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Abstract

Accurate estimates of the rate of recombination are key to understanding a host of
evolutionary processes as well as the evolution of recombination rate itself. Model-
based population genetic methods that infer recombination rates from patterns of
linkage disequilibrium (LD) in the genome have become a popular method to estimate
rates of recombination. However, these LD-based methods make a variety of simplifying
assumptions about the populations of interest that are often not met in natural
populations. One such assumption is the absence of gene flow from other populations.
Here, we use forward-time population genetic simulations of isolation-with-migration
scenarios to explore how gene flow affects the accuracy of LD-based estimators of
recombination rate. We find that moderate levels of gene flow can result in either the
overestimation or underestimation of recombination rates by up to 20-50% depending
on the timing of divergence. We also find that these biases can affect the detection of
interpopulation differences in recombination rate, causing both false positive and false
negatives depending on the scenario. We discuss future possibilities for mitigating
these biases and recommend that investigators exercise caution and confirm that their

study populations meet assumptions before deploying these methods.

Introduction

Recombination rate, the number of crossovers per unit genome per generation, plays a
key role in shaping evolutionary processes and diversity in the genome. For example,
through the action of linked selection, local rates of recombination are a chief

determinant of patterns of genetic diversity throughout the genome (Begun & Aquadro,
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1992; Burri, 2017; Cutter, 2019; Haddrill et al., 2014; Korunes et al., 2021). Genome-wide
rates of recombination also modulate diverse processes such as adaptation, speciation,
and introgression (Dapper & Payseur, 2017; Samuk et al., 2017; Schumer et al., 2018;
Stapley et al., 2017). There is also a growing appreciation that recombination rate is
itself a trait that varies and evolves (Dumont & Payseur, 2008; Hunter et al., 2016;
Johnston et al., 2016; Ritz et al., 2017; Samuk et al., 2020; Stapley et al., 2017).
Accordingly, there has been great interest in efficient and accurate methods for

estimating recombination rates.

Current methods for estimating recombination rates fall into two broad classes of
methods: direct and indirect (Penalba & Wolf, 2020). Of the direct measures, the three
most popular approaches are linkage mapping, gamete sequencing, and cytological
methods. With classical linkage mapping, map distances between genetic markers are
measured by quantifying recombinant markers in the context of a genetic cross or
pedigree (Broman, 2010; Rastas, 2017). The resolution of this approach is limited only by
marker density and the sample size of individuals, but larger sample sizes can be
grueling to carry out in the laboratory or unavailable in some populations. Further,
identifying suitable diagnostic mapping markers can be limiting in some cases (e.g. in a
highly homozygous population, Broman, 2010). Direct sequencing of pools of
recombinant gamete genomes from single individuals using long/linked read
sequencing is a newer approach that alleviates many of the issues of traditional
mapping, but still requires differentiated markers to score crossover events between
homologous chromosomes (Dréau et al., 2019; Rommel Fuentes et al., 2019; Xu et al.,

2020). Cytological methods bypass this requirement by directly visualizing
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recombination-associated protein complexes in cell populations undergoing meiosis
(Peterson et al., 2019; Peterson & Payseur, 2021). However, cytological methods are
limited by the spatial resolution at which such visualization can occur (e.g. the

resolution of immunostained gamete karyotypes, Peterson et al., 2019).

Because all direct methods of measuring recombination rates are fairly laborious, there
has been increased interest in indirect measures of recombination rate that leverage
readily available population genetic data. Chief among these are model-based methods
that infer rates of recombination from patterns of linkage disequilibrium (LD), (Auton &
McVean, 2007; Chan, Song, et al., 2012; Kamm et al., 2016; Spence & Song, 2019). These
methods attempt to estimate recombination rates by statistically fitting recombination
rates (derived from population genetic models/simulations) to observed patterns of LD.
Rather than inferring recombination rate directly, LD-based estimators infer a
population scaled recombination rate, p = 4N.r, where N. is the effective population size
and r is the theoretical per-generation recombination rate. LD-based methods are
attractive because they (1) generally only require population-scale genomic data and (2)
are very fast, often only requiring several computational hours or less (Spence & Song,
2019) and (3) are informative of time-averaged population historical recombination rates
(Gil McVean & Auton, 2007). Accordingly, LD-based estimates of recombination rates
have become extremely popular, and now vastly outnumber direct measures in the
literature (Penalba & Wolf, 2020; Stapley et al., 2017). These methods have also begun to
be used to perform interpopulation comparisons of recombination rates (Pefialba &

Wolf, 2020; Stapley et al., 2017).
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Like all models, LD-based estimators of recombination rate make a variety of
simplifying assumptions about the populations of interest. For one, they generally
assume that the populations/loci of interest are evolving largely neutrally and have
reached population genetic equilibrium in a number of ways (Stumpf & McVean, 2003).
In particular, most methods assume that the populations being studied have reached an
equilibrium between recombination and population scaled mutation, such that LD
accurately reflects patterns of recombination rate (G. McVean, 2007). Further, it is
generally assumed that any form of selection that might distort patterns of LD (e.g.
sweeps) has not recently occurred (Chan, Song, et al., 2012). Finally, these methods make
the general assumption that demographic processes that distort genome-wide patterns
of LD, such as population size changes, have not occurred (recall that p is directly

dependent on N, Auton & McVean, 2007).

While some of these assumptions may be robust to violation, work has shown that some
violations can result in biased estimates. For example, (Dapper & Payseur, 2018) showed
that recombination estimates from LDhat (Gil McVean & Auton, 2007) are highly
sensitive to changes in population size. This can be ameliorated in some cases by
incorporating known changes in population size into the estimation procedure, such as

implemented in the software pyrho (Spence & Song, 2019).

Along with changes in population size and selection, another process that can greatly
alter patterns of LD is gene flow. Gene flow and subsequent admixture between
diverged populations can have complex effects on patterns of LD within each

population (Nei & Li, 1973; Ohta, 1982). These effects range from large and genomically
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variable increases in LD due to segregation of divergent haplotypes, to genome-wide
decreases in LD as populations become coupled and increase local N. (Nei & Li, 1973;
Ohta, 1982). While it is now widely accepted that gene flow is commonplace in natural
populations (Barton, 2008; Mallet, 2005; Suvorov et al., 2021; Waples & Gaggiotti, 2006),
and there has not been a systematic study of the effects of gene flow on LD-based
measures of recombination. Further, it remains unclear how gene flow (or any other
violation of assumptions) impacts our ability to detect differences in recombination rate

between (as opposed to within) populations using LD-based methods.

Here, we address these issues using forward-time population genetic simulations. We
attempt to answer two specific questions. First, how does gene flow between
populations affect the precision and accuracy of LD-based estimates of recombination
rate within populations? Secondly, how does gene flow affect our ability to detect
evolved differences in recombination rate between populations? Our primary goal is to
answer these questions in the context of a core set of realistic demographic scenarios,
and not perform an exhaustive exploration of parameter space. Overall we hope to help
investigators understand key sources of bias in LD-based estimates of recombination

rate in natural populations and highlight areas of future development.

Methods

Code availability

All scripts used in the analyses described below are available as a repository on Github

(http://github.com/ksamuk/LD_recomb).
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Forward time simulations with SLiM

To explore how the timing and amount of gene flow affect estimates of recombination
rate, we performed forward-time population genetic simulations using SLiM version 3.3
(Haller & Messer, 2019). The basic form of all the simulations was an isolation-with-
migration scenario: a single ancestral population diverges into two subpopulations with
a static amount of bidirectional gene flow (Figure 1). Populations were composed of
diploid individuals with 100kb genomes arranged in a single chromosome. We used
genome-wide average estimates of effective population size, mutation rate, and
empirical recombination rate from natural populations of Drosophila melanogaster
(Adrion, Cole, et al., 2020): Mutation rate = 5.49x10” (Li & Stephan, 2006); Recombination
rate = 2.23x108, (average of chromosome 2R, Comeron et al., 2012); N. = 1.72M (Li &
Stephan, 2006). Recombination and mutation rates were conservatively modeled as
uniform across the 100kb genome. Following standard practice for forward-time
simulations, all simulations were run with an in silico population size of N=1000, and
simulated mutation and recombination rates scaled by a factor of N/N as per the SLiM
manual (Haller & Messer, 2019). Note that generation times are also subject to scaling,
and for simplicity, we will refer to all generations in terms of back-transformed actual
generations rather than SLiM generations (1 SLiM generation » 1751 actual generations

with our scaling factor).

Parameter space

To explore how variation in gene flow affects estimates of recombination, we varied the
amount of gene flow over five orders of magnitude: 0, 0.01, 0.1, 1, 10, 100, in standard

units of N.m (the product of the effective population size and the migration rate). These
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values were chosen to encompass total isolation (N.m = 0), limited gene flow (N.m =
0.01-0.1), moderate gene flow in interconnected metapopulations (N.m = 1-10, Morjan &
Rieseberg, 2004; Waples & Gaggiotti, 2006), and a scenario of a nascent hybrid swarm
(Nem = 100). We also varied the timing of the onset of gene flow, with gene flow
beginning either immediately after divergence or after a period of isolation. We
performed preliminary simulations to determine a period of isolation (~1.7M
generations in our case) that produced levels of genomic divergence (Figure S1) similar
to those observed in natural population pairs that exhibit genome-wide genetic
divergence but still actively exchange genes (Fsr ~ 0.4, Morjan & Rieseberg, 2004; Roux
et al., 2016). Finally, to explore how gene flow impacts the detection of population
differences in recombination rate, we modeled scenarios where recombination rate either
remains constant in both subpopulations or instantaneously increases by a factor of 2 at
the time of divergence in one of the two subpopulations (always subpopulation two).
This magnitude of this difference is well within the range of variation in recombination
rate reported for a wide variety of species (Stapley et al., 2017). In biological terms, an
instantaneous increase in population recombination rate could be readily mediated by
an environmental change (e.g. temperature, Lloyd et al., 2018) or via a change in mating
system (Brandvain & Wright, 2016). We note that this instantaneous change is a “best
case” scenario for detecting interpopulation differences in recombination rate, and thus
any loss of power to detect differences in recombination that occurs due to gene flow

will be conservative.
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Figure 1 | The structure of the forward-time simulations performed in SLiM. Time in back-transformed
generations is shown along the x-axis, and the populations in existence at a given time are shown as
rectangles. p.nc = the ancestral population, p; = the subpopulation with unchanged recombination rate, and
p2 = the subpopulation with increased recombination rate (if applicable). Effective population sizes (N.)
and recombination rates (c, in units of cM/Mb) are shown for each population, with the values for the
subpopulations shown relative to the ancestral value. Variable elements of the simulation are shown in
braces. Time in generations post-divergence is indicated below the plots, with the pre-contact isolation
period in (B) shown as a dotted line preceding the main axis. Sample periods indicate intervals at which

genotypes were output for analysis.

Details of demographic events

Each simulation began with a single population of size Nea., which evolved for a 35M
generation burn-in period (following the general practice of a 10-20 N. burn-in period,
Haller & Messer, 2019). This initial period was followed by divergence into two
subpopulations, each with size Nean/2. Gene flow (for cases where N.m > 0) began
immediately at the time of divergence or after a 1.7M generation period of isolation and

was symmetrical in magnitude and bidirectional. Changes in recombination rate
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occurred at the time of divergence and instantaneously applied to all individuals in

subpopulation two only.

Starting at the time of divergence and thereafter in intervals of 1751 generations, we

collected a random sample of 25 individuals (a total of 50 haploid genomes) from each
population and saved their complete genotypic at all sites in VCF format. We stopped
the simulations after 51 000 generations. Each parameter combination was replicated

100 times, for a total number of ~n=48 000 population samples.

Estimation of recombination rate using pyrho

While there are a variety of LD-based estimators of recombination rate, we elected to
use pyrho (Spence & Song, 2019) for estimation in this study. It shares its statistical
foundation with the most widely used LD-based estimators (LD-hat & LD-helmet; Chan,
Jenkins, et al., 2012; Gil McVean & Auton, 2007) while also having the ability to account
for changes in effective population size such as we are modeling here (Spence & Song,
2019). As such, any estimation biases caused by gene flow will likely affect those
approaches as least as much they affect pyrho. Direct comparisons with other methods
are complicated by the fact that pyrho is the only model-based method that adequately
accounts for changes in effective population (ReLERNN being a possible exception

Adrion, Galloways, et al., 2020)

We followed the recommended practices for inferring recombination rate using pyrho
(https://github.com/popgenmethods/pyrho). We parameterized the initial lookup tables

using the effective population size and mutation rates used in the simulations (unscaled


https://doi.org/10.1101/2021.09.26.461846
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.26.461846; this version posted September 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

in this case). To account for changes in effective population size, we created lookup
tables that accounted for a change of N/2 (1.72M to 8.6M) in time steps of 1751
generations in the past. This allowed us to have an appropriately timed lookup table for
each step of the simulation. We used the built-in methods to infer the hyperparameters
of window size (best fit 100) and block penalty (best fit 1000). Using this baseline, we
inferred recombination rates using the genotype data (VCF format) from both
subpopulations at each time point, for a total of ~96 000 pyrho fits. All computation was

performed using the Duke University Computing Cluster, running CentOS Version 8.

Statistical analyses

We performed all data processing and visualization using the tools of the tidyverse
package in R 4.0.3 (R Core Team, 2018; Wickham, 2017). To examine how gene flow
between populations affects the accuracy of LD-based estimates of recombination, and
the context of the various factors explored in our simulations, we performed an analysis
of variance using a linear mixed model with Gaussian errors fitted via the Imer()
function from the Ime4 package (Bates et al., 2007). This model had the following form:
Recombination rate = (1|simulation replicate) + (1|simulation generation) + gene flow
magnitude + recombination rate change, where (1|[factor]) denotes a random intercept
and “:” denotes an interaction. All variables were standardized (mean-centered and
scaled by standard deviation) prior to analysis. To simplify interpretation, we fitted

separate models for the continuous gene flow and secondary contact scenarios.

10
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Results

Inference when recombination rate is identical between populations

When the recombination rate remained constant between diverging populations, we
found that gene flow introduced two types of systematic biases in estimates of
recombination rate within populations (Figure 2A). These effects began when Nem >=1
in both the continuous gene flow and secondary contact models. First, in the model of
continuous gene flow, when N.m >= 1, we observed a systematic increase (overestimate)
in estimated rates of recombination in both populations (Figure 2A, 2B, top row, N.m =
1-100). This increase was statistically significant (Type III Wald chi-square = 5090.07, p <
2.0x107%; coefficient for gene flow = 0.63-0.67 (95% CI), t(19495) = 71.34, p < 0.001). When
the migration rate was moderate to high (N.m 10-100), the recombination rate was
overestimated by approximately 10-20% (Figure 2B). This effect is consistent with
migration causing the populations to become coupled, behaving as a single population
with a larger Ne and thus inflating the population-scaled estimate of recombination

rate.

In contrast to the continuous gene flow case, under a model of secondary contact, there
was a marked systematic decrease (underestimate) of recombination rates, which also
became visible when N.m >=1 (Figure 2A, 2B, bottom row, N.m = 1-100). This decrease
was statistically significant (Type III Wald chi-square = 1512, p < 2.2x107'%; coefficient for
gene flow = -(0.54-0.49) (95% CI), t(31846) = -38.88, p < 0.001). The magnitude of this
decrease was substantial: on average, populations experiencing Nem = 1 had

recombination rates about 20% lower than expected, with this increasing to 50% when

11
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Nem = 10 or higher (Figure 2A, Figure 2B). This decrease was accompanied by a
statistically significant increase in the variance of recombination rate estimates,
especially for Nem = 1-10 compared to Nem <1 (Fig 2A, bottom row; F-test for
equivalency of variance, F(10429,13860) = 0.20863, p< 2.2x107%). A systematic increase in
the mean and variance of LD within populations is consistent with allele frequency
differences between populations manifesting as migration-associated LD, and deflating
estimates of recombination rate. When gene flow was very high, there was a visible
recovery of estimated recombination rates (Figure 2A, bottom row, N.m = 100),
presumably due to migration homogenizing allele frequencies and increased effective
population sizes increasing the rate at which recombination breaks down migration-

associated LD.

When comparing recombination rates between p; and pz, the “coupling” bias observed
in the continuous migration scenario did not appear to systematically affect the ratio of
recombination rate between the two populations (Figure 2C, Continuous Migration).
However, in keeping with the previous result, migration-associated LD in the secondary
contact model appeared to greatly increase the variance in the ratio of recombination

rates between populations when N.m >= 1 (Figure 2C, Secondary Contact).

Inference when recombination rate differs between populations

When recombination rates diverged between populations, we also observed the two
forms of bias described above (Figure 3). The estimates from the continuous gene flow
scenario exhibited a statistically significant increase (Type III Wald chi-square =

8936.44, p < 2.2x107'%; coefficient for gene flow =0.65-0.67 (95% CI), t(19495) = 94.53, p <

12
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0.001) whereas estimates from the secondary contact model exhibited a statistically
significant decrease (Type III Wald chi-square = 1512, p < 2.0x107'; coefficient for gene
flow = -(0.27-0.22) (95% CI), t(34505) = -23.22, p < 0.001). However, the results differed
from simulations with constant recombination rates in a number of important ways.
First, there was a clear difference between the continuous migration and secondary
contact models in the overall trajectory in the population-specific estimates of
recombination rate (Figure 3A). In the continuous gene flow models, there was an
overall positive trend for the estimates of recombination rate in p. even in the absence
of gene flow (Figure 3A, continuous migration). This was presumably caused by a lag in
the establishment of equilibrium levels of LD within p; that reflect the new
recombination rate (which spontaneously changed at the time of divergence). This lag
resulted in the recombination rate in p; being consistently underestimated (because it
had not reached its new equilibrium), in addition to the coupling effect observed
previously (Figure 3B and 3C, continuous migration).In the case of the secondary
contact model, we did not observe the same positive trend for recombination rate
estimates in p,, likely because the isolation period (1.7M generations) was sufficiently
long enough for p; to establish an equilibrium level of LD prior to secondary contact

(Figure 3A, Secondary Contact).

13
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Figure 2 | The relationship between inferred recombination rate and the migration rate in simulated

populations where recombination rate remains constant in both subpopulations. (A) Inferred

recombination rates for individual simulations at varying levels of migration. Each plot shows inferred

rates for simulation replicates (transparent lines) of population 1 (red, unchanged recombination) and

population 2 (blue, increased recombination) for a single migration rate. Dashed lines show the expected

inferred value in the absence of gene flow (inferred from N.m = 0). (B) Summarized inferred recombination

rates (y-axis) for each level of migration (x-axis) from the simulations in A. Points are mean values and
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error bars depict standard deviations (summarized across all generations). Dashed lines show the
expected inferred value in the absence of gene flow for each population (i.e. the mean value for Nem = 0).
(C) The inferred difference in recombination rate between population 1 and population 2 (p; - p;) as a

function of migration rate. Points and errors bars are as in B.

In keeping with the scenario with constant recombination rates, starting at Nem ~ 1,
migration-associated LD resulted in the systematic underestimation and increase in
variance for estimated recombination rates within both p; and p; (Figure 3B, Secondary
Contact; Type III Wald chi-square = 538.97, p < 2.0x107; coefficient for gene flow = -
(0.27-22) (95% CI), t(34505) = -23.22, p < 0.001; F-test for equivalency of variance,
F(7734,13579) = 0.2174, p< 2.2x107). In addition, the observed divergence in
recombination rate between p; and p; (which was always expected to be +2 cM/Mb)
decreased with increasing levels of gene flow (Figures 3B and 3C, Secondary Contact).
This effect would likely result in an increase in false negatives with increasing gene
flow (i.e. finding no difference in recombination rate between populations when there is
in fact one). This decrease in the observed divergence between populations is again
likely the outcome of the population-specific levels of LD becoming coupled/merged at
moderate to high levels of gene flow, resulting in the populations exhibiting LD (and
hence recombination rate estimates) intermediate to what would be expected in the

absence of gene flow.

15


https://doi.org/10.1101/2021.09.26.461846
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.26.461846; this version posted September 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

((a) )
— Allopatry — Gene Flow
N,m —— 0 0.01 1 10 100
_8 n
LT T S
_8 n =
=5 4x10 %
2 3x1078- ‘: ‘ ‘: &
3 8 5
S 2x10°8- S
® -8 9
S 1x107° 5
g
E 5
§ 5x107°4 @
7710 T | | - 8
% 4x10 * 7 a2
£ 3x10% 3
] 2
£ _g | | | | m——— 0
£ 2x107% S
_8 E;
1x10 "7 a
T T T T T T T T T T T T T T T T T T T T T T T T
0O 10 20 30 0 10 20 300 10 20 300 10 20 300 10 20 300 10 20 3
Generations post Generations post resumption
divergence (1000s) of gene flow (1000s)
Y it
/(B) POP2 E‘XPECTED \\ /(-c} -‘\
3 2.0-___________________*___ 9 EXPECTED DIFFERENCE 9
o El | ) S, e SR TR RO BTy e =
154 g 20 2
E 2 2
c & 1.6 @
g 107~ T 2 = <
— POP1 EXPECTED %1:: 2 § 1.2 4 E
L 0.5 4 o, sS * o,
& 5 |83 =
g £
= [ag=3 -
e £ |38 g
T g Ed S
g s €% 5
~ < — & ~
- T T T T T T T T T T T T
8] B N N O Q N " N O
RGN X & P P
\_ Migration Rate (N_m) J A\ Migration Rate (N_m) Y,

Figure 3 | The relationship between inferred recombination rate and the migration rate in simulated

populations where recombination rate increases by a factor of two in one subpopulation. (A) Inferred

recombination rates for individual simulations at varying levels of migration. Each plot shows inferred

rates for simulation replicates (transparent lines) of population 1 (red, unchanged recombination) and

population 2 (blue, increased recombination) for a single migration rate. Dashed lines show the expected

inferred value in the absence of gene flow (inferred from N.m = 0). (B) Summarized inferred recombination

rates (y-axis) for each level of migration (x-axis) from the simulations in A. Points are mean values and
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error bars depict standard deviations (summarized across all generations). Dashed lines show the
expected inferred value in the absence of gene flow for each population (i.e. the mean value for Nem = 0).
(C) The inferred difference in recombination rate between population 1 and population 2 (p2 - p;) as a

function of migration rate. Points and errors bars are as in B.

Discussion

Accurate estimates of recombination rate are key to understanding the causes and
consequences of recombination rate variation in natural populations. With the
increasing availability of genome-wide sequencing data, LD-based estimators of
recombination rate have become widely used in a large variety of taxa. However, while
gene flow is widely known to shape patterns of LD in populations, the effect of gene
flow on LD-based estimators of recombination rate remains largely unexplored. Here,
use forward-time simulations to show that (1) gene flow can introduce substantial bias
into LD-based estimates of genome-wide recombination rate and (2) the nature of this
bias depends on the demographic and evolutionary history of the populations in

question.

Our results here are consistent with theoretical predictions that gene flow between
populations can affect LD: increasing in the magnitude and variance of LD at low
migration rates as well as reducing LD via the “coupling effect” we observed at higher
rates of gene flow. Our study shows how these predictions play out with modern
methods and genomic data, and also provides a sense of the magnitude of the potential
degree of misestimation - in our case, ranging from 20-50 percentage points in cases of

moderate gene flow. For comparison, a recent study of population-level differences in
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recombination rate in Drosophila pseudoobscura revealed genetically based
interpopulation differences on the magnitude of approximately 10% measured using
replicated linkage maps in each population (Samuk et al., 2020). Using LD-based
estimators, an observed difference of this magnitude could be spuriously generated by
modest levels of gene flow alone, or missed altogether due to coupling at higher level
gene flow is high. In addition, the specific magnitude and direction of the bias
introduced by gene flow is difficult to know without precise knowledge of the
population/demographic histories of the populations in question. This should give
pause to anyone planning on using LD-based methods to infer recombination rate in

non-equilibrium populations.

One key question is whether there are methods to control for or counteract the
increased variance and/or biases in the estimation of recombination rate caused by gene
flow. One approach could be to identify and remove introgressed haplotypes from
datasets prior to inferring recombination rate, thereby removing migration-associated
LD. This would require “pure” samples from the source populations, such that the
population of origin could be assigned to haplotype blocks (Dias-Alves et al., 2018).
However, this method would only work if gene flow is infrequent enough that coupling
(of both LD and allele frequencies) has not occurred. The upward bias and increased
variance in recombination rate that occurs as a result of coupling, together with the
homogenization of allelic differences between populations at higher levels of gene flow
will likely make a “filtering” scheme very difficult (perhaps impossible) to achieve. One
approach may be to attempt to jointly estimate a demographic model along with

population-specific recombination rates, as has been done with mutation rates (DeWitt
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et al., 2021). However, given the existing complexity and uncertainty in inferring
demographic models, we suspect it may be difficult to disentangle the complex
interdependencies between gene flow, population size, and estimates of recombination

rate.

Together with previous work (Dapper & Payseur, 2018), our results suggest that LD-
based estimates of recombination rate need to be interpreted with great caution when
studying non-equilibrium populations. Indeed, these methods are likely only
appropriate when populations can be assumed to be evolving in the absence of any gene
flow, and have reached a reasonable demographic equilibrium. However, it is now
widely appreciated that gene flow is ubiquitous in natural populations (Ellstrand &
Rieseberg, 2016; Waples & Gaggiotti, 2006). This may mean that many published LD-
based estimates of recombination rate are incorrect. Without empirical maps to
compare existing LD-based estimates, it is difficult to say just how incorrect. What can
be said is that the levels of gene flow required to introduce non-trivial biases into
estimates of recombination rate, i.e. Nem ~1-10, are not uncommon in natural
populations (Slarkin, 1985; Waples & Gaggiotti, 2006). It is also worth noting that it is
not the case that two populations being studied have to be exchanging genes themselves
(e.g. which would not the case when studying two reproductively different species), but
just that one or more of the populations are exchanging genes with some other

population (e.g. an unsampled population of the same species).

If many LD-based estimates are incorrect, why do published LD-based estimates of

recombination rate correlate well with direct estimates, e.g. from genetic maps? (Chan,
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Jenkins, et al., 2012; Gil McVean & Auton, 2007; Smukowski Heil et al., 2015). There are
several considerations. First, the correlations that have been reported are by no means
perfect (e.g. ~Spearman’s Rho of 0.6: Smukowski-Heil et al. 2015; r? = 0.37-63: Chan,
Song, et al., 2012) and depend greatly on the genomic scale at which they are measured
(Smukowski-Heil et al. 2015). Second, simple correlations between LD-based and
empirical estimates cannot detect genome-wide differences in the estimates of
recombination rate, such as those due to the coupling effects we observed. Such effects
would be visible as differences in the intercept of a linear regression, rather than the R?
for example. Finally, the species where these correlations have been examined (humans
and Drosophila melanogaster) may meet the assumptions of demographic equilibrium
more readily (Ochoa & Storey, 2019; Suvorov et al., 2021). While such assumptions may
be reasonable for these populations, for which LD-based estimators were originally
developed, they are much less likely to hold in many natural populations. Notably, they
are likely rarely met in populations that have recently adaptively diverged in the
presence of gene flow, which have lately been the subject of increased research interest
(Linck & Battey, 2019; Ravinet et al., 2017). The equilibrium assumption is likely not
valid in populations in which the recombination rate has recently changed (Brandvain &
Wright, 2016), reducing the utility of these estimates for studying the rapid evolution of

recombination rates.

While we only focused on a single implementation of one type of LD-based estimator of
recombination (pyrho), it is likely that other population genetic methods will also suffer
from the effects we describe here. LD is the “information” used by all estimators, either

directly as in methods like LDjump (Hermann et al., 2019) or indirectly as in machine
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learning methods like ReLERNN (Adrion, Galloway, et al., 2020). That said, in the case
of the latter method, it may be possible to overcome some of the issues we’ve identified
if the training datasets were simulated with an accurate demographic model. As such,
the distorting effects of gene flow on LD need to be carefully considered when applying
any statistical methods for inferring recombination rate approaches. We also stress that
our simulations do not suggest that LD-based estimators and their implementations are
wrong per se, but rather that the assumptions under which LD-based estimates are
biologically accurate are readily violated by levels of gene flow and divergence common

seen in natural populations.

Conclusion

Studying variation in recombination rate is difficult. LD-based methods for inferring
recombination rate are attractive in their data requirements, but require strong
assumptions to be met. As we have shown here, gene flow readily violates these
assumptions and introduces biases and decreases in precision, in a variety of ways that
are difficult to identify in a given study population. This is problematic because gene
flow is extremely common in natural populations. How should we proceed? Rather than
attempt to squeeze blood from the proverbial stone, we believe that the most
straightforward solution to the problems we outline here is simply to prioritize the use
of direct, empirical methods for measuring of recombination rate. This decision is made
hopefully simpler with the increased ease and low cost of creating traditional linkage
maps and performing gamete sequencing. That said, LD-based approaches remain

important tools for hypothesis generation, and when paired with direct estimates of
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recombination rate can provide a detailed picture of both the past and present

landscape of recombination rates in natural populations.
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Figure S1 | Weir and Cockerham’s FST between simulated populations as a function of time in
generations under various combinations of migration rate (columns, N.m) and isolation scenario (rows).

Black lines are smoothed LOESS fits. Note the difference in y-axis scales between the rows.
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