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Abstract 1 

Accurate estimates of the rate of recombination are key to understanding a host of 2 

evolutionary processes as well as the evolution of recombination rate itself. Model-3 

based population genetic methods that infer recombination rates from patterns of 4 

linkage disequilibrium (LD) in the genome have become a popular method to estimate 5 

rates of recombination. However, these LD-based methods make a variety of simplifying 6 

assumptions about the populations of interest that are often not met in natural 7 

populations. One such assumption is the absence of gene flow from other populations. 8 

Here, we use forward-time population genetic simulations of isolation-with-migration 9 

scenarios to explore how gene flow affects the accuracy of LD-based estimators of 10 

recombination rate. We find that moderate levels of gene flow can result in either the 11 

overestimation or underestimation of recombination rates by up to 20-50% depending 12 

on the timing of divergence. We also find that these biases can affect the detection of 13 

interpopulation differences in recombination rate, causing both false positive and false 14 

negatives depending on the scenario. We discuss future possibilities for mitigating 15 

these biases and recommend that investigators exercise caution and confirm that their 16 

study populations meet assumptions before deploying these methods. 17 

Introduction 18 

Recombination rate, the number of crossovers per unit genome per generation, plays a 19 

key role in shaping evolutionary processes and diversity in the genome. For example, 20 

through the action of linked selection, local rates of recombination are a chief 21 

determinant of patterns of genetic diversity throughout the genome (Begun & Aquadro, 22 
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1992; Burri, 2017; Cutter, 2019; Haddrill et al., 2014; Korunes et al., 2021). Genome-wide 23 

rates of recombination also modulate diverse processes such as adaptation, speciation, 24 

and introgression (Dapper & Payseur, 2017; Samuk et al., 2017; Schumer et al., 2018; 25 

Stapley et al., 2017). There is also a growing appreciation that recombination rate is 26 

itself a trait that varies and evolves (Dumont & Payseur, 2008; Hunter et al., 2016; 27 

Johnston et al., 2016; Ritz et al., 2017; Samuk et al., 2020; Stapley et al., 2017). 28 

Accordingly, there has been great interest in efficient and accurate methods for 29 

estimating recombination rates.  30 

Current methods for estimating recombination rates fall into two broad classes of 31 

methods: direct and indirect (Peñalba & Wolf, 2020). Of the direct measures, the three 32 

most popular approaches are linkage mapping, gamete sequencing, and cytological 33 

methods. With classical linkage mapping, map distances between genetic markers are 34 

measured by quantifying recombinant markers in the context of a genetic cross or 35 

pedigree (Broman, 2010; Rastas, 2017). The resolution of this approach is limited only by 36 

marker density and the sample size of individuals, but larger sample sizes can be 37 

grueling to carry out in the laboratory or unavailable in some populations. Further, 38 

identifying suitable diagnostic mapping markers can be limiting in some cases (e.g.  in a 39 

highly homozygous population, Broman, 2010). Direct sequencing of pools of 40 

recombinant gamete genomes from single individuals using long/linked read 41 

sequencing is a newer approach that alleviates many of the issues of traditional 42 

mapping, but still requires differentiated markers to score crossover events between 43 

homologous chromosomes (Dréau et al., 2019; Rommel Fuentes et al., 2019; Xu et al., 44 

2020). Cytological methods bypass this requirement by directly visualizing 45 
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recombination-associated protein complexes in cell populations undergoing meiosis 46 

(Peterson et al., 2019; Peterson & Payseur, 2021). However, cytological methods are 47 

limited by the spatial resolution at which such visualization can occur (e.g. the 48 

resolution of immunostained gamete karyotypes, Peterson et al., 2019). 49 

Because all direct methods of measuring recombination rates are fairly laborious, there 50 

has been increased interest in indirect measures of recombination rate that leverage 51 

readily available population genetic data. Chief among these are model-based methods 52 

that infer rates of recombination from patterns of linkage disequilibrium (LD), (Auton & 53 

McVean, 2007; Chan, Song, et al., 2012; Kamm et al., 2016; Spence & Song, 2019). These 54 

methods attempt to estimate recombination rates by statistically fitting recombination 55 

rates (derived from population genetic models/simulations) to observed patterns of LD. 56 

Rather than inferring recombination rate directly, LD-based estimators infer a 57 

population scaled recombination rate, ⍴ = 4Ner, where Ne is the effective population size 58 

and r is the theoretical per-generation recombination rate. LD-based methods are 59 

attractive because they (1) generally only require population-scale genomic data and (2) 60 

are very fast, often only requiring several computational hours or less (Spence & Song, 61 

2019) and (3) are informative of time-averaged population historical recombination rates 62 

(Gil McVean & Auton, 2007). Accordingly, LD-based estimates of recombination rates 63 

have become extremely popular, and now vastly outnumber direct measures in the 64 

literature (Peñalba & Wolf, 2020; Stapley et al., 2017). These methods have also begun to 65 

be used to perform interpopulation comparisons of recombination rates (Peñalba & 66 

Wolf, 2020; Stapley et al., 2017). 67 
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Like all models, LD-based estimators of recombination rate make a variety of 68 

simplifying assumptions about the populations of interest. For one, they generally 69 

assume that the populations/loci of interest are evolving largely neutrally and have 70 

reached population genetic equilibrium in a number of ways (Stumpf & McVean, 2003). 71 

In particular, most methods assume that the populations being studied have reached an 72 

equilibrium between recombination and population scaled mutation, such that LD 73 

accurately reflects patterns of recombination rate (G. McVean, 2007). Further, it is 74 

generally assumed that any form of selection that might distort patterns of LD (e.g. 75 

sweeps) has not recently occurred (Chan, Song, et al., 2012). Finally, these methods make 76 

the general assumption that demographic processes that distort genome-wide patterns 77 

of LD, such as population size changes, have not occurred (recall that ⍴ is directly 78 

dependent on Ne, Auton & McVean, 2007).  79 

While some of these assumptions may be robust to violation, work has shown that some 80 

violations can result in biased estimates. For example, (Dapper & Payseur, 2018) showed 81 

that recombination estimates from LDhat (Gil McVean & Auton, 2007) are highly 82 

sensitive to changes in population size. This can be ameliorated in some cases by 83 

incorporating known changes in population size into the estimation procedure, such as 84 

implemented in the software pyrho (Spence & Song, 2019). 85 

Along with changes in population size and selection, another process that can greatly 86 

alter patterns of LD is gene flow. Gene flow and subsequent admixture between 87 

diverged populations can have complex effects on patterns of LD within each 88 

population (Nei & Li, 1973; Ohta, 1982). These effects range from large and genomically 89 
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variable increases in LD due to segregation of divergent haplotypes, to genome-wide 90 

decreases in LD as populations become coupled and increase local Ne (Nei & Li, 1973; 91 

Ohta, 1982). While it is now widely accepted that gene flow is commonplace in natural 92 

populations (Barton, 2008; Mallet, 2005; Suvorov et al., 2021; Waples & Gaggiotti, 2006), 93 

and there has not been a systematic study of the effects of gene flow on LD-based 94 

measures of recombination. Further, it remains unclear how gene flow (or any other 95 

violation of assumptions) impacts our ability to detect differences in recombination rate 96 

between (as opposed to within) populations using LD-based methods. 97 

Here, we address these issues using forward-time population genetic simulations. We 98 

attempt to answer two specific questions. First, how does gene flow between 99 

populations affect the precision and accuracy of LD-based estimates of recombination 100 

rate within populations? Secondly, how does gene flow affect our ability to detect 101 

evolved differences in recombination rate between populations? Our primary goal is to 102 

answer these questions in the context of a core set of realistic demographic scenarios, 103 

and not perform an exhaustive exploration of parameter space. Overall we hope to help 104 

investigators understand key sources of bias in LD-based estimates of recombination 105 

rate in natural populations and highlight areas of future development. 106 

Methods 107 

Code availability 108 

All scripts used in the analyses described below are available as a repository on Github 109 

(http://github.com/ksamuk/LD_recomb).  110 
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Forward time simulations with SLiM 111 

To explore how the timing and amount of gene flow affect estimates of recombination 112 

rate, we performed forward-time population genetic simulations using SLiM version 3.3 113 

(Haller & Messer, 2019). The basic form of all the simulations was an isolation-with-114 

migration scenario: a single ancestral population diverges into two subpopulations with 115 

a static amount of bidirectional gene flow (Figure 1). Populations were composed of 116 

diploid individuals with 100kb genomes arranged in a single chromosome. We used 117 

genome-wide average estimates of effective population size, mutation rate, and 118 

empirical recombination rate from natural populations of Drosophila melanogaster 119 

(Adrion, Cole, et al., 2020): Mutation rate = 5.49×10-9 (Li & Stephan, 2006); Recombination 120 

rate = 2.23×10-8, (average of chromosome 2R, Comeron et al., 2012); Ne = 1.72M (Li & 121 

Stephan, 2006). Recombination and mutation rates were conservatively modeled as 122 

uniform across the 100kb genome. Following standard practice for forward-time 123 

simulations, all simulations were run with an in silico population size of N=1000, and 124 

simulated mutation and recombination rates scaled by a factor of  Ne/N as per the SLiM 125 

manual (Haller & Messer, 2019). Note that generation times are also subject to scaling, 126 

and for simplicity, we will refer to all generations in terms of back-transformed actual 127 

generations rather than SLiM generations (1 SLiM generation ≈ 1751 actual generations 128 

with our scaling factor). 129 

Parameter space 130 

To explore how variation in gene flow affects estimates of recombination, we varied the 131 

amount of gene flow over five orders of magnitude: 0, 0.01, 0.1, 1, 10, 100, in standard 132 

units of Nem (the product of the effective population size and the migration rate). These 133 
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values were chosen to encompass total isolation (Nem = 0), limited gene flow (Nem = 134 

0.01-0.1), moderate gene flow in interconnected metapopulations (Nem = 1-10, Morjan & 135 

Rieseberg, 2004; Waples & Gaggiotti, 2006), and a scenario of a nascent hybrid swarm 136 

(Nem = 100). We also varied the timing of the onset of gene flow, with gene flow 137 

beginning either immediately after divergence or after a period of isolation. We 138 

performed preliminary simulations to determine a period of isolation (~1.7M 139 

generations in our case) that produced levels of genomic divergence (Figure S1) similar 140 

to those observed in natural population pairs that exhibit genome-wide genetic 141 

divergence but still actively exchange genes (FST ~ 0.4, Morjan & Rieseberg, 2004; Roux 142 

et al., 2016). Finally, to explore how gene flow impacts the detection of population 143 

differences in recombination rate, we modeled scenarios where recombination rate either 144 

remains constant in both subpopulations or instantaneously increases by a factor of 2 at 145 

the time of divergence in one of the two subpopulations (always subpopulation two). 146 

This magnitude of this difference is well within the range of variation in recombination 147 

rate reported for a wide variety of species (Stapley et al., 2017). In biological terms, an 148 

instantaneous increase in population recombination rate could be readily mediated by 149 

an environmental change (e.g. temperature, Lloyd et al., 2018) or via a change in mating 150 

system (Brandvain & Wright, 2016).  We note that this instantaneous change is a “best 151 

case” scenario for detecting interpopulation differences in recombination rate, and thus 152 

any loss of power to detect differences in recombination that occurs due to gene flow 153 

will be conservative. 154 
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Figure 1 | The structure of the forward-time simulations performed in SLiM. Time in back-transformed 155 

generations is shown along the x-axis, and the populations in existence at a given time are shown as 156 

rectangles. panc = the ancestral population, p1 = the subpopulation with unchanged recombination rate, and 157 

p2 = the subpopulation with increased recombination rate (if applicable). Effective population sizes (Ne) 158 

and recombination rates (c, in units of cM/Mb) are shown for each population, with the values for the 159 

subpopulations shown relative to the ancestral value. Variable elements of the simulation are shown in 160 

braces. Time in generations post-divergence is indicated below the plots, with the pre-contact isolation 161 

period in (B) shown as a dotted line preceding the main axis. Sample periods indicate intervals at which 162 

genotypes were output for analysis. 163 

Details of demographic events 164 

Each simulation began with a single population of size Neanc, which evolved for a 35M 165 

generation burn-in period (following the general practice of a 10-20 Ne burn-in period, 166 

Haller & Messer, 2019). This initial period was followed by divergence into two 167 

subpopulations, each with size Neanc/2. Gene flow (for cases where Nem > 0) began 168 

immediately at the time of divergence or after a 1.7M generation period of isolation and 169 

was symmetrical in magnitude and bidirectional. Changes in recombination rate 170 
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occurred at the time of divergence and instantaneously applied to all individuals in 171 

subpopulation two only.  172 

Starting at the time of divergence and thereafter in intervals of 1751 generations, we 173 

collected a random sample of 25 individuals (a total of 50 haploid genomes) from each 174 

population and saved their complete genotypic at all sites in VCF format. We stopped 175 

the simulations after 51 000 generations. Each parameter combination was replicated 176 

100 times, for a total number of ~n=48 000 population samples. 177 

Estimation of recombination rate using pyrho 178 

While there are a variety of LD-based estimators of recombination rate, we elected to 179 

use pyrho (Spence & Song, 2019) for estimation in this study. It shares its statistical 180 

foundation with the most widely used LD-based estimators (LD-hat & LD-helmet; Chan, 181 

Jenkins, et al., 2012; Gil McVean & Auton, 2007) while also having the ability to account 182 

for changes in effective population size such as we are modeling here (Spence & Song, 183 

2019). As such, any estimation biases caused by gene flow will likely affect those 184 

approaches as least as much they affect pyrho. Direct comparisons with other methods 185 

are complicated by the fact that pyrho is the only model-based method that adequately 186 

accounts for changes in effective population (ReLERNN being a possible exception 187 

Adrion, Galloway, et al., 2020) 188 

We followed the recommended practices for inferring recombination rate using pyrho 189 

(https://github.com/popgenmethods/pyrho). We parameterized the initial lookup tables 190 

using the effective population size and mutation rates used in the simulations (unscaled 191 
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in this case). To account for changes in effective population size, we created lookup 192 

tables that accounted for a change of Ne/2 (1.72M to 8.6M) in time steps of 1751 193 

generations in the past. This allowed us to have an appropriately timed lookup table for 194 

each step of the simulation. We used the built-in methods to infer the hyperparameters 195 

of window size (best fit 100) and block penalty (best fit 1000). Using this baseline, we 196 

inferred recombination rates using the genotype data (VCF format) from both 197 

subpopulations at each time point, for a total of ~96 000 pyrho fits. All computation was 198 

performed using the Duke University Computing Cluster, running CentOS Version 8.  199 

Statistical analyses 200 

We performed all data processing and visualization using the tools of the tidyverse 201 

package in R 4.0.3 (R Core Team, 2018; Wickham, 2017). To examine how gene flow 202 

between populations affects the accuracy of LD-based estimates of recombination, and 203 

the context of the various factors explored in our simulations, we performed an analysis 204 

of variance using a linear mixed model with Gaussian errors fitted via the lmer() 205 

function from the lme4 package (Bates et al., 2007). This model had the following form: 206 

Recombination rate = (1|simulation replicate) + (1|simulation generation) + gene flow 207 

magnitude + recombination rate change, where (1|[factor]) denotes a random intercept 208 

and “:” denotes an interaction. All variables were standardized (mean-centered and 209 

scaled by standard deviation) prior to analysis. To simplify interpretation, we fitted 210 

separate models for the continuous gene flow and secondary contact scenarios. 211 
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Results 212 

Inference when recombination rate is identical between populations 213 

When the recombination rate remained constant between diverging populations, we 214 

found that gene flow introduced two types of systematic biases in estimates of 215 

recombination rate within populations (Figure 2A). These effects began when Nem >= 1 216 

in both the continuous gene flow and secondary contact models. First, in the model of 217 

continuous gene flow, when Nem >= 1, we observed a systematic increase (overestimate) 218 

in estimated rates of recombination in both populations (Figure 2A, 2B, top row, Nem = 219 

1-100). This increase was statistically significant (Type III Wald chi-square = 5090.07, p < 220 

2.0×10-16; coefficient for gene flow = 0.63–0.67 (95% CI), t(19495) = 71.34, p < 0.001). When 221 

the migration rate was moderate to high (Nem 10-100), the recombination rate was 222 

overestimated by approximately 10-20% (Figure 2B). This effect is consistent with 223 

migration causing the populations to become coupled, behaving as a single population 224 

with a larger Ne and thus inflating the population-scaled estimate of recombination 225 

rate.  226 

In contrast to the continuous gene flow case, under a model of secondary contact, there 227 

was a marked systematic decrease (underestimate) of recombination rates, which also 228 

became visible when Nem >=1 (Figure 2A, 2B, bottom row, Nem = 1-100). This decrease 229 

was statistically significant (Type III Wald chi-square = 1512, p < 2.2×10-16; coefficient for 230 

gene flow = -(0.54–0.49) (95% CI), t(31846) = -38.88, p < 0.001). The magnitude of this 231 

decrease was substantial: on average, populations experiencing Nem = 1 had 232 

recombination rates about 20% lower than expected, with this increasing to 50% when 233 
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Nem = 10 or higher (Figure 2A, Figure 2B). This decrease was accompanied by a 234 

statistically significant increase in the variance of recombination rate estimates, 235 

especially for Nem = 1-10 compared to Nem < 1  (Fig 2A, bottom row; F-test for 236 

equivalency of variance, F(10429,13860) = 0.20863, p< 2.2×10-16). A systematic increase in 237 

the mean and variance of LD within populations is consistent with allele frequency 238 

differences between populations manifesting as migration-associated LD, and deflating 239 

estimates of recombination rate. When gene flow was very high, there was a visible 240 

recovery of estimated recombination rates (Figure 2A, bottom row, Nem = 100), 241 

presumably due to migration homogenizing allele frequencies and increased effective 242 

population sizes increasing the rate at which recombination breaks down migration-243 

associated LD. 244 

When comparing recombination rates between p1 and p2, the “coupling” bias observed 245 

in the continuous migration scenario did not appear to systematically affect the ratio of 246 

recombination rate between the two populations (Figure 2C, Continuous Migration). 247 

However, in keeping with the previous result, migration-associated LD in the secondary 248 

contact model appeared to greatly increase the variance in the ratio of recombination 249 

rates between populations when Nem >= 1 (Figure 2C, Secondary Contact).   250 

Inference when recombination rate differs between populations 251 

When recombination rates diverged between populations, we also observed the two 252 

forms of bias described above (Figure 3). The estimates from the continuous gene flow 253 

scenario exhibited a statistically significant increase (Type III Wald chi-square = 254 

8936.44, p < 2.2×10-16; coefficient for gene flow =0.65-0.67 (95% CI), t(19495) = 94.53, p < 255 
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0.001) whereas estimates from the secondary contact model exhibited a statistically 256 

significant decrease (Type III Wald chi-square = 1512, p < 2.0×10-16; coefficient for gene 257 

flow = -(0.27-0.22) (95% CI), t(34505) = -23.22, p < 0.001). However, the results differed 258 

from simulations with constant recombination rates in a number of important ways. 259 

First, there was a clear difference between the continuous migration and secondary 260 

contact models in the overall trajectory in the population-specific estimates of 261 

recombination rate (Figure 3A). In the continuous gene flow models, there was an 262 

overall positive trend for the estimates of recombination rate in p2 even in the absence 263 

of gene flow (Figure 3A, continuous migration). This was presumably caused by a lag in 264 

the establishment of equilibrium levels of LD within p2 that reflect the new 265 

recombination rate (which spontaneously changed at the time of divergence). This lag 266 

resulted in the recombination rate in p2 being consistently underestimated (because it 267 

had not reached its new equilibrium), in addition to the coupling effect observed 268 

previously (Figure 3B and 3C, continuous migration).In the case of the secondary 269 

contact model, we did not observe the same positive trend for recombination rate 270 

estimates in p2, likely because the isolation period (1.7M generations) was sufficiently 271 

long enough for p2 to establish an equilibrium level of LD prior to secondary contact 272 

(Figure 3A, Secondary Contact).  273 
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Figure 2 | The relationship between inferred recombination rate and the migration rate in simulated 274 

populations where recombination rate remains constant in both subpopulations. (A) Inferred 275 

recombination rates for individual simulations at varying levels of migration. Each plot shows inferred 276 

rates for simulation replicates (transparent lines) of population 1 (red, unchanged recombination) and 277 

population 2 (blue, increased recombination) for a single migration rate. Dashed lines show the expected 278 

inferred value in the absence of gene flow (inferred from Nem = 0). (B) Summarized inferred recombination 279 

rates (y-axis) for each level of migration (x-axis) from the simulations in A. Points are mean values and 280 
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error bars depict standard deviations (summarized across all generations). Dashed lines show the 281 

expected inferred value in the absence of gene flow for each population (i.e. the mean value for Nem = 0). 282 

(C) The inferred difference in recombination rate between population 1 and population 2 (p2 - p1) as a 283 

function of migration rate. Points and errors bars are as in B.  284 

In keeping with the scenario with constant recombination rates, starting at Nem ~ 1,  285 

migration-associated LD resulted in the systematic underestimation and increase in 286 

variance for estimated recombination rates within both p1 and p2 (Figure 3B, Secondary 287 

Contact; Type III Wald chi-square = 538.97, p < 2.0×10-16; coefficient for gene flow = -288 

(0.27-22) (95% CI), t(34505) = -23.22, p < 0.001;  F-test for equivalency of variance, 289 

F(7734,13579) = 0.2174, p< 2.2×10-16). In addition, the observed divergence in 290 

recombination rate between p2 and p1 (which was always expected to be +2 cM/Mb) 291 

decreased with increasing levels of gene flow (Figures 3B and 3C, Secondary Contact). 292 

This effect would likely result in an increase in false negatives with increasing gene 293 

flow (i.e. finding no difference in recombination rate between populations when there is 294 

in fact one). This decrease in the observed divergence between populations is again 295 

likely the outcome of the population-specific levels of LD becoming coupled/merged at 296 

moderate to high levels of gene flow, resulting in the populations exhibiting LD (and 297 

hence recombination rate estimates) intermediate to what would be expected in the 298 

absence of gene flow. 299 
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Figure 3 | The relationship between inferred recombination rate and the migration rate in simulated 300 

populations where recombination rate increases by a factor of two in one subpopulation. (A) Inferred 301 

recombination rates for individual simulations at varying levels of migration. Each plot shows inferred 302 

rates for simulation replicates (transparent lines) of population 1 (red, unchanged recombination) and 303 

population 2 (blue, increased recombination) for a single migration rate. Dashed lines show the expected 304 

inferred value in the absence of gene flow (inferred from Nem = 0). (B) Summarized inferred recombination 305 

rates (y-axis) for each level of migration (x-axis) from the simulations in A. Points are mean values and 306 
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error bars depict standard deviations (summarized across all generations). Dashed lines show the 307 

expected inferred value in the absence of gene flow for each population (i.e. the mean value for Nem = 0). 308 

(C) The inferred difference in recombination rate between population 1 and population 2 (p2 - p1) as a 309 

function of migration rate. Points and errors bars are as in B.  310 

Discussion 311 

Accurate estimates of recombination rate are key to understanding the causes and 312 

consequences of recombination rate variation in natural populations. With the 313 

increasing availability of genome-wide sequencing data, LD-based estimators of 314 

recombination rate have become widely used in a large variety of taxa. However, while 315 

gene flow is widely known to shape patterns of LD in populations, the effect of gene 316 

flow on LD-based estimators of recombination rate remains largely unexplored. Here, 317 

use forward-time simulations to show that (1) gene flow can introduce substantial bias 318 

into LD-based estimates of genome-wide recombination rate and (2) the nature of this 319 

bias depends on the demographic and evolutionary history of the populations in 320 

question. 321 

Our results here are consistent with theoretical predictions that gene flow between 322 

populations can affect LD: increasing in the magnitude and variance of LD at low 323 

migration rates as well as reducing LD via the “coupling effect” we observed at higher 324 

rates of gene flow. Our study shows how these predictions play out with modern 325 

methods and genomic data, and also provides a sense of the magnitude of the potential 326 

degree of misestimation - in our case, ranging from 20-50 percentage points in cases of 327 

moderate gene flow. For comparison, a recent study of population-level differences in 328 
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recombination rate in Drosophila pseudoobscura revealed genetically based 329 

interpopulation differences on the magnitude of approximately 10% measured using 330 

replicated linkage maps in each population (Samuk et al., 2020). Using LD-based 331 

estimators, an observed difference of this magnitude could be spuriously generated by 332 

modest levels of gene flow alone, or missed altogether due to coupling at higher level 333 

gene flow is high. In addition, the specific magnitude and direction of the bias 334 

introduced by gene flow is difficult to know without precise knowledge of the 335 

population/demographic histories of the populations in question. This should give 336 

pause to anyone planning on using LD-based methods to infer recombination rate in 337 

non-equilibrium populations.  338 

One key question is whether there are methods to control for or counteract the 339 

increased variance and/or biases in the estimation of recombination rate caused by gene 340 

flow. One approach could be to identify and remove introgressed haplotypes from 341 

datasets prior to inferring recombination rate, thereby removing migration-associated 342 

LD. This would require “pure” samples from the source populations, such that the 343 

population of origin could be assigned to haplotype blocks (Dias-Alves et al., 2018). 344 

However, this method would only work if gene flow is infrequent enough that coupling 345 

(of both LD and allele frequencies) has not occurred. The upward bias and increased 346 

variance in recombination rate that occurs as a result of coupling, together with the 347 

homogenization of allelic differences between populations at higher levels of gene flow 348 

will likely make a “filtering” scheme very difficult (perhaps impossible) to achieve. One 349 

approach may be to attempt to jointly estimate a demographic model along with 350 

population-specific recombination rates, as has been done with mutation rates (DeWitt 351 
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et al., 2021). However, given the existing complexity and uncertainty in inferring 352 

demographic models, we suspect it may be difficult to disentangle the complex 353 

interdependencies between gene flow, population size, and estimates of recombination 354 

rate.  355 

Together with previous work (Dapper & Payseur, 2018), our results suggest that LD-356 

based estimates of recombination rate need to be interpreted with great caution when 357 

studying non-equilibrium populations. Indeed, these methods are likely only 358 

appropriate when populations can be assumed to be evolving in the absence of any gene 359 

flow, and have reached a reasonable demographic equilibrium. However, it is now 360 

widely appreciated that gene flow is ubiquitous in natural populations (Ellstrand & 361 

Rieseberg, 2016; Waples & Gaggiotti, 2006). This may mean that many published LD-362 

based estimates of recombination rate are incorrect. Without empirical maps to 363 

compare existing LD-based estimates, it is difficult to say just how incorrect. What can 364 

be said is that the levels of gene flow required to introduce non-trivial biases into 365 

estimates of recombination rate, i.e. Nem ~1-10, are not uncommon in natural 366 

populations (Slarkin, 1985; Waples & Gaggiotti, 2006). It is also worth noting that it is 367 

not the case that two populations being studied have to be exchanging genes themselves 368 

(e.g. which would not the case when studying two reproductively different species), but 369 

just that one or more of the populations are exchanging genes with some other 370 

population (e.g. an unsampled population of the same species). 371 

If many LD-based estimates are incorrect, why do published LD-based estimates of 372 

recombination rate correlate well with direct estimates, e.g. from genetic maps? (Chan, 373 
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Jenkins, et al., 2012; Gil McVean & Auton, 2007; Smukowski Heil et al., 2015). There are 374 

several considerations. First, the correlations that have been reported are by no means 375 

perfect (e.g. ~Spearman’s Rho of 0.6: Smukowski-Heil et al. 2015; r2 = 0.37-63: Chan, 376 

Song, et al., 2012) and depend greatly on the genomic scale at which they are measured 377 

(Smukowski-Heil et al. 2015). Second, simple correlations between LD-based and 378 

empirical estimates cannot detect genome-wide differences in the estimates of 379 

recombination rate, such as those due to the coupling effects we observed. Such effects 380 

would be visible as differences in the intercept of a linear regression, rather than the R2, 381 

for example. Finally, the species where these correlations have been examined (humans 382 

and Drosophila melanogaster)  may meet the assumptions of demographic equilibrium 383 

more readily (Ochoa & Storey, 2019; Suvorov et al., 2021). While such assumptions may 384 

be reasonable for these populations, for which LD-based estimators were originally 385 

developed, they are much less likely to hold in many natural populations. Notably, they 386 

are likely rarely met in populations that have recently adaptively diverged in the 387 

presence of gene flow, which have lately been the subject of increased research interest 388 

(Linck & Battey, 2019; Ravinet et al., 2017). The equilibrium assumption is likely not 389 

valid in populations in which the recombination rate has recently changed (Brandvain & 390 

Wright, 2016), reducing the utility of these estimates for studying the rapid evolution of 391 

recombination rates. 392 

While we only focused on a single implementation of one type of LD-based estimator of 393 

recombination  (pyrho), it is likely that other population genetic methods will also suffer 394 

from the effects we describe here. LD is the “information” used by all estimators, either 395 

directly as in methods like LDjump (Hermann et al., 2019) or indirectly as in machine 396 
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learning methods like ReLERNN (Adrion, Galloway, et al., 2020). That said, in the case 397 

of the latter method, it may be possible to overcome some of the issues we’ve identified 398 

if the training datasets were simulated with an accurate demographic model. As such, 399 

the distorting effects of gene flow on LD need to be carefully considered when applying 400 

any statistical methods for inferring recombination rate approaches. We also stress that 401 

our simulations do not suggest that LD-based estimators and their implementations are 402 

wrong per se, but rather that the assumptions under which LD-based estimates are 403 

biologically accurate are readily violated by levels of gene flow and divergence common 404 

seen in natural populations. 405 

Conclusion 406 

Studying variation in recombination rate is difficult. LD-based methods for inferring 407 

recombination rate are attractive in their data requirements, but require strong 408 

assumptions to be met. As we have shown here, gene flow readily violates these 409 

assumptions and introduces biases and decreases in precision, in a variety of ways that 410 

are difficult to identify in a given study population. This is problematic because gene 411 

flow is extremely common in natural populations. How should we proceed? Rather than 412 

attempt to squeeze blood from the proverbial stone, we believe that the most 413 

straightforward solution to the problems we outline here is simply to prioritize the use 414 

of direct, empirical methods for measuring of recombination rate. This decision is made 415 

hopefully simpler with the increased ease and low cost of creating traditional linkage 416 

maps and performing gamete sequencing. That said, LD-based approaches remain 417 

important tools for hypothesis generation, and when paired with direct estimates of 418 
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recombination rate can provide a detailed picture of both the past and present 419 

landscape of recombination rates in natural populations. 420 
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Supplemental Material 591 

 592 
Figure S1 | Weir and Cockerham’s FST between simulated populations as a function of time in 593 
generations under various combinations of migration rate (columns, Nem) and isolation scenario (rows). 594 
Black lines are smoothed LOESS fits. Note the difference in y-axis scales between the rows. 595 
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