third of the central brain,
achieving single-cell resolution through the majority of this
imaged volume. After accounting for heterogeneity in cell
density in the brain, depth limits of cellular resolution due
to scattering, and omission of Kenyon cells, we expected to
resolve on the order of thousands of cells. We used the fluo-
rescence of the static red channel to extract on average 1,631
± 109 ROIs per animal. After refinement to exclude ROIs
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Figure 1. Brainwide neural activity correlates with behavior (A) Illustration of SCAPE’s imaging geometry, in which an oblique light sheet (dark blue) sweeps across the
fly brain and emitted light (green) is collected by the same objective lens. An image-splitter within the microscope permits dual-color imaging while the fly is head-fixed
and running on a spherical treadmill. (B) The head of a fly viewed from a dorsal perspective (Top = posterior), with the approximate imaging window denoted by a black
rectangle. (C) Points on the fly’s limbs and body are tracked with Deep Graph Pose (DGP) (28). Running, grooming and abdomen bending exhibit distinct patterns of limb
dynamics, observed in trajectories of DGP points. (D) A semi-supervised sequence model (29) extracts a time series of discrete behavioral states from DGP points. Example
trajectories of the 8 tracked points shown in black above, ordered from anterior to posterior (fb:front bottom, ft:front top, mb:middle bottom, mt:middle top, hb:hind bottom,
ht:hind top, ab:abdomen bottom, at:abdomen top). Inferred probability of each behavioral state is shown below, showing a transition from running to back grooming. (E)
The autocorrelation of running (black) is best fit by the sum of two exponentials, with time constants of 1s and 40s (gold). (F) Fraction of time spent in each behavioral
state for each fly. Colors as in ‘D’. (G) Sample volume of raw imaging data in a brain with pan-neuronal expression of both nuclear-localized GCaMP6s and nuclear dsRed.
Shown are maximum-intensity projections of the dsRed channel over the approximate dorsal/ventral (middle), anterior/posterior (bottom), and medial/lateral dimensions (left).
Pseudocolor indicates depth in dorsal/ventral dimension. Scale bar in spatial map is 50 µm. (H) Top, raster of ratiometric fluorescence for all neurons from one fly (Fly 1 in
‘F’). Bottom, behavioral state, color coded as in ‘D’. (I) Average ratiometric fluorescence from all neurons (gold) and running smoothed with an exponential filter (black, time
constant = 6s) are highly correlated (r = 0.90). (J) Maximum cross-correlation with running for every cell from the same fly as in ‘H’, versus the corresponding lag. Each point
is one cell.

with large motion artifacts, we obtained 1,419 ± 78 stable,
single-cell ROIs per animal (Methods).

Broad-scale neural activity is highly correlated with
behavior. We examined brainwide neural activity while flies
behaved freely on a spherical treadmill (Methods). We iden-
tified the different behaviors exhibited by the fly by track-
ing points on the fly’s body with Deep Graph Pose (28). We
used a semi-supervised approach (described in a companion
manuscript (29)) to infer the behavioral states of running,
front and back grooming, abdomen bending and quiescence
(Fig. 1C-D, Methods). Different flies exhibited these behav-
iors with varying frequencies (Fig. 1F). We also imaged the
fly without a spherical treadmill, where it primarily exhibited
a flailing behavior. On the treadmill, flies performed bouts of
running punctuated by either grooming or quiescence. Au-
tocorrelation of the running state decayed on time scales of
1s and 40s (Fig. 1E), because running occurred in bouts that
lasted a few seconds but the tendency to run persisted for
considerably longer times. The other annotated behaviors
exhibited only a single fast correlation time (Fig. S1). Long-
timescale changes in the tendency to run suggest that an un-
derlying state, such as arousal, fluctuated over the course of
our experiments.

Strikingly, most of the imaged neurons throughout the
brain show a pattern of activity that is correlated with run-
ning. This is in accord with previous studies demonstrating
that most of the neuropil in the fly brain is active when the
fly runs (6, 7) and demonstrates that these earlier neuropil
recordings are not the consequence of a sparse ensemble of
active neurons with extensive projections. Rather, running is
represented by the vast majority of neurons in the fly brain
(Fig. 1H). The mean activity across all the imaged neurons is
highly correlated with running smoothed with an exponential
filter with a decay time of 6s (r = 0.90, Fig. 1I). This corre-
lation cannot be accounted for by motion artifacts (r = 0.02,
Fig. S1). Cross-correlation of individual neurons with run-
ning is high, and the activity of most neurons follows running
with a small lag (Fig. 1J).

Distinct neural populations represent locomotion over
different timescales. We fit a regression model to extract
the components of neural activity correlated with the identi-
fied behaviors (running, front and back grooming, abdomen
bending, and quiescence). The observation that the auto-
correlation of running exhibited two decay times (Fig. 1E)
suggested that different neurons might be correlated with be-
havior on different timescales. Therefore, we regressed each
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Figure 2. Brainwide correlates of running are multimodal and spatially organized. (A) Example traces from selected cells with small (top) and large (bottom) behavior time
constants, with regression fit overlaid in blue and ethogram below. (B) Average model fit across cells for each fly versus fraction of time spent running (N = 16). Fly with
highest time spent running shown in Figure 1H-J. (C) Correlation with running for all cells and all flies (N = 18), cells significantly active during behavior in blue, all other cells
in gray, total in black. (D) Downsampled composite spatial map of running correlation for all flies, viewed in the sagittal (left), transverse (right), and coronal (bottom) planes.
(E) Location of an example cell (blue) in each of two flies (top and bottom, respectively) negatively correlated with running. (F) Corresponding activity traces for cells indicated
in ‘E’ for each fly. Ethograms shown below for reference. (G) Distribution of behavior time constants (τ ) vs model r2 for all flies (N = 18, cells significantly active during
behavior in blue, all other cells in gray). (H) Distribution of τ vs distribution of time shifts (φ) for all flies (N = 18), all cells significantly active during behavior. (I) Downsampled
composite spatial map of τ for all flies, with large values in yellow and small values in red, viewed in the sagittal (left), transverse (right), and coronal (bottom) planes. Scale
bar for all maps is 50 µm.

neuron’s activity against all behaviors filtered using a differ-
ent fitted time constant (τi) for each cell (i). We explored
the causal relationship between behavior and neural activity
by allowing for a cell-specific temporal shift (φi) of neural
activity relative to the annotated behaviors (Methods).

Regressing neurons across behaviors and filtering each
neuron with its own time constant considerably increased
correlations between the activity of individual neurons and
the annotated behaviors (Fig. 2A). This model accounted
for proportionally more variance in flies that spent more
time running (CC = 0.73, Fig. 2B), as expected from the
widespread representation of running (Fig. 1H). The majority
of neurons are positively correlated with running, although a
smaller population show strong negative correlation with run-
ning (Fig. 2C). Negatively correlated neurons are highly con-
centrated in the Pars Intercerebralis (PI) region (Fig. 2D-F),
a heterogeneous population of peptidergic neurons involved
in a wide range of functions (31).

Cells exhibited a remarkably broad range of preferred
filter time constants (Fig. 2A, G). 38% of cells had small
time constants (τ < 4 seconds), reflecting the similarity of
the dynamics of behavior and mean neural activity (Fig. 1E).
However, 37% of all cells have τ greater than 20 seconds, and
the overall distribution is bimodal (Fig. 2G). Thus, the neu-
ral relationship to behavior has two timescales that approx-
imate the timescales of running itself (Fig 2G and 1E). The
median r2 does not decrease as τ increases, indicating that

behavior explains a similar fraction of neural activity in cells
with small and large behavioral time constants (Fig. 2G).
The temporal shifts in the filters were almost always positive
and similar to the filter time constants, such that cells with
large time constants also had large shifts (Fig. 2H). The loca-
tions in the brain of cells with a given behavior time constant
exhibit spatial organization (Figure 2I): some brain regions
exhibit predominantly small τ and other regions exhibit large
τ . Neurons with large τ cluster in the PI region and in lat-
eral areas on the posterior and anterior surfaces (Fig. 2I).
Neurons with small τ are distributed throughout the brain but
most concentrated near the midline on the dorsoposterior sur-
face (Fig. 2I). This region is primarily composed of neurons
innervating the protocerebral bridge and fan-shaped body of
the central complex and descending neurons innervating the
ventral nerve cord (“CX, DN”, Fig. 2I, Fig. S2). This makes
sense, as neurons in these brain regions are involved in ori-
enting and locomotion (32, 33).

Brainwide neural activity correlates with vigorous but
not subdued behaviors. Do all behaviors engage the entire
dorsal brain, or is running unique? Grooming and running
are both precise directed behaviors but differ in the number
of limbs they engage, whereas flailing and running both en-
gage all limbs. We define behaviors engaging all limbs as
‘vigorous’ and behaviors engaging fewer limbs as ‘subdued’.
Most neurons are noticeably less active during grooming than
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Figure 3. Brainwide neural activity correlates with vigorous but not subdued behaviors. (A) Example raster of z-scored ∆F/F for all cells from one fly in a short time
window, showing individual bouts of many behaviors. Cells ordered by ascending φ. (B) Regression weights for running vs. back grooming, for all flies (N = 16), all cells
significantly active during at least one behavior colored by behavior time constant. Cells not significantly modulated during either behavior shown in gray. (C) Regression
weights for front grooming vs. back grooming, for all flies (N = 16). (D) Left, location of pairs of cells in two flies (gold and cyan, respectively) correlated with front grooming.
Scale bar is 50 µm. Right, corresponding activity traces for cells indicated at left for each fly. Ethograms shown below for reference. (E) Relative variance explained for each
behavior, normalized to running, for all cells and all flies (N = 16 for running and grooming, N = 10 for flailing). (F) Raster of z-scored ∆F/F for all neurons from a fly running
on a spherical treadmill (left) and then flailing in the absence of a spherical treadmill (right), with the timeseries of bouts of activity (running/flailing) shown below. (G) Activity
from two example neurons (red) from the same fly as ‘F’, with regression model fits overlaid in blue and behavioral state (running/flailing/quiescent state) shown below. (H)
Distribution of regression weights for running and flailing for all cells and all flies (N = 10).

running (Fig. 3A). Only 3.0% and 2.1% of all cells have τ
< 4s and a regression weight greater than 0.02 for front or
back grooming, respectively (Fig. 3B-C). Only eight cells
across all flies were highly correlated with front grooming
(CC > 0.5, τ < 4s), and only two flies had multiple such cells
(Fig. 3D). In both flies, these cells were near the periphery of
the imaged volume, potentially accounting for their absence
in other flies. To quantify brainwide influence of each behav-
ior, we normalize the variance explained by each behavior by
the total time each fly exhibited that behavior, relative to run-
ning. Front and back grooming respectively account for only
18% and 9% as much variance in neural activity as running in
cells with τ < 4s (Fig. 3E, Fig. S3). Our observation that the
dorsal brain is not broadly engaged during grooming is qual-
itatively in agreement with prior work proposing that small
ensembles of cells are responsible for grooming (34, 35).

We elicit flailing by removing the treadmill from be-
neath the fly. The representation of flailing is brainwide and
qualitatively similar to that of running (Fig. 3F). 59% of neu-
rons with regression weights greater than 0.02 and τ less than
4s during running had equally large regression weights dur-
ing flailing (Fig. 3G-H). This suggests that global activity
does not encode the precise modality of locomotion but rather
may encode locomotive vigor or arousal more generally. This
is further supported by the observation that unlike grooming,

flailing accounts for more variance than running (218% and
262% for τ < 4s and τ > 20s, respectively. Fig. 3E). Col-
lectively, our results suggest that vigorous behaviors activate
global representations, whereas less vigorous or subdued be-
haviors do not.

Residual neural activity reveals ensembles of neurons
with correlated activity. We next examined the nature of
the neural activity not accounted for by our regression model,
and thus not grossly linked to any of the identified behaviors.
After large-scale locomotion- and other behavior-related ac-
tivity has been regressed out, the residual activity exhibits
rich dynamics across both space and time (Fig. 4A). On av-
erage, the fraction of variance explained by behavior (mean
r2 = 0.39) is similar in magnitude to that of the residual dy-
namics (1− r2). These residual dynamics include neurons
that are highly active during running (Fig. 4B, red, Fig. S4),
implying that global and residual activity coexist in the same
population of neurons.

We examined the structure of residual activity by per-
forming a principal component analysis (PCA). On average,
the first 10 dimensions explain 62% of the residual variance,
and subsequent modes each account for no more than 2%
of the variance (Fig. 4C). Surprisingly, despite accounting
for little variance, many dimensions of activity can be distin-
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Figure 4. Neural activity not accounted for by behavior is high-dimensional. (A) Example residual of the behavioral regression model reveals rich dynamics and groups of
neurons with similar activity (z-scored ∆F/F , N = 100 cells, ordered by iteratively selecting the neuron most correlated with the previous neuron). Behavior ethogram shown
below. (B) Example traces from two selected cells (red, gold, respectively) either before (top, middle) or after (bottom) subtracting the behavioral regression fit, with ethogram
shown below. (C) The fraction of total variance explained in the regression residual as a function of the number of PCA modes (mean ± SEM, N = 18). (D) Dimensionality of
the regression residual for all flies, calculated as the peak in log-likelihood. Bars indicate ± 1%. (E) Weights of all cells in a single representative PCA mode (fly 3, mode 2).
Sparseness = 0.004, corresponding to 4.58 participating neurons. (F) Sparseness of each PCA mode, averaged across all flies (Methods, median ± SEM, N = 18). Dashed
line represents Gaussian zero-mean patterns. (G-I) Example maps of weights from leading PCA modes are sparse, approximately symmetric, and exhibit common patterns
across flies (scale bar = 50 µm). Shown are examples dominated by Pars Intercerebralis (PI) neurons (‘G’), dorso-posterior neurons (‘I’), and anticorrelations between
neurons from the two regions (‘H’). Upper-right in ‘I’ (Fly 3, Mode 2) is the same mode as shown in ‘E’.

guished from noise (41.5 ± 4.6, Fig. 4D, Methods). These
PCA modes are very sparse, in some cases involving as few
as 4 neurons (Fig. 4E). The average sparseness of the first
two modes is 1.3%, meaning that a typical mode involves 18
neurons (Fig. 4F). Thus, each mode explains a small fraction
of the total variance but describes a reliable pattern present
in neural activity. Counterintuitively, dominant modes are
sparser than less dominant modes (Fig. 4F). This suggests
that the most reliable patterns in the data tend to contain fewer
neurons.

Each PCA mode is sparse and therefore dominated by
the activity of a small group of neurons. These modes show
spatial organization; for example, small groups of bilaterally
symmetric neurons dominate the largest PCA modes (Fig.
4G-I). These modes are similar across flies, although there
is variability in which mode explains the most variance in a

given fly (Fig. 4G-I). The dominant modes identified by this
analysis correspond to ensembles of approximately 20 cells
that may comprise functional units. The ensembles often dis-
play symmetry across hemispheres. Each functional group is
likely to be made up of multiple clusters with even smaller
numbers of neurons, perhaps corresponding to specific cell
types.

Residual activity is similar in running and quiescent
states. What is the relationship between global behavior-
related activity and the sparser residual patterns of activity?
One possibility is that residual dynamics could depend on
behavioral state so that, for example, a particular residual dy-
namic pattern only appears during running (Fig. 5A, model
1). Alternatively, residual dynamics could be present in mul-
tiple behavioral states but in different state-dependent forms
(Fig. 5A, model 2). Finally, residual activity could be inde-
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Figure 5. Residual neural activity is largely independent of behavioral state. (A) Possible relationships between residual activity and behavioral state for two cartoon
neurons. Model 1: Residual dynamics only exist during one behavioral state. Model 2: Both raw and residual dynamics depend on behavioral state. Model 3: Residual
dynamics are independent of behavioral state. (B) Fraction of total variance explained, as in Fig. 4C, but fitting and testing exclusively on times the fly was quiescent or
running (gray and green, respectively). (C) Estimated dimensionality for the quiescent and running states, calculated as in Fig. 4D. (D) Using PCA modes calculated as in ‘B’
but evaluating them on the opposite behavioral state. Cumulative variance explained in the opposite behavioral state is divided by variance explained in the fitted behavioral
state. (E) Shared dimensionality of the quiescent and running states, calculated as in Fig. 4D. (F) Projection of residual dynamics during the running (green) or quiescent
(gray) states onto the first two PCs of the running state for an example fly. (G) Residual pairwise correlation during either the quiescent or running state, for all cells from one
fly. (H) Distribution of differences of residual pairwise correlations between the quiescent and running states for all flies (N = 10).

pendent of behavioral state, and therefore similar, for exam-
ple, in the running and the quiescent states (Fig. 5A, model
3). We find that the third of these possibilities most accurately
accounts for our data; residual activity shows no obvious re-
lationship to behavioral state (Fig. 4A).

We examined the residual neural activity during a be-
havioral state (a “subspace”) and compared the subspaces of
the running and quiescent states. The amount of variance ex-
plained by each mode appeared virtually identical in the two
states (Fig. 5B). The dimensionality of these two subspaces
is qualitatively similar, but on average the quiescent state is
higher dimensional (37.9 ± 6.1) than the running state (20.5
± 2.0, Fig. 5C). This implies that the running and quiescent
states are both complex.

We next asked if the residual activity during the run-
ning and quiescent states are not only similar in their com-
plexity but also contain similar dynamics. We therefore de-
termined whether the PCA modes defined in one state explain
appreciable variance in the other state. PCA modes defined
by activity during the quiescent state explain approximately
75% as much variance in the running state, and PCA modes
of the running state explain 75% of the quiescent state (Fig.
5D). This implies that the subspaces occupied by the dynam-
ics in each state are highly overlapping. Furthermore, the di-

mensionality of this overlap is similar to the dimensionality
of the activity (Quiescent-to-Running = 22.6 ± 5.1, Running-
to-Quiescent = 20.8 ± 2.2, Fig. 5E). Moreover, projections
of the residual dynamics from both states onto the first two
modes of the running state are highly intermingled (Fig. 5F,
also see Fig. S5). Collectively, these results indicate that the
temporal and spatial structure of the residual activity is simi-
lar in the running and quiescent states.

PCA identifies patterns in the correlations across the
full population of neurons. To look for state-dependent ef-
fects in small groups of cells, we compared correlations be-
tween the residual activity of all pairs of cells in the quies-
cent and running states. These correlations are similar with
no large outliers (Fig. 5G-H). Thus, behavioral state and the
global pattern of activity associated with it appears to have
only a modest effect on the structure of residual activity. This
is true not only for the residual dynamics of large popula-
tions of neurons but also for the residual correlations between
all pairs of neurons (Fig. 5G-H). Thus, behavioral state and
residual dynamics appear remarkably independent (Fig. 5A,
model 3).

Cluster analysis reveals spatially segregated groups
of neurons with correlated activity. PCA revealed ensem-
bles of spatially organized and functionally related neurons in
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Figure 6. Residual neural activity is composed of organized clusters on multiple spatial scales. (A) The relationship between all cells in one fly, defined by hierarchical
clustering on residual neural activity. Vertical axis reflects relative Euclidean distance in activity space. Significance of each cluster was assessed by comparing the variance
of the child cluster to the variance of samples from the parent cluster on held-out time points. Branches from non-significant clusters colored black, branches from significant
clusters in other colors. Markers under the tree indicate clusters highlighted in ‘B’. (B) Example map of cluster identity for PI cluster and neighboring clusters, with identity
indicated by markers in ‘A’. (C) Same as ‘B’ for three additional flies. (D) Distribution of the size of all significant clusters (dark gray) and significant clusters that have no
significant children (light gray). (E) Distribution of correlations with running for all cells (gray) and cells belonging to a significant two-cell cluster (green). (F) Residual neural
activity from three example clusters each comprising two neurons. (G) Cells belonging to clusters shown in ‘F’ in red and gold, with non-member cells in gray. Scale bar is 50
µm. (H) Euclidean distance between cells belonging to a 2-member cluster (blue), versus randomly assigned cluster labels (gray). Distance computed after superimposing
the left and right hemisphere by folding at the midline. Each row shows a different fly and bar height is capped at 30.

the residual activity. We identified smaller clusters of corre-
lated neurons by performing hierarchical clustering analysis
on the residual activity (Fig. 6A). This procedure builds a tree
of similarity between the activity patterns of all cells, where
at each branch point the ‘children’ describe potentially mean-
ingful subsets of a given ‘parent’. To look for structure in the
data at all spatial scales without defining arbitrary parameters
for the number of expected clusters, we identified significant
clusters using cross-validation (Methods). Specifically, we
determined whether the variance of each child cluster was
significantly smaller than the variance of random samples of
the same size extracted from the parent cluster (Methods).
In this way, we determined whether a given small group of
neurons defined a cluster unique from other members of the
parent cluster. Both a child and its parent cluster can be sig-

nificant, and therefore clusters may participate in groupings
on multiple scales.

Figure 6A shows the full clustering tree for one fly,
with each branch colored according to whether the parent was
a significant cluster (not significant in black, all other colors
significant). We first asked whether significant clusters are
spatially organized. A subset of Pars Intercerebralis neurons
located near the midline form a spatially compact cluster that
is identifiable across flies (Fig. 6B-C, yellow/white). Signif-
icant clusters that share a parent with the Pars Intercerebralis
cluster are predominantly in posterolateral regions (Fig. 6B-
C, orange). Thus, there is spatial organization and stereotypy
at multiple spatial scales. The full distribution of sizes for all
significant clusters (Fig. 6D) reveals a large number of signif-
icant clusters with 2 members. These clusters exhibit diverse
residual dynamics, but each cluster consists of pairs of cells
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with similar dynamics (Fig. 6F). Despite these clusters be-
ing defined by residual dynamics, neurons in the same clus-
ter have a similar relationship to global activity and behav-
ior (Fig. S6). As a population, cells within a cluster exhibit
a distribution of behavioral time constants and correlations
indistinguishable from the distributions across all cells (Fig.
6E, S6). Thus, clusters are highly diverse and participate in
the global behavioral state.

By visual inspection, many small clusters appear to be
either bilaterally symmetric or spatially localized (Fig. 6G).
To quantify this observation, we analyzed the spatial organi-
zation by calculating the distance between cells in a cluster
after superimposing the left and right hemisphere by fold-
ing at the midline (Methods, Fig. S6). Most clusters with
two members were more spatially organized than expected
by chance (Fig. 6H, S6). The presence of small clusters that
are predictive of both activity patterns and spatial location is
consistent with the association of cluster identity with func-
tion - cells with similar dynamics and similar function are
likely to be in similar locations. These observations suggest
that the fly brain is composed of many small subpopulations
that collectively account for the high dimensionality of the
brainwide data. Two-member clusters are embedded in larger
ensembles of neurons, implying that the functional relation-
ship between neurons is hierarchical. This is consistent with
known classes of cells in the fly brain - for example, Kenyon
cells can be subdivided into α/β, α′/β′, and γ subclasses,
and peptidergic neurons contain subclasses such as insulin-
expressing neurons.

Our functional profiling of the brain offers a novel and
complementary method of identifying cell types throughout
the brain. The vast majority of cells in the central brain can
be transcriptionally characterized as consisting of a few thou-
sand distinct cell types that come in clusters of 1-10 neurons
per hemibrain (36). Histograms of the number of cells within
each cell type from genetic and connectomic cell-typing (36)
show an exponential shape similar to that revealed by our
activity-based analysis (Fig. 6D). Thus, the smallest spatially
organized subpopulations we identified functionally may cor-
respond to genetically defined cell types.

Discussion
We used SCAPE microscopy to record from a substantial vol-
ume of the dorsal brain with cellular resolution, complement-
ing large-scale studies of neuropil regions in the fly brain (6–
8, 17, 37). SCAPE imaging permitted us to record from all
neurons in a contiguous and large brain volume during spon-
taneous behavior and revealed global activity that correlates
with behavior. SCAPE permits high speed volumetric imag-
ing with cellular resolution, providing an extensive picture of
neural activity in space and time. When placed on a ball, flies
run, groom, or are quiescent. When suspended, flies often
flail. Running and flailing engage a large fraction of the neu-
rons in the imaged volume. A much smaller fraction of the
neurons exhibit activity correlated with grooming. A regres-
sion model reveals neural activity correlated with running on
both short and long time scales. This suggests that most neu-

rons are correlated with the act of running, and a significant
fraction are correlated with the tendency to run. Moreover,
cells with a given behavioral time constant are spatially orga-
nized, in some cases aligning with areas known to be involved
in metabolism or locomotion.

Subtracting the dominant activity correlated with be-
havior reveals additional rich dynamics across time and
space. Interestingly, this activity shows little dependence on
locomotive state: residual activity exhibits similar spatiotem-
poral patterns in running and quiescent states. This activity
is high dimensional and sparse. Hierarchical clustering re-
veals small groups of neurons with highly correlated activity,
at the extreme comprised of only 2 cells. These function-
ally defined clusters may correspond to genetically defined
cell types in the fly brain. These small circuits do not oper-
ate in isolation. Clusters defined by the residual activity also
participate in the global behavior-related dynamics. Thus,
global patterns may inform local computation and in turn, lo-
cal computations may influence global patterns.

The global scale of neural activity correlated with loco-
motion in flies is consistent with findings in worms (2, 3, 14),
zebrafish (4, 5, 16) and mice (11–13, 15). Studies in flies
(6–9, 17) and those in other organisms pose the question
of the mechanism and function of broadly distributed brain-
wide activity. In the fly, small identified circuits that con-
trol specific behaviors have been elucidated. However, we
have shown that most neurons in the fly brain are active dur-
ing running and flailing, either as actors or observers. This
suggests that neurons engaged in specific behaviors, such as
mating, aggression or even egg laying, are also active dur-
ing spontaneous running, without the act of running trigger-
ing these other behaviors. Conversely, local circuits control-
ling behavior may broadcast information globally, generat-
ing the activity we observe. This global broadcast could arise
from widespread neuromodulation. Alternatively, the recur-
rent connectivity of the fly nervous system could provide a
pathway for this global activity. One such example is the
extensive afferent input to the brain from the ventral nerve
cord – approximately 2,500 neurons originating in the ven-
tral nerve cord project diffusely to the central brain (33).

We observe a small but substantial fraction of neurons
that correlate with locomotion on timescales longer than the
duration of individual running bouts. These neurons may
represent a locomotor state, the tendency to run. Many of
these neurons reside in large posterolateral clusters and in
the dorsomedial Pars Intercerebralis. The PI is a predom-
inantly peptidergic domain, and neurons in this region are
poised to have influence over extended durations (31). Re-
cent work has implicated a relationship between brainwide
behavior-related activity and metabolism (8). Our observa-
tion that neurons involved in regulating metabolism are also
modulated by running, albeit in a manner distinct from most
other neurons, suggests that the causality of this relationship
may be bidirectional.

Why does locomotor behavior have privileged access
to virtually all neurons in the fly brain? Neurons in multiple
neural pathways would likely benefit from knowledge of cur-
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rent behavior. This activity may modulate ongoing behavior
or recapitulate past or even predict future behavioral action.
In the visual system, for example, locomotion enhances gain
and elicits activity in area V1 of mice (22, 25) and in the op-
tic lobe of flies (20, 21, 24). Locomotive behavior in the fly
signals not only to primary sensory areas, but to deeper sen-
sory structures such as the mushroom body (38). Moreover,
locomotor state in the fly combines with self-generated vi-
sual feedback to control posture (39). Efference copies from
motor systems to multiple circuits enable the cancellation of
self-generated sensory input (40). In artificial intelligence,
the utility of proprioceptive feedback to higher-order net-
works has been demonstrated – in artificial agents trained to
solve a variety of tasks, subnetworks charged with represent-
ing abstract quantities such as value benefit from knowledge
of the agent’s behavior (41, 42). Interestingly, artificial neu-
rons in such subnetworks also tend to have activity correlated
with the behavior itself (41). Therefore, locomotor state may
provide a useful behavioral context for other computations
throughout the brain and it is perhaps not surprising that it
elicits the most prominent activity throughout the brain. In
short, it is good to know what you are doing.
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Methods
Genetics and fly rearing. We imaged female 4-7 day-old
flies of the following genotype: w/+; UAS-nls-GCaMP6s/+;
Nsyb-Gal4/UAS-nls-DsRed. UAS-nls-GCaMP6s was a gift
from Barry Dickson.

SCAPE light-sheet imaging. Imaging was performed on a
SCAPE 2.0 system (27). In brief, the laser sheet was directed
through an upright mounted 20x/1.0NA water immersion ob-
jective. Emitted light from the sample was separated into
two channels by an image splitter outfitted with two dichroic
filters and the detected red and green channels were recorded
side-by-side on the camera chip. The imaging speed for these
experiments was between 8-12 volumes per second, typically
covering a volume of approximately 450 x 340 x 150 µm3.

Imaging and behavior preparation. We mounted flies to
a customized holder consisting of a 3D printed holder and a
laser-cut stainless-steel headplate. We use a spherical tread-
mill similar to prior designs (43). We monitor the behavior

of the fly at 70 Hz, illuminated by 750 nm LEDs using a
Basler acA780 camera outfitted with a VZM-450i lens (Ed-
mund Optics) and a near-IR longpass filter (Midwest Optical
LP780-22.5, Graftek Imaging). Depictions of the preparation
made in BioRender (44).

Motion correction. To perform image registration of our
volumetric imaging dataset, we used the NoRMCorre algo-
rithm (45) augmented with an annealing procedure in which
the grid size and the range of permitted local displace-
ments gradually decrease with each iteration. At each step,
we computed displacements using the activity-independent
DsRed channel and applied the inferred displacements to the
GCaMP channel.

Source extraction and deconvolution. ROIs are defined
using watershed segmentation applied to the red channel of a
temporally-averaged volume, resulting in 1,631 +/- 109 ROIs
per animal. After motion correction, most cells have negli-
gible residual motion, but in some datasets a small fraction
of cells have motion that is too nonlinear to be addressed
with NoRMCorre. To quantify residual motion and eliminate
non-stationary cells, we compute the squared coefficient of
variation, CV 2 = Var[∆F/F ]/Mean[F ]2 from the red chan-
nel. Most ROIs (>95%) have CV 2 � 1, while some have
CV 2� 1 and are discarded. No cells exhibit CV 2 ≈ 1 (Fig.
S1). This refinement of ROIs yields 1,419 ± 78 stable, single-
cell ROIs per animal.

Although this procedure typically reduces motion ar-
tifacts to less than 1 voxel for most cells, we further mini-
mize the impact of residual motion by defining the activity
of each cell as the ratio of green and red, F = green/red.
We then define baseline ratiometric fluorescence, F0 as the
best-fit exponential using least absolute deviation (LAD) re-
gression applied to the derivative of F . LAD regression con-
fers robustness to outliers, and working with the derivative of
F confers robustness to long-timescale nonstationarity. We
find similar but slightly noisier activity using simple ∆F/F0
defined on the green channel alone.

Anatomical alignment across animals. We create a stan-
dardized reference frame by coarsely aligning cell locations
across flies. Treating every cell as a point, we align the
point sets for each brain to a common reference volume
using the Gaussian mixture model method developed here:
https://github.com/bing-jian/gmmreg.

Analysis of behavior. We monitor the movement of the
spherical treadmill by measuring the total pixel variance be-
tween successive frames from the region containing the ball.
This unitless estimate of motion aided behavior segmenta-
tion, as described below. In some datasets, the spherical
treadmill was removed after 10 minutes of imaging. Here,
we measured pixel variance in an ROI around the fly’s legs,
which provided a measure of a behavior we called flailing,
consisting of bouts of rapid leg movements.

We analyze fly behavior both by directly tracking mo-
tion of the treadmill (described above) and by tracking eight
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points on the body of the fly using Deep Graph Pose (28)
(DGP; Fig. 1C). We hand labeled the eight selected points
in 50 frames from each of 17 videos using the DeepLabCut
(DLC) (46) GUI, for a total of 850 labeled frames. We then
trained DGP on these frames, which augments the supervised
loss of DLC with a semi-supervised loss that incorporates ad-
ditional, unlabeled frames; we found that this significantly
improved the pose estimation, even after post-hoc smoothing
of the DLC markers.

We further segment discrete behaviors from the DGP
markers using a semi-supervised sequence model (29). We
chose to label five salient behaviors commonly observed
across all flies: running, front and back grooming, abdomen
bending, and a quiescent state. We labeled up to 1,000 frames
for each of the five behaviors for each of 20 flies using the
DeepEthogram GUI (47), resulting in a total of 33,756 hand
labels (quiescent = 6,250, run = 4,950, front groom = 5,700,
back groom = 5,480, abdomen bend = 11,376). We supple-
mented this small, high-quality set of hand labels with a large,
lower-quality set of “weak” labels computed using a simple
set of heuristics (see details below).

Semi-supervised behavioral segmentation. We train a semi-
supervised behavioral segmentation model that classifies the
DGP markers into one of the five available behavior classes
for each time point. The model’s loss function contains three
terms: (1) a standard supervised loss that classifies a sparse
set of hand labels; (2) a weakly supervised loss that classi-
fies a set of easy-to-compute heuristic labels; and (3) a self-
supervised loss that predicts the evolution of the DGP mark-
ers. Let xt denote the DGP markers at time t, and let yt
denote the one-hot vector encoding the hand labels at time t
such that the kth entry is 1 if behavior k is present, else the
entry is 0. We assume that the hand labels are only defined
on a subset of time points T ⊆ {1,2, ...T}. The cross-entropy
loss function then defines the supervised objective (Lsuper) to
optimize:

Lsuper =
∑
t∈T
Lxent

(
yt,f(xt)

)
,

where f() denotes the sequence model mapping the DGP
markers to behavior labels. We now introduce a set of heuris-
tic labels ỹt, defined at each time point. Computing the cross-
entropy loss on all time points that do not already have a cor-
responding hand label defines the heuristic objective:

Lheur =
∑
t/∈T

Lxent
(
ỹt,f(xt)

)
.

The self-supervised loss requires the sequence model
to predict xt+1 from xt. To properly do so we now expand
the definition of the sequence model f() to include two com-
ponents: an encoder e(), which maps the behavioral features
xt to an intermediate behavioral embedding zt; and a linear
classifier c() which maps zt to the predicted discrete labels
(ŷt = c(e(xt)). We can now incorporate the self-supervised
loss through the use of a predictor function p(), which maps
zt to xt+1, and match xt+1 to the true behavioral features

xt+1 through a mean square error loss LMSE computed on all
time points:

Lpred =
T−1∑
t=1
LMSE

(
xt+1,p(e(xt))

)
.

Finally, we combine all terms into the full semi-
supervised loss function:

Lsemi = λsLsuper +λhLheur +λpLpred ,

where the λ terms are hyperparameters that control the con-
tributions of their respective losses. Note that setting λh =
λp = 0 results in a fully supervised model, while λs = λh = 0
results in a fully unsupervised model.

For the encoder and predictor networks e() and p()
we use a dilated Temporal Convolutional Network (dTCN)
(48), which has shown good performance across a range of
sequence modeling tasks. Both networks use a two-layer
dTCN with a filter size of 9 time steps and 32 channels for
each layer, with leaky ReLU activation functions, and weight
dropout with probability p = 0.1. We use 10 fly videos for
training and 10 for testing. All models are trained with the
Adam optimizer using an initial learning rate of 1e-4 and a
batch size of 2,000 time points. For the training flies, 80% of
frames are used for training, 20% for validation. Training ter-
minates once the loss on validation data begins to rise for 20
consecutive epochs; the epoch with the lowest validation loss
is used for testing. To evaluate the models, we compute the
F1 score - the geometric mean of precision and accuracy - on
the hand labels of the 10 held-out test flies. We average the
F1 score over all behaviors and choose the hyperparameters
λh and λp based on the highest score. We then retrain the
model with those hyperparameter settings using all 20 flies
to arrive at our final segmentation model. We also performed
a small hyperparameter search across the number of layers,
channels per layer, filter size, and learning rate, and found
that our results are robust across different settings (data not
shown).

Heuristic labels. The addition of a large set of easily com-
puted heuristic labels improves the accuracy of the behavioral
segmentation (29). Below, we provide more detail on these
heuristics. Note that we choose conservative values for the
thresholds in order to decrease the prevalence of false posi-
tives. A consequence of this choice is that some time points
are not assigned a heuristic label; nevertheless this proce-
dure adds enough high-quality information to substantially
improve the models.

Run. We first estimate the time points at which a fly is
running by utilizing the treadmill motion energy (ME). We
transform the treadmill ME to lie in the range [0, 1], then
assign the ‘run’ label to time points when the treadmill ME
is above a threshold (0.5).

Quiescent. We compute the average ME over all
DGP markers for each time point, then denoise this one-
dimensional signal with a total variation smoother (the
denoise_tv_chambolle filter from the sklearn (49)
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Python package). We then transform this signal to approx-
imately lie in the range [0, 1] (the 99th percentile is mapped
to 1 in order to make this process robust to outliers). We as-
sign the ‘quiescent’ label to time points when this signal is
below a threshold (0.02) and the fly is not running (according
to the previous heuristic).

Abdomen bend. We compute the average ME over the
abdomen markers, then denoise this signal and transform it
to approximately lie in the range [0, 1]. We assign the ‘ab-
domen bend’ label to time points when this signal is above a
threshold (0.9) and the fly is not still or running according to
the previous heuristics.

Front and back groom. We compute the average ME
over the forelimb markers, then denoise this signal and trans-
form it to approximately lie in the range [0, 1]. We assign
the ‘front groom’ label to time points when this signal is
above a threshold (0.05), the corresponding back groom sig-
nal (computed from the hindlimb markers) is below a thresh-
old (0.02), and the fly is not still, running, or bending its ab-
domen according to the previous heuristics. We assign the
‘back groom’ label in an analogous manner.

Regression model. We regressed each neu-
ron’s activity against all behaviors (B =
{running, front grooming, back grooming, flailing})
filtered using a fitted time constant (τi) and temporal shift
(φi) unique for each cell (i). Thus, we model the activity f
of cell i at time t as

fit ∼
2∑
j=0

αijt
j +

∑
b∈B

γbixbti , where xbti = bt~κτiφi
.

The γ coefficients describe the relative importance of each
behavior in accounting for the activity of each cell, while
the α coefficients capture drift independent of behavior. The
convolution kernel is κτiφi

= (2τi)−1 exp[−(|t− φ|)/τi].
This symmetric kernel is useful for disentangling smooth-
ness from causality. A cell with a broad kernel should have
|φ| ≥ τ , with the sign of φ determining the direction of
causality. A lag of |φ| ≈ τ should not be interpreted as a
true lag, but rather a reflection of causality with smoothness
constraints.

Dimensionality reduction. We performed principal com-
ponent analysis (PCA) on the residual activity after subtract-
ing the regression model fit. We quantified the dimensional-
ity of this residual activity as the number of PCA modes that
maximize the log likelihood of the lower dimensional sub-
space on held-out data. We fit the principal components on
80% of all time points and evaluate the log likelihood on the
remaining 20%.

To quantify the degree of sparseness of PCA modes
without selecting a threshold, we calculate the participation
ratio of each mode ~vj as

Sj =
(∑

k~vjk
)2∑

k

(
~v 2
jk

) .

The participation ratio of a zero mean Gaussian vector is ap-
proximately 0.33, which is a useful null hypothesis for the ex-
istence of either sparse or dense structure in the PCA modes.

We sorted residual activity by behavior label and then
performed PCA separately on each behavior’s set of time
points to quantify the residual subspace (Xb) of each behav-
ior b. To compare the subspaces of two behaviors, for exam-
ple running and the quiescent state, we quantified the com-
mon variance explained and the common dimensionality. We
defined common variance explained (Emb) for m modes as

Emb =
∑m
j=0 Xb0~vjb∑m
j=0λjb

,

where b is the behavior on which the PCA modes were de-
fined, and b0 is the other behavior. Similarly, we define com-
mon dimensionality by cross validating the projection of one
subspace onto the modes of the other (Xb0~vjb).

Clustering. We performed agglomerative hierarchical clus-
tering on residual neural activity using Euclidean affinity and
ward linkage.

To look for structure in the data at all spatial scales
without defining arbitrary parameters for the number of ex-
pected clusters or an affinity threshold, we identified signifi-
cant clusters using cross-validation. We performed clustering
on 80% of the time points, and evaluated the validity of the
identified clusters on the remaining 20%. Specifically, we
evaluated the intra-cluster variance on held out time points
for each cluster and for size-matched samples from its parent
cluster. The number of selected samples was

Nsamples = min
[(
Np
Nc

)
,100

]
,

where Np and Nc are the number of neurons in the parent
and child cluster, respectively. A child cluster was deemed
significant if its test variance was less than that of the samples
(p < 0.05). Both a child and its parent cluster can be signif-
icant. We defined the intra-cluster distance for each cluster
by first folding the brain along the midline - thus, the lat-
eral coordinate of each cell was equal to its distance from
the midline (Fig. S6). We then compute the Euclidean dis-
tance between the coordinates of each cell in a cluster. We
performed this analysis on both the identified and randomly
shuffled clusters of the same size to validate our results.
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Supplement

Figure S1. (A) A semi-supervised sequence model (29) extracts a time series of discrete behavioral states from DGP points. Example
trajectories of the 8 tracked points shown in black above, ordered from anterior to posterior (fb:front bottom, ft:front top, mb:middle
bottom, mt:middle top, hb:hind bottom, ht:hind top, ab:abdomen bottom, at:abdomen top). Inferred probability of each behavioral state
is shown below, showing a transition from running to back grooming. (B) The autocorrelation of front grooming (left, black) and back
grooming (right, black) are best fit by a single exponential plus a constant offset, with time constants of 2s and 3s, respectively (gold).
(C) Motion of the brain volume before (dark red) and after (light red) registration, quantified as the correlation coefficient between red
fluorescence and a single template image, compared to running (black). (D) Expression of NLS-GCaMP6s driven by Synaptobrevin
(green), with Kenyon Cells labeled in red (MB247>dsRed) for a slice through the calyx in one hemisphere. Scale bar = 20 µm. (E)
We define baseline ratiometric fluorescence (blue) as the best-fit exponential using least absolute deviation (LAD) regression applied
to the derivative of ratiometric fluorescence. Raw ratiometric fluorescence shown in red. (F) To quantify residual motion and eliminate
non-stationary cells, we compute the squared coefficient of variation from the red channel. Cells with values greater than 1 were rare
and eliminated.

Figure S2. Rendering of cell bodies from all neurons innervating either the Protocerebral Bridge (A) or the Fan-shaped Body (B) of
the Central Complex. Renderings created using FlyCircuit (50). In each case, left and right show sagittal and transverse projections,
respectively. White rectangles indicate approximate viewing window in our data, and scale bar = 50 µm.

Figure S3. Fraction of variance explained by behavior regression model for each fly versus time spent running (green), front grooming
(red), back grooming (purple), or the sum of all behaviors other than the quiescent and undefined states (black). Fraction of time spent
running is most predictive of model fit.
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Figure S4. Variance explained by behavior regression model ver-
sus residual variance explained by first 3 PCs (left) or first 10 PCs
(right) for all cells and all flies (N = 18). Each point is a cell. Variance
accounted for by behavior (regression r2) and variance explained
by leading PCs (PCA r2) are uncorrelated over all cells, implying
that global and residual activity coexist in the same population of
neurons.

Figure S5. (A) Projections of the residual dynamics during running
and quiescence onto the first two modes of the quiescent state (left)
and the running state (right) for an example fly. (B) Same as ‘A’, for
PCs 3 and 4.
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Figure S6. (A) Activity of cells from the three different clusters shown in Figure 6E before subtracting regression fit. (B) Distribution
of behavior time constants for all cells (gray) and cells belonging to a significant two-cell cluster (green). (C) Intra-cluster distance of
all 2-cell clusters versus the same quantity from samples of each cluster’s parent. (D) Absolute value of correlation with running for
each cell in a significant two-cell cluster versus absolute value of correlation with running for its partner cell. (E) Same as ‘D’, for log of
behavior time constant. (F) To evaluate spatial organization of clusters, we calculate distance between member neurons after folding
the volume along the midline (yellow).
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