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Summary

Malignant Pleural Mesothelioma (MPM) is an aggressive cancer with rising incidence and

challenging clinical management. Using the largest series of whole-genome sequencing data

integrated with transcriptomic and epigenomic data using multi-omic factor analysis, we

demonstrate that MPM heterogeneity arises from four sources of variation: tumor cell

morphology, ploidy, adaptive immune response, and CpG island methylator phenotype. Previous

genomic studies focused on describing only the tumor cell morphology factor, although we

robustly find the three other sources in all publicly available cohorts. We prove how these

sources of variation explain the biological functions performed by the cancer cells, and how

genomic events shape MPM molecular profiles. We show how these new sources of variation

help understand the heterogeneity of the clinical behavior of MPM and drug responses

measured in cell lines. These findings unearth the interplay between MPM functional biology

and its genomic history, and ultimately, inform classification, prognostication and treatment.

Keywords

Malignant Pleural Mesothelioma; genome; transcriptome; epigenome; heterogeneity;

classification; tumor evolution; cancer task
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Introduction

Malignant Pleural Mesothelioma (MPM) is a poorly-understood, rare, and aggressive disease

associated with asbestos exposure (Carbone et al., 2019). The current WHO classification

distinguishes three major histological types: epithelioid (MME), biphasic (MMB), and

sarcomatoid (MMS) (IARC/WHO, 2015). In the past decade, knowledge on the molecular profile

of MPM has rapidly expanded, owing to cohorts combining whole-exome sequencing,

transcriptomic, and epigenomic data (Bueno et al., 2016; Hmeljak et al., 2018; de Reyniès et al.,

2014). These genomic studies uncovered molecular profiles (clusters) related to MPM’s

histopathological classification. Additional studies revealed a molecular continuum of types that

explained the prognosis of the disease more accurately than discrete clusters (Alcala et al.,

2019a; Blum et al., 2019). The clinical impact of these important findings has been limited by

the vast morphological (Nicholson et al., 2020) and molecular heterogeneity of MPM

(Fernandez-Cuesta et al., 2021), which remains largely unexplained. Several additional

histopathological and molecular features have been described, such as variations between

epithelioid histological subtypes (Nicholson et al., 2020), variable immune infiltration (Alcala et

al., 2019a), and large-scale genomic aberrations such as aneuploidy (Hmeljak et al., 2018), and

structural rearrangements (Mansfield et al., 2019). As new treatment opportunities are being

made available, such as antiangiogenic agents and immunotherapies, with unpredictable

benefits at the individual patient level, a better understanding of these aspects is mandatory.

Malignant transformation and cancer development depend on genomic aberrations that

can result in a wide range of molecular profiles, and provide actionable treatment targets

(Cortés-Ciriano et al., 2020; PCAWG Consortium, 2020; Quinton et al., 2021). Genomic events

have not been fully described in MPM as previous efforts have been restricted to profiling only

exomes or a reduced representation of genomes (Bueno et al., 2016; Hmeljak et al., 2018; de

Reyniès et al., 2014). There is also a lack of comprehensive integrative analyses examining how

molecular features affecting multiple omic layers, in particular genomic aberrations, interact to

generate the observed heterogeneous tumor phenotypes. Biological functions performed by

tumor cells, and the role of genomic events in shaping these functions remain largely unknown,

hindering any meaningful progress in the diagnosis, classification, and treatment of the disease.

We have designed the MESOMICS study (http://rarecancersgenomics.com/mesomics/)

to dissect MPM tumor heterogeneity, uncover its main sources of molecular variation, and

identify its underlying biological functions. We characterize the impact of genomic aberrations

on these biological functions, and use them to identify potential therapeutic opportunities. We

performed multi-omics analyses combining genomic, transcriptomic, and epigenomic data, with

detailed clinical and histopathological annotations, providing the most complete profile of MPM

to date, avoiding blindspots in sources of variation. Taking advantage of the first cohort-level
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whole-genome sequencing data of 115 tumors, in addition to 109 transcriptomes, 119

epigenomes, and 13 multi-region samples, we mapped the genomic landscape of 120

mesotheliomas and characterized its implications for the molecular profiles. Replicating our

findings in MPM cell lines previously tested for multiple drugs allowed us to identify therapeutic

vulnerabilities across the spectrum of MPM heterogeneity.

Integrative multi-omics analyses uncover three novel axes of molecular variation

To find the major independent molecular profiles underlying MPM heterogeneity, and infer

associations between omics layers, we performed a Multi-Omics Factor Analysis (MOFA)

(Argelaguet et al., 2020) including genomic, transcriptomic, and epigenomic data. MOFA

identified four latent factors (LFs) explaining individually more than 10% of molecular variation

(Figures 1A and S1A-G; Table S2). We found features from all omics layers associated with each

LF, and only one, LF2, associated with the current WHO histopathological classification, the

recent artificial intelligence score based on digital pathology (Courtiol et al., 2019), and the

previously proposed molecular classifications (maximum q-value = 2.57×10-10; Figure 1B;

Alcala et al., 2019; Blum et al., 2019; Bueno et al., 2016; Hmeljak et al., 2018; de Reyniès et al.,

2014). This data suggests that these LFs inform interactions between omics layers, and capture

novel molecular profiles.

LF1, largely explained by copy number variants (CNVs), ranged from a genomic

near-haploidization (GNH) sample to whole-genome doubled (WGD) samples (q-value =

3.3×10-35; Figure 1C). Aneuploidy was previously reported in the TCGA’s MPM cohort (Hmeljak

et al., 2018), now captured by this axis. We found LF1 strongly correlated with ploidy (r = 0.90)

and named it the Ploidy factor. As described below, LF2 summarizes the current knowledge on

the molecular profiles of histological types (Figure 1A-B), and we therefore named LF2 the

Morphology factor. Also described below, LF3 summarizes immune infiltration with adaptive

response effectors (lymphocytes), separating “hot” (high infiltration, in particular of effector

cells) from “cold” phenotypes (low immune infiltration), and was named the Adaptive-response

factor (Figure 1A). For these two factors, enhancer methylation was the major omic contributor

(explaining about half of the variance of LF2 and LF3; Figure 1A). This is partly explained by

enhancer methylation implication in the Invasion-and-tissue-remodeling phenotype (see

below), and its variability in MPM likely driven by cell-type heterogeneity (tumour cell type and

immune cell type mixtures; Figure S1H-J; Table S2). The major contribution to LF4 came from

methylation at gene body and promoter regions, and most of its molecular variation was

strongly associated with the CpG island methylator phenotype (CIMP) index (q-value =

3.2×10-35; Figure 1D), thus we named it the CIMP factor.
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Gene expression variation is mainly captured by the interdependent Morphology and

Adaptive-response factors. Looking at these factors through the lens of multi-task theory

(Hausser and Alon, 2020) provided a map of the biological functions performed by MPM cells,

and the degree to which tumours specialize in each function. Interdependence between

molecular axes occurs when tumor cells implement trade-offs between different tasks

(Hatzikirou et al., 2012). Such trade-offs are expected to leave a specific footprint in omics data,

where values in one axis are constrained by values in a second axis, forming specific geometric

shapes named the “Pareto front” (such as triangles, or tetrahedra; Hausser et al., 2019). In the

case of MPM, samples formed a robust triangle within the LF2 and LF3 space, demonstrating a

significant trade-off between three tasks corresponding to the extreme profiles captured by LF2

and LF3 (Pareto fit model p-value = 0.001; upper left panel, Figure 1E). The projection of

samples within this triangular Pareto front provides a map of MPM task specialization, where

vertices, known as phenotypic archetypes, correspond to task specialists, and the center to

multi-tasks generalists (central panel, Figure 1E).

Archetype 1 (Arc-1) corresponds to the Cell division phenotype, with tumors closest to

Arc-1 displaying upregulation of pathways within the universal “cell division” task (Hatzikirou et

al., 2012) identified through Integrative Gene-Set Enrichment Analysis (IGSEA; maximum

q-value = 3.8×10-2; Figure 1F first row; Table S3). This archetype was enriched for sarcomatoid

tumors and biphasics with a large sarcomatoid component, with samples presenting higher

levels of necrosis, higher grade, and greater percentage of infiltrating neutrophils (maximum

q-value = 2.29×10-2). Arc-1 was associated with high expression levels of the proliferation

marker MKI67, and increased genomic instability (estimated from genomic, transcriptomic and

epigenomic data; maximum q-value = 0.001). Arc-2 is the Tumor-immune-interaction

phenotype as supported by upregulated immune-related pathways identified with IGSEA

(maximum q-value = 3.1×10-2; Figure 1F second row; Table S3), and high immune infiltration

with an enrichment for adaptive-response cells: lymphocytes B, T-CD8+, and T-reg (maximum

q-value = 3.11×10-9). Arc-3 was named the Acinar phenotype upon its enrichment in samples of

this epithelioid subtype, and the few upregulated pathways based on IGSEA (Acinar association

q-value = 0.009; Figure 1F third row; Table S3). In line with the better prognosis reported for

this subtype (Nicholson et al., 2020), the Acinar phenotype is characterized by the highest levels

of global methylation (q-value = 3×10-10); global hypomethylation is a characteristic of many

cancers and is known to occur during rapid cell division and growth (Shipony et al., 2014). The

Cell-division and Tumor-immune-interaction phenotypes showed common enrichment for

pathways in the Invasion-and-tissue-remodeling universal cancer task (maximum q-value =

4.09×10-2; Figure 1F fourth row; Table S3). We also observed a higher

Epithelial-to-Mesenchymal Transition (EMT) score amongst tumors closest to these phenotypes,
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driven by upregulation of mesenchymal genes and hypomethylation of their associated

enhancers (maximum q-value = 6.22×10-5). In MPM, in vitro studies have shown that asbestos

may induce EMT (Turini et al., 2019) and in line with this, we found a positive correlation

between mesenchymal genes expression and asbestos exposure score, and a negative

correlation between mesenchymal gene enhancer methylation and asbestos exposure score

(Pearson’s correlation coefficient r = 0.44, q-value = 0.01, and r = -0.33, q-value = 0.02,

respectively). The Cell-division and the Acinar phenotypes were both correlated with the

presence of innate immune response cells, but of different individual types: neutrophils for the

Cell-division phenotype, and monocytes and NK cells for the Acinar phenotype.

Multi-regional sequencing reveals variable intra-tumoral heterogeneity in the Morphology,

Adaptive-response, and CIMP factors

Using a multi-regional sub-cohort from 13 patients, we inferred intra-tumoral heterogeneity

(ITH) in MPM (Table S4) and observed that ITH can be greater than inter-tumoral heterogeneity

in all molecular axes except the Ploidy factor (Figures 2A and S2A), and affected most omic

layers except the genome (Figure S2B-C). This heterogeneity matched pathological annotations

and impacted tumor specialization, that is, movement within the Pareto front (Figure 2B, arrow

length corresponding to task specialization ITH matches arrow width, corresponding to

histopathological ITH). Interestingly, ITH detected along the Morphology factor is driven by two

alternative sources: the tumor cell morphology, as observed in between-region variation in EMT

score (sample MESO_002, Figure 2C, left) and the innate immune response, as observed in

between-region variation in the difference between neutrophil and monocytes and NK cells

(sample MESO_052, Figure 2C, right). In general, the strongest ITH was due to different

immune infiltration profiles, including the small changes in innate response cell compositions

(7%) shown in Figure 2C and stronger changes in adaptive immune response cell proportions

(in particular macrophages M1; Figure 2D). Substantial ITH in the CIMP index was also found in

three out of the 13 patients (Figure 2E), either in conjunction with regional differences in

histopathological type, immune infiltration, or no detectable difference.

WGS uncovers a heterogeneous genomic landscape and characteristic MPM drivers

In our MESOMICS series, which is the largest WGS cohort of MPM to date, we identified a wide

range of large-scale genomic events for 111 out of 115 samples with available data (97%)

(Figure 3A). As captured by the Ploidy factor, MPM samples have various ploidies, ranging from

haploid to tetraploid (Figure 3B). The average CNV profile is highly consistent between cohorts

(Figure S3A), with several recurrent chromosome arm-level CNVs, as well as focal alterations

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.27.461908doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461908
http://creativecommons.org/licenses/by-nc-nd/4.0/


(deletions, del; amplifications, amp) encompassing known cancer genes: BAP1 del (chr 3p21.1),

TERT amp (chr 5p), EZH2 del (chr 7q36.1), CDKN2A/B and MTAP del (chr 9p21.1), RBFOX1 del

(chr 16p13.3), and NF2 del (chr 22q) (Figure 3C; Table S8). While CDKN2A/B and MTAP

presented mostly homozygous deletions, NF2 and BAP1 were more often affected by

heterozygous deletions (Figure 3A, left panel; Table S7); both events impacted gene expression

levels (Figure 3A, middle-right panel). As previously reported (Chapel et al., 2020), most of the

MTAP alterations co-occurred with CDKN2A/B deletions with only five and six samples,

respectively, presenting alterations in MTAP or CDKN2A/B exclusively (Figure 3A; Table S7). In

addition, we found recurrent deletions of a prominent immune recognition gene, B2M (chr

15q14; Figure 3C).

CNV signatures (Steele et al., 2021) illustrated the processes leading to the deletions and

amplifications, but also the heterogeneity of chromosomal rearrangements affecting MPM, such

as those resulting in extrachromosomal DNA (ecDNA) and chromothripsis (Figure 3A, right

panel; Table S9). We found CN9 to be positively correlated with focal CDKN2A/B and BAP1

deletions (Pearson’s correlation coefficient r = 0.23, q-value = 0.039 and r = 0.27, q-value = 0.02

respectively), in line with recent data linking this signature with CDKN2A/B deletions in breast

cancer (Steele et al., 2021). CN5 was associated with ecDNA in our cohort (Figure 3A, right

panel). Oncogenes encoded on ecDNA are among the most highly expressed genes in tumor

transcriptomes (Wu et al., 2019). Consistently with this, and despite the general pattern of

alterations compatible with a disease driven by the inactivation of TSGs (Figure 3C), the one

ecDNA sample with available transcriptomic data (out of the six MPM with ecDNA, Figure S3B)

showed an increased expression of the genes predicted to be part of the ecDNA sequence,

including the known oncogene BRIP1 (Figure 3D). ecDNA can be driven by kataegis (Bergstrom

et al., 2021). In line with this, we observed that the aforementioned ecDNA sample co-occurred

with and might be fuelled by kataegis (Figure S3C), despite the rarity of kataegis in our cohort,

contributing to only 2% of the MPM clustered mutations (Table S9).

CN18 and CN19 are associated with complex CNV patterns, such as chromothripsis

(Steele et al., 2021). In our cohort, a pattern compatible with chromothripsis was observed in

19% of the samples (Figure 3A, Figure S3D; Table S9), and this pattern was also observed at

the transcriptomic level as fusion transcripts, in half of the positive samples (see example in

Figure 3E; Figure S3E; Table S6). A signature of clustered structural variants (SVs) was

detected and was significantly associated with a high SV load and chromothripsis (Figure S3F;

Table S6). CN15 corresponded to the tandem-duplicator phenotype and homologous

recombination-deficiency (TDP/HRD) signature, which was not associated with BAP1 status in

our series. Overall, 23% of the samples showed an HRD phenotype, identified either by CN

analyses or other previously validated methods (Ladan et al., 2021) (Figure 3F; Table S9).
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Mutational signature analysis of single base substitutions (SBS) identified 10 previously

reported COSMIC signatures (Figure S3G), and we found none of them significantly associated

with asbestos exposure, as previously reported (Bueno et al., 2016; Hmeljak et al., 2018).

Although APOBEC signature activity was low in our cohort, we identified six samples with

APOBEC-related signatures (SBS2/SBS13) that might be sensitive to epigenetic drugs (Levatic et

al., 2021).

Despite the low mutational rate (0.98 non-synonymous single-nucleotide variants, SNVs,

per megabase, Figure S4A; Table S5), MPM tumors carry a particularly high number of SVs

relative to tumors with similarly low mutational burden (Figure 4, top panel, Figure S4B). The

top genes altered by SVs (≥ 5%) were RBFOX1, NF2, BAP1, MTAP, and PCDH15 (Figure S4C;

Figure 4). Closer examination of the RBFOX1 rearrangements reveals that 14 out of 52 samples

have two separate events with most of them deleting CDS number 6 (Figure S4D), which

encodes part of the RNA binding protein domain. Many of these genomic rearrangements

resulted in fusion transcripts detected at the transcriptomic level; tumor suppressor genes

(MTAP, BAP1, and NF2) were the most frequently affected by fusion transcripts (Figure S4E).

Combining the MESOMICS dataset with the additional two other large datasets from

Bueno et al. (2016) and the TCGA (Hmeljak et al., 2018), we reached the sample size (n≈300)

needed to detect low frequency (1%) MPM driver genes in such low-mutated tumors. We used

the well-established Integrative OncoGenomics (IntOGen) pipeline on point mutations and

indels (Martínez-Jiménez et al., 2020). Thirty genes were identified as putative driver genes

(Figure S4F). Five genes - BAP1, NF2, SETD2, TP53, and LAST2 - were called in the three series

individually and in the combined analysis, and are all known MPM altered genes. Among the

other 25 genes, some had been previously reported as recurrently mutated in MPM (PBRM1,

KMT2D, DDX3X, PIK3CA, FBXW7, MGA, NF1, SETDB1, MYH9, PTCH1, RHOA, and TRAF7; De Rienzo

et al., 2016; Kato et al., 2016; Shukuya et al., 2014), or altered by SVs (PTPRD and LRP1B;

Mansfield et al., 2019), two were previously found overexpressed in cell lines but not mutated

(DNMT3B and EZH2; McLoughlin et al., 2017), and for some, germline mutations have been

discovered, suggesting they may be genetic susceptibility genes (NCOR1; Pastorino et al., 2018;

MYO5A; Hylebos et al., 2018). The remaining eight driver genes have, to our knowledge, not been

previously reported in MPM, but are all known cancer genes as reported in COSMIC: FAT3, NIN,

ARHGAP5, HLA-A, NCOR2, SRGAP3, and WNK2. Beyond extending the list of putative MPM

drivers, combining point mutations with SVs allowed for the refinement of the frequency of

altered key MPM genes (Figure 4, shade of green in right panel; Tables S5-6).
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Genomic alterations tune the molecular profiles of MPM

Most of the key identified genomic alterations were associated with the MOFA LFs (Figure 5A;

Table S11). In addition to ploidy, NCOR2 alterations and TERT amp were associated with the

Ploidy factor (maximum q-value = 7.5×10-4; Figure 5A, left panel). While no association was

previously detected between TERT promoter mutations and WGD (Bielski et al., 2018), here we

found that both TERT amp and expression were associated with WGD events (p-value =

1.6×10-10, Fisher’s exact test, p-value = 0.009, linear regression, respectively; Figure S5A).

Differential gene expression analyses showed that the most up-regulated enriched pathways in

WGD+ vs WGD- MPM tumors were E2F targets, G2M checkpoints, myogenesis, downregulation

of KRAS signaling, and glycolysis (maximum q-value = 0.04; Figure 5B; Table S10), revealing a

specific profile with tumor vulnerabilities (Quinton et al., 2021).

All types of genomic events were associated with the position of the samples in the

Pareto front (Figure 5A, three middle panels). Multi-task evolution theory further allows to

quantify how alterations tune tumor specialization by computing effect vectors –difference in

position between the position of altered and wild-type samples– for each alteration within

MOFA space. Alignment of vectors with the Pareto front indicates that the alterations tune

specialization, and their lengths indicate the strength of the specialization (Hausser et al., 2019).

We found that genomic events highlighted in Figure 5A were significantly aligned with the front

and had significantly large sizes (permutation test vs shuffled vectors, p-values of 1.54×10-3 and

2.67×10-8, respectively; Figure 5C). WGD and chromothripsis tended to specialize tumors

towards the Cell-division and Acinar phenotypes, both characterized by a “cold” phenotype (low

immune infiltration) (maximum q-value = 0.05; Figure 5C). WGD+ MPM tumors had

downregulation of the interferon response pathway (q-value = 5.8×10-5; Figure 5B), which

might explain this “cold” phenotype (Quinton et al., 2021). We identified B2M as the second

most downregulated gene in WGD+ tumors (Figure S5C). B2M is part of the MHC-I being

involved in the presentation of peptide antigens to the immune system (Sreejit et al., 2014); the

downregulation of B2M and interferon genes might be important mechanisms for WGD+ tumors

to avoid the immune response. Chromothripsis has also been associated with low immune

infiltration as part of the chromosomal chaos that silences immune surveillance (Zanetti, 2017).

NF2 alterations, chr 9p21.1 del (CDKN2A/B and MTAP) and TP53 alterations also converged

upon “cold” tumours (maximum q-value = 0.04). TERT amp moved tumors towards the

Cell-division phenotype (q-value = 6.6×10-4; Figure 5C). Mutations in the TERT promoter have

been previously described in MPM and were associated with the non-epithelioid types and

shorter survival (Pirker et al., 2020; Quetel et al., 2020), and TERT overexpression has been

shown to promote EMT (Liu et al., 2013), angiogenesis (Zhou et al., 2009), and cancer cell

proliferation (Choi et al., 2008) in other cancer types. Here, we found 29 samples (25%) with
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TERT amp as part of a chr 5p amp event, which led to increased expression of the gene (p-value

= 1.8×10-5; Figure S5A). In total, 36 MPMs exhibited an increased expression of TERT (31%),

with chr 5p amp as the main underlying mechanism (80%). Finally, chr 3p21.1 del encompassing

MPM drivers BAP1, DNAH1, and PBRM1, as well as BAP1 mutations moved tumors towards the

Acinar phenotype (maximum q-value = 0.02; Figure 5C).

We found enrichment for epigenetic regulator genes (ERGs), including NCOR2 and EZH2,

among the genes whose expression was significantly positively correlated with the CIMP index

(p-value = 0.003). Moreover, chr 7q36.1 del, encompassing EZH2, further tuned the position of

the samples along the CIMP factor (q-value = 5.6×10-3; Figure 5A). EZH2 is a histone

methyltransferase and MPM driver that functions as part of the PRC2 complex to promote gene

silencing of specific targets (Margueron and Reinberg, 2011). Indeed, genes whose CpG island

methylation level was highest in CIMP-high tumors were enriched for PRC2 target genes

(p-value = 0.01; Figure 5D). Nine out of the 30 driver genes were also ERGs, and GSEA

confirmed a significant enrichment for ERGs in the IntOGen drivers lists (Fisher’s exact test

q-value = 2.3×10-8), further supporting the role of this category in MPM beyond the CIMP index

(Figure S5B). A recent pan-cancer and multi-omics study has shown that ERGs, when disrupted

through genetic or non-genetic mechanisms, may act as drivers (“epidrivers”) in cancer

development (Halaburkova et al., 2020).

A well-known effect of the CIMP-high phenotype is epigenetic silencing of TSGs (Baylin

and Jones, 2016). We identified five COSMIC TSGs (Sondka et al., 2018), whose expression was

both negatively correlated with the CIMP index and the methylation level of their CpG island(s):

CBFA2T3, FBLN2, PRF1, SLC34A2, and WT1 (Pearson’s correlation maximum q-value = 0.028,

Table S12). Particularly interesting is WT1, a PRC2 target for which a vaccine against is

currently being assessed in clinical trials for mesothelioma (Zauderer et al., 2017).

The specialization of tumors was influenced by early genomic events. Using the

proportion of small variants present in one or multiple copies allowed us to infer the relative

timing of CN gains (Figure S5D-F), and following Zhang et al. (2021b) who focused on similarly

low tumor mutational burden (TMB) tumors, and given that the small variants accurately

followed a simple linear model of accumulation as a function of patient age (Figure S5G), we

used an estimated acceleration rate of 1x to time the events in an individual’s lifetime. WGD and

chr 5p amp (containing TERT) that influenced the Ploidy, Morphology, and Adaptive-response

factors, can occur up to 20-30 years before diagnosis (Figures 5E). Similarly, BAP1, NF2,

CDKN2A/B and MTAP CN losses that impact the tumor specialization map (Figure 5C), were

preferentially clonal and thus likely to have happened early in tumor development (Figure

S5H). This suggests that molecular profiles are constrained early during carcinogenesis by

genomic events and therefore plasticity might be limited. Neutral tumor evolution was
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significantly associated with closeness to the Acinar phenotype (ANOVA p-value = 0.005; Figure

S5I), with all neutrally evolving samples showing lack of BAP1 protein expression (Table S1)

and two out of three harboring BAP1 genomic alterations. BAP1 small variants were all highly

clonal (Figure S5J); nonetheless, as noted in previous studies (Quetel et al., 2020; Zhang et al.,

2021a), we detected a minority of subclonal CNVs affecting the 22q region encompassing NF2,

suggesting that recent genomic events can in some cases further influence specialization.

Axes of molecular variation explain the clinical heterogeneity of MPM

The four axes of molecular variation predicted the observed inter-patient heterogeneity in

overall survival (OS) and efficacy of drugs. All the identified factors were orthogonal and

associated with OS (Figures 6A and S6A-D; Table S13). The Ploidy factor associated WGD+

tumors with poor OS; the Morphology factor separated good and poor OS samples along the

epithelioid-sarcomatoid continuum; the Adaptive-response factor linked “hot” tumors with

better OS and also separated “cold” from “hot” sarcomatoids; and the CIMP factor associated

CIMP-low tumors with a better OS (Figure 6A). We trained LF-based survival models and tested

their performance over previously proposed prognostic factors in both the MESOMICS cohort

(using 4-fold cross-validation to avoid overfitting) and the TCGA series (fitting models on the

MESOMICS cohort and using TCGA as a purely external test set). Each factor individually

provided a prediction value similar to that of the histopathological types, as well as that of other

morphological and molecular, discrete and continuous, prognostic factors previously described

(Figures 6B and S6E-J; Table S13). When combining the four factors there was an increase in

their AUC value, suggesting that they capture molecular characteristics with independent

prognostic value. This is supported by the performance of models using (i) the Morphology and

CIMP factors and (ii) the Ploidy and adaptive-response factors, in predicting short- and

long-term survivors, respectively (Figures 6C and Figure S6E, H). Interestingly, we found that

MKI67 gene expression, associated with the Morphology factor, allowed for clear separation

between epithelioid with better and worse OS (left panel, Figure 6D, Table S2) while the

four-factor model distinguished bad from good OS samples in the tested series (right panel,

Figure 6D).

We used data from the Iorio et al. (2016), de Reyniès et al. (2014), and Blum et al. (2019)

MPM cell lines to find candidate drugs for each molecular profile, combining molecular data and

response to drugs available (265 for Iorio and three for de Reyniès and Blum; Figures 6E and

S7; Table S14). The Ploidy, Morphology, and CIMP factors were accurately reproduced in the

Iorio et al. cell lines, which had all ‘omic layers available, and the Morphology factor was also

accurately reproduced in the de Reyniès et al. cell lines (Figure S7A-G). We found that drug

responses associated with the different factors were entirely orthogonal: all 27 drugs with
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significant associations between IC50 and MOFA factors (before multiple-testing correction)

were associated with a single factor (Figure S7H); this highlights that MOFA factors capture

independent sources of heterogeneity in drug response. We found that the Ploidy factor

presented the largest number of significant associations with drugs (19 out of 27; Figures 6E

and S7), which further supports the importance of large-scale genomic variation to understand

clinical behavior of the disease. Among these drugs, we found one receptor tyrosine kinase

signaling compound axitinib, VEGFRi and the HDAC inhibitor Vorinostat, to which low-ploidy

samples might be specifically sensitive. On the other hand, high-ploidy samples might be

sensitive to the apoptosis regulator r-TRAIL. In the case of the Morphology factor, MMS-like

samples seem to be sensitive to GSK269962A (in line with the results from Blum et al., 2019)

targeting the cytoskeleton through ROCK1/2 inhibition. MME-like samples may be more

sensitive to PF-562271, a drug targeting the cytoskeleton and GSK1070916 regulating mitosis.

CIMP-high samples may be specifically sensitive to mitomycin C, a drug targeting uncontrolled

tumor DNA replication. While the aforementioned agents may not be in the clinic so far for MPM,

these data suggest that stratification of patients may be relevant for clinical trials assessing new

drugs, and support the clinical value of the biological functions captured by these factors.

Although MOFA factors were computed from thousands of molecular features, they

represent phenotypes that can be captured by much simpler features (Figure 6F). Any robust

estimate of the ploidy could be a proxy for the Ploidy factor. The Morphology factor is correlated

with the pathologist-estimated percentage of sarcomatoid cells in the tumor (q-value =

6.98×10-11), and the Acinar phenotype is correlated with BAP1 expression measured by

immunohistochemistry (IHC) (r = -0.38, q-value = 5.02×10-5) (Figure S7K). The

Tumor-immune-interaction phenotype is significantly correlated with the pathologist-estimated

immune content (r = 0.50, q-value = 6.08×10-8). The CIMP factor can be approximated by a small

panel of genes such as the five genes proposed by Weisenberger et al. (2006), found to be

significantly correlated with the CIMP factor (r = 0.91, q-value = 4.69×10-29). Importantly, these

four simple features allow predicting survival almost as well as the actual four LFs (Figure 6B,

light blue bars).

Discussion

MPM is a recalcitrant cancer with an expected OS of less than two years following diagnosis. This

extremely poor prognosis is largely explained by the little progress made in its clinical

management over the past decades. The EURACAN/IASLC effort to provide a more

multidisciplinary classification of MPM highlighted the current limitations in diagnosis,

prognostication and classification (Nicholson et al., 2020), highlighting the impact of

heterogeneity.
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Regarding classification, characterization and refinement of the histopathological type

dimension has been the major focus of the previously published studies, and all molecular

groups described in the two major genomic cohorts of MPM generated to date (Bueno et al.,

2016; Hmeljak et al., 2018) are solely correlated with our Morphology factor. The recently

developed whole-image based AI prognostic score, which represents state-of-the-art survival

predictions (Courtiol et al., 2019) was only correlated with the Morphology factor as well,

further confirming that this factor mainly captures the molecular variation related to the

morphological and not the molecular features, contrary to what has been shown for other

cancer types (Fu et al., 2020). Here, we have uncovered three additional independent sources of

major molecular variation, all with prognostic value, within MPM samples from the French

MESOBANK. These findings were replicated using the the TCGA and Bueno datasets comprising

mostly American patients, as well as in available data for MPM cell lines (Blum et al., 2019; Iorio

et al., 2016; de Reyniès et al., 2014), showing that the factors represent overlooked but robust

processes present in all omic cohorts to date.

Regarding prognostication, we found that the four factors provided complementary

information about survival, and taking them all into account led to the most accurate prediction

of prognosis. WGD, tumor infiltration, and CIMP status influence survival in other cancers and

are being considered for their classification (Zhang et al., 2021c), but not for MPM. Our results,

while further supporting the value of a refinement of the current histopathological classification

using molecular data, suggest that ploidy, immune infiltration, and CIMP status are promising

features to consider for prognostication. They allow us to distinguish “cold” from “hot”

sarcomatoid tumors with different prognoses, which may also influence treatment

decision-making. They even outperform the recently developed AI score (Courtiol et al., 2019),

specifically designed to predict survival from a large series of pathology slides using deep

learning. Our data also suggest that some simple markers could be used to separate samples: in

line with published studies (Ghanim et al., 2015), we confirmed that gene expression of the

routinely assessed KI-67 protein could help stratify epithelioid tumors into survival groups.

Regarding treatment, chemotherapy remains the standard first-line therapy for most

MPM patients and may also be used in the end-stage setting (Baas et al., 2015). Several novel

therapies have been or are currently being tested in clinical trials (Dulloo et al., 2021; Gray,

2021), most with limited success despite initially promising preclinical data. The benefit of

targeted therapies only exists if they are applied to the right population. This type of

personalized medicine is particularly challenging to implement in rare aggressive cancers due to

limited molecular studies, and the pressure clinicians feel to offer “something” to patients with

these otherwise deadly tumors. Our study has provided some interesting hints for new

therapeutic opportunities and also valuable information on how to define target populations
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that will benefit the most from specific therapies, whether in clinical trials or already approved

for MPM. Several examples are given below.

Tumors with BAP1 alterations are expected to carry high levels of EZH2 (LaFave et al.,

2015), suggesting that EZH2i could be an effective therapy for patients carrying BAP1-mutated

cancers. Based on this, EZH2i were tested in BAP1 inactivated MPMs and a clinical trial is

currently ongoing (NCT02860286). The molecular criteria for inclusion is lack of nuclear BAP1

staining by IHC, or evidence of loss of function by gene sequencing. However, we did not see a

negative correlation between the expression of BAP1 and EZH2. Moreover, samples in Arc-3

enriched for BAP1 alterations, did not show a particular profile of high EZH2 gene expression

level. Considering the above-mentioned link between EZH2 expression and CIMP index, patients

with tumors showing high CIMP index may benefit the most from EZH2i.

Nuclear BAP1 regulates homologous recombination (HR) and cells harboring HR

deficiency switch to base excision repair, which is assisted by PARP to repair DNA single-strand

breaks (Helleday, 2011). The observed synthetic lethality led to approval of PARPi in BRCA1/2

cancers (Ledermann et al., 2014). Despite the lack of evidence to support BAP1 status as a bona

fide predictor of sensitivity to PARPi, several clinical trials have tested PARPi in BAP1-deficient

samples (Dulloo et al., 2021). Our data does not support the use of PARPi in these tumors.

Indeed, there was no co-occurrence of HRD phenotype and BAP1 alterations in our series.

Major progress has been seen in the use of immunotherapy, with recent results from the

CheckMate 743 trial supporting its use as a first-line treatment option for all patients with MPM

(Baas et al., 2021a). Follow-up analyses highlighted the heterogeneity of treatment efficacy

among histological types, likely due to the very different tumor microenvironment of epithelioid

and non-epithelioid MPM (Di Maio and Tagliamento, 2021; Baas et al., 2021b). Despite the

statistically significant improvement in OS, less than a quarter of patients were alive three years

post diagnosis (Baas et al., 2021a). The failure to identify appropriate populations may be

masking the beneficial effect of immunotherapy in selected patients. Our data suggest that

tumors in Arc-2 may respond best to immunotherapy as supported by their high infiltration,

high tumor inflammatory score (TIS) (Damotte et al., 2019), and high levels of CTLA4 and PD-1.

The samples presenting the highest levels of PD-L1, a traditional immunotherapy target, were

located around Arc-1, an archetype with almost no expression of CTL4A and PD-1, and with very

little infiltration (“cold” tumors), and therefore very unlikely to respond to immunotherapies.

All sources of variation captured by molecular factors, that may be used to define

targeted therapy populations, could be easily detected by molecular markers already available in

the clinic. As a proxy for the Ploidy factor, ploidy may be assessed by FISH (Wuilleme et al.,

2005). Pathologist-estimated percentages of sarcomatoid cells in the tumor could be used as a

proxy for the Morphology factor, complemented by the already routine use of IHC to detect BAP1
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expression. The Tumor-immune-interaction phenotype can be captured by the

pathologist-estimated immune content, and the interdependence between phenotypes enables

us to distinguish tumors with the Cell-division phenotype from the others by crossing the

immune content with the sarcomatoid component for MMS or MMB samples, or with BAP1 IHC

for MME samples. The CIMP factor may be easily detected using a CIMP panel assay such as the

MethyLight detection panel of five genes proposed by Weisenberger et al. (2006).

A comprehensive molecular understanding of a disease, coupled with detailed clinical

information to make sense of the observed molecular variation and heterogeneity, are key to the

success of clinical management of any cancer type. We report an experimental and analytical

design to quantify and interpret the impact of genomic events on the heterogeneity of tumor

phenotypes and translate the results into the clinic. This approach expands upon our previous

efforts using unsupervised dimensionality reduction to uncover continuous sources of variation

blindly to the WHO classification (Alcala et al., 2019a) in two complementary aspects. Firstly,

experimental design, with the inclusion of whole-genome sequencing data on top of expression

and methylation data; and secondly, statistical design, with the use of multi-omics

dimensionality reduction (following Argelaguet et al., 2018, 2020). This approach allowed us to

detect features such as aberrant gene expression shaped by large scale genomic events (WGD,

GNH), as well as driver alterations, that were previously excluded from histological and

molecular classifications (clusters from Bueno et al., 2016 and Hmeljak et al., 2018). We also

propose a downstream framework to identify cancer tasks from multi-omics profiles, expanding

the application of multi-task evolutionary theory (Hausser and Alon, 2020) to multi-omics

tumor latent factors, rather than expression latent factors. We expect this approach to be

particularly beneficial compared to traditional approaches based on clustering and differential

analysis between clusters, e.g., using consensus clustering as in Bueno et al. (2016), or iCluster+

as in Hmeljak et al. (2016) or other TCGA studies (TCGA Network, 2012, 2013, 2014), for cancer

types including mixtures of different histopathologies, and in cases where current

histopathological and molecular classifications are poorly correlated.

We encourage further research pursuing the biological understanding of MPM and its

impact on clinical management. Bulk sequencing data did not allow us to completely disentangle

the relative importance of tumor and microenvironment expression along the Morphology and

Adaptive-response factors. In particular, to what extent the characteristic continuous molecular

profiles we identified in MPM result from a heterogeneous mixture of specialist cells or a

homogeneous population of generalist cells. Finally, further studies are needed to develop

biomarkers for prognosis and treatment stratification from the candidate features we highlight,

before any recommendations for clinical practice can be made.

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.27.461908doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461908
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements

This study is part of the MESOMICS project within the Rare Cancers Genomics initiative

(www.rarecancersgenomics.com). We thank the patients for donating their tumour specimens. The human biological

samples and associated data were obtained from the French MESOBANK. We also thank Ricard Argelaguet for his

advice in using MOFA; Hugues Begueret, Nathalie Rousseau, Didier Bozonnet, Eric Wasielewski, Gilles Clapisson,

Christelle Bonnetaud, Kevin Washetine, Audrey Lupo Mansuet, Cyrille Cuenin, and Estelle Clermont for their

contribution to the biorepository. The authors would like to acknowledge the American Association for Cancer

Research and its financial and material support in the development of the AACR Project GENIE registry, as well as

members of the consortium for their commitment to data sharing. Interpretations are the responsibility of study

authors. The results published here are part based upon data generated by the TCGA Research Network:

https://www.cancer.gov/tcga. We also thank the National Program for pleural Mesothelioma Surveillance (PNSM)

and Santé Publique France. This work has been funded by the French National Cancer Institute (INCa, PRT-K

2016-039 to L.F.C. and M.F.), the Ligue Nationale contre le Cancer (LNCC 2017 and 2020 to L.F.C. and M.F.). L.M. has a

fellowship from the LNCC. This work also benefited from support of the France Génomique National infrastructure,

funded as part of the “Investissements d’Avenir” program managed by the Agence Nationale pour la Recherche

(contract ANR-10-INBS-09).

Author Contributions (CRediT – Contributor Roles Taxonomy)

Conceptualization, L.F.-C., M.F.; Methodology, L.F.-C., M.F., L.M., N.A., A.DG., A.S.-O.; Software, L.M., N.A., A.DG., A.S.-O,

A.G.-P., A.K., E.N.B., C.V.; Validation, L.M., N.A., A.DG., A.S.-O.; Formal Analyses, L.M., N.A., A.DG., A.S.-O., A.G.-P., A.K.,

E.N.B., C.V., M.A., C.M., P.C. A.G.-P., F.G.-S.; Investigation, L.M., N.A., A.DG., A.S-O., A.G.-P., A.K., E.N.B., J.K., C.G., M.A., L.S.,

T.M.D., A.P., C.M., P.C.; Resources, N.L.S., S.B., S.T.E., F.D., M.B., M.-C.C., S.G.-C., D.D., C.G., V.H., P.H., J.Mo., St.L., J.Ma.,

V.T.deM., C.P., G.P., I.R., C.S., A.S., F.T., J.-M.V., A.G.S.I., Sy.L., F.G.-S.; Data Curation, L.M., N.A., A.DG., A.S.-O., C.V.; Writing –

Original Draft, L.F-C., M.F., L.M., N.A., A.DG., A.S.-O.; Writing – Review & Editing, L.F.-C., M.F., L.M., N.A., A.DG., A.S.-O.,

A.G.-P., A.K., H.H.-V., C.Ca., N.G., N.L.-B., L.B.A., F.G.-S.; Visualization, L.M., N.A., A.DG, A.S.-O.; Supervision, L.F.-C., M.F.,

N.A., H.H.-V., C.Ca., N.L.-B., L.B.A.; Project Administration, L.F.-C., M.F., L.M., N.A., M.-C. M., A.B., J.-F.D., J.A., P.N., A.G.;

Funding Acquisition, L.F.-C., M.F., N.A.

Declaration of Interests

Where authors are identified as personnel of the International Agency for Research on Cancer/World Health

Organisation, the authors alone are responsible for the views expressed in this article and they do not necessarily

represent the decisions, policy or views of the International Agency for Research on Cancer/World Health

Organisation. Where authors are identified as personnel of the Centre de Recherche en Cancérologie de Lyon (CRCL),

the authors declare no conflict of interests. A.S. participated in expert boards and clinical trials with Astra-Zeneca,

BMS, MSD, Roche. N.G. declares consultancy, research support from BMS, Astra-Zeneca, Roche, and MSD. All the other

authors declare no conflict of interests.

17

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.27.461908doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461908
http://creativecommons.org/licenses/by-nc-nd/4.0/


KEY RESOURCES TABLE

REAGENT OR RESOURCE SOURCE IDENTIFIER

Deposited data

Next-generation sequencing data of the TCGA
MESO cohort (WES, RNA-seq, 450K methylation
arrays)

GDC portal (Hmeljak et al.,
2018)

MESO

Next-generation sequencing data of an MPM
cohort (WES and RNA-seq)

Bueno et al. 2016 EGAS00001001563

Next-generation sequencing data of MPM cell lines
(RNA-seq)

Iorio et al. 2016 EGA (EGAS00001000828) and
SRA (PRJNA523380)

Expression arrays of MPM cell lines Iorio et al. 2016 GEO GSE29354

Expression arrays of MPM cell lines de Reynies et al. 2014 ArrayExpress E-MTAB-1719

Next-generation sequencing data for the
MESOMICS cohort (WGS, RNA-seq, and EPIC
methylation arrays)

This paper EGAS00001004812

Software and Algorithms

Nextflow version 20.10.0.5430 Seqera labs (Di Tommaso et al.,
2017)

https://www.nextflow.io/

GATK version 4.0.12 Broad institute https://gatk.broadinstitute.org/hc
/en-us

bwa version 0.7.15

FastQC version 0.11.9

StringTie version 2.1.2 (Pertea et al., 2015)

PURPLE version 2.52 (Priestley et al., 2019) https://github.com/hartwigmedic
al/hmftools

Gistic2 version 2.20.23 (Mermel et al., 2011)

SVaba version 1.1.0 (Wala et al., 2018) https://github.com/walaj/svaba

Delly version 0.8.3 (Rausch et al., 2012) https://github.com/dellytools/dell
y

Manta version 1.6.0 (Chen et al., 2016) https://github.com/Illumina/mant
a

SURVIVOR version 1.0.7 (Jeffares et al., 2017) https://github.com/fritzsedlazeck
/SURVIVOR

AmpliconArchitect version 1.2 (Deshpande et al., 2019) https://github.com/jluebeck/Amp
liconArchitect/

CNVkit version 0.9.7 https://github.com/etal/cnvkit

R version 4.0.3 CRAN
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R package maftools version 2.2.10 R CRAN (Mayakonda et al.,
2018)

R package mobster version 1.0.0 Github (Caravagna et al., 2020) https://github.com/caravagnalab
/mobster

R package ggpointdensity version 0.1.0 R CRAN

R package minfi version 1.34.0 https://bioconductor.org/packag
es/release/bioc/html/minfi.html

R package ENmix version 1.25.1 https://www.bioconductor.org/pa
ckages/release/bioc/html/ENmix
.html

R package REMP version 1.12.0 https://bioconductor.org/packag
es/release/bioc/html/REMP.html

R package MeDeCom version 1.0.0 https://github.com/lutsik/MeDeC
om

R package MOFA2 version 1.0.1 https://github.com/bioFAM/MOF
A2

R package ActivePathways version 1.0.0 https://github.com/reimandlab/A
ctivePathways

R package ParetoTI version 0.1.13 https://github.com/vitkl/ParetoTI

R package survival version 3.2-13 R CRAN

R package survminer version 0.4.9 R CRAN

R package survAUC version 1.0-5 R CRAN

R package stats version 4.0.4 R CRAN

R package DESeq2 version 1.0-5 https://bioconductor.org/packag
es/release/bioc/html/DESeq2.ht
ml

R package ade4 version 1.7-18 R CRAN

R package EpiDISH version 1.0-5 https://www.bioconductor.org/pa
ckages/release/bioc/html/EpiDIS
H.html

R package liftOver version 1.0-5 https://www.bioconductor.org/pa
ckages/release/workflows/html/li
ftOver.html

R package sda version 1.0-5 R CRAN

R package WISP version 2.3 https://cit-bioinfo.github.io/WISP
/

R package svpluscnv version 0.9.1 https://github.com/gonzolgarcia/
svpluscnv

R package CHORD version 2.0 https://github.com/UMCUGeneti

cs/CHORD/
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RESOURCE AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by

Matthieu Foll (follm@iarc.fr).

Data and code availability

The genome sequencing data, RNA-seq data, and methylation data have been deposited in the

European Genome-phenome Archive (EGA) database, which is hosted at the EBI and the CRG,

under accession number EGAS00001004812. TCGA whole-exome sequencing, RNA-seq, and

methylation array data are available from the GDC portal (TCGA-MESO cohort), the

whole-exome sequencing and RNA-seq data from the Bueno and colleagues cohort are available

from the European Genome-phenome Archive, EGA:EGAS00001001563. Small variants lists,

RNA-seq, expression array, and methylation data for the Iorio and colleagues cohort (Iorio et al.,

2016) are available from the GEO (GSE29354), EGA (EGAS00001000828), and SRA

(PRJNA523380) websites, and corresponding drug responses are available from the

cancerrxgene.org website (accessed July 2021). Expression array data for the de Reyniès and

colleagues cohort (de Reyniès et al., 2014) are available from the ArrayExpress platform

(E-MTAB-1719), and corresponding drug response data from the supplementary material of

Blum et al. (2019). All the other data supporting the findings of this study are available within

the article and its supplementary information files.

METHODS

Ethics

All methods were carried out in accordance with relevant guidelines and regulations. This study is part of

a larger study -the MESOMICS project- aiming at the comprehensive molecular characterization of

malignant pleural mesothelioma, approved by the IARC Ethical Committee (Project No. 15-17). The

samples used in this study belong to the virtual biorepository French MESOBANK, which guidelines

include obtaining the informed consent from all subjects.

Clinical data

Age at diagnosis (in years), sex (male or female), smoking status (no-smoker, ex-smoker, and smoker),

asbestos exposure (exposed or non-exposed), previous treatment with chemotherapy drugs (yes or no),

treatment information (surgery, chemotherapy, radiotherapy, immunotherapy, and cancer history), and

survival (calculated in months from surgery to last day of follow up or death) data were collected for all

the 123 patients. Median age at diagnosis was 67.5 years and 73.3% of patients were male. Detailed

information from Santé Publique France (SPF), the French National Public Health Agency, about
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probability of exposure (no evidence found-0, possible-1/3, likely-2/3, and very likely-1), frequency

(sporadic-0.25, intermittent-0.5, frequent-0.75, and permed-1), intensity (low-1, intermediate-2, high-3,

and very high-4), and duration of the asbestos exposure (in years) was available for 47 patients as the

result of a supervised survey, the National Program for pleural Mesothelioma Surveillance (PNSM) (soit

Ilg et al., 2020). In order to compare exposure levels between patients and to reduce the number of

variables, we computed a lifetime exposure score in units of years of permed low-intensity asbestos

exposure, by multiplying the probability, frequency, intensity, and duration of the exposure. This score is

analogous to the pack-years concept used for tobacco smoking that also balances intense, short-durations

with weaker, long-duration exposures (Schaeffner et al., 2001). Indeed, 10 years of very likely, sporadic,

very high intensity asbestos exposure leads to the same score (10×1×0.25×4=10) as 10 years of very

likely, permed, low-intensity exposure (10×1×1×1=10) (Table S1). In order to improve the power of some

of the statistical analyses, we regrouped some levels of the age variable which was discretized into 3

classes ((29, 63], (63, 71], and (71, 90] years).

We tested the associations between clinical variables; in particular, between a batch variable (sample

provider) and the main variable of interest (histopathological type or major epithelioid subtype) or

important biological covariables such as sex, age, smoking status, and asbestos exposure, using Fisher’s

exact test. We found that the sample provider was not significantly associated with the clinical variables

(from Table S1), while sex was significantly associated with smoking status and asbestos exposure

(Fisher’s exact test q-value = 0.0002 and q-value = 0.03, respectively).

The MESOMICS cohort

Samples were collected from surgically-resected tumours, applying local regulations and rules at the

collecting site, and including patient consent for molecular analyses as well as collection of de-identified

data. Samples underwent an independent pathological review. The MESOMICS cohort includes biological

material from 120 MPM patients kindly provided by the French MESOBANK, annotated with detailed

clinical, epidemiological, and morphological data. Based on the French MESOPATH reference panel, out of

the 120 MPM tumor samples, 79 belong to the epithelioid type (MME), 26 are biphasics (MMB) and 15 are

sarcomatoids (MMS). Out of the 105 samples with an epithelioid component (79 MME and 26 MMB),

solid, acinar, trabecular, and tubulopapillary architectural patterns were the most frequent in the series (n

= 36, 31, 17, and 14, respectively). Note that this distribution of MPM types and epithelioid subtypes does

not represent the true clinical real distribution because of the bias we have introduced by including only

samples with sufficient tumor content and good DNA and RNA quality. The tumor content estimated by

our pathologist (FGS) in the series ranged from 10 to 100%. Similarly, the presence of infiltration was also

evaluated in the H&E slides, and it ranged from 0% to 45% (Table S1). In addition, using the H&E slides,

whole-image artificial intelligence analyses were undertaken to identify the most clinically relevant

morphological features, and a score was calculated using a previously published validated algorithm

(Courtiol et al., 2019).

As expected, the median overall survival (OS) for the whole series was 14 months (IQR 12-17.1),

with epithelioid (MME) showing the longest OS (15.8 months, IQR 13.9-24.5) followed by biphasic (MMB;

10.8 months, IQR 6.3-17.2) and sarcomatoid (MMS; 4.5 months, IQR 2.2-NA). The tubulopapillary subtype
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showed the best OS (ranging from 20.9 to 41.9 months), followed by trabecular (15-18.4), acinar

(13.1-15.9) and solid (11.9-14.4), which showed the worst OS. In addition, the proportion of solid subtype

was negatively associated with survival (q-values < 0.01) (Table S13). The ratio of men to women is 2.76,

with no statistical association between sex and histological type or subtype.

Discovery and ITH cohorts

Among the 123 MPM patients, 13 have two tumour specimens collected to study intratumoral

heterogeneity (ITH). The one with the highest tumor content, estimated by pathological review, has been

selected for this descriptive study and is reported in Table S1, and the other region is described in Table

S4. Additionally, three patients have been reported as non-chemonaive and they were excluded from the

analyses except if  explicitly mentioned otherwise in the Methods.

Pathological review

For all 136 samples (123 tumors +13 additional regions) an H&E (hematoxylin and eosin) stain from a

representative FFPE block was collected for pathological review. Our pathologist (FGS) performed a

pathological review and classified all tumours according to the 2015 WHO classification (Galateau-Salle et

al., 2016; 2015). The H&E stain was also used to assess the quality of the frozen material selected for

molecular analyses and to confirm that all frozen samples contained at least 70% of tumour cells.

Tumour grade, immune infiltration, presence of necrosis and vessels were assessed for all 136

samples. In addition of histopathological types, we also assessed the epithelioid histopathological

characteristics (architectural subtypes, cytological variants and stromal characteristics), which we

subdivided into three subtypes, based on the recent IASCL-EURACAN interdisciplinary meeting

recommendations (Nicholson et al., 2020): favorable prognosis (regrouping the acinar and papillary

subtypes, and samples with abundant myxoid stroma), intermediate-prognosis (trabecular subtype), and

unfavorable prognosis (solid subtype). Finally, we also assessed the sarcomatoid histopathological

characteristics (simple, desmoplastic, low and high grade fusocellular, and with pleomorphic,

heterologous, or transitional component) and both epithelioid and sarcomatoid histopathological

characteristics in case of biphasic samples.

Artificial Intelligence analysis

Whole-slide image based Artificial Intelligence (AI) prognostic score was computed using the AI MesoNet

model, based on morphological features, developed by OWKIN, AI for Medical Research company

(Courtiol et al., 2019). The model has been trained on a randomly selected training dataset of 2903 slides

from the MESOPATH-NETMESO INCa network/MESOBANK (excluding samples from our MESOMICS

cohort) and applied to the slides of our MESOMICS cohort. This model is trained to predict overall survival

using only one H&E stained whole slide image per patient as input. It is therefore completely agnostic of

any genomic information.
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Immunohistochemistry

Formalin fixed paraffin embedded (FFPE) tissue sections (3µm thick) from 136 MPM samples were

deparaffinized and stained with the Santa Cruz BAP1 (cloneC-4) (dilution one to 50). Nuclear staining was

considered positive (when nuclear expression was retained) or negative (complete loss of staining of all

tumor cells with a positive internal control on the slides: fibroblast, lymphocytes and other non-tumor

cells). Consequently, the positivity of BAP1 was reported as a score ranging from 0 complete loss of

nuclear staining and 1 nuclear staining retained in 100% nuclei. Results are presented in Table S1.

Statistical analyses

All tests involving multiple comparisons were adjusted using the Benjamini-Hochberg procedure

controlling the false discovery rate using the p.adjust R function (stats package version 3.4.4).

Survival analysis

Survival analysis has been performed using Cox’s proportional hazard model from which the significance

of the hazard ratio between the reference and the other levels has been evaluated using Wald tests. We

assessed the global significance of the model using the logrank test statistic (R package survival v. 2.41-3)

and drew Kaplan–Meier and forest plots using R package survminer (v. 0.4.2). The proportional hazards

hypothesis was checked using the Schoenfeld residuals (zph function). Univariate Cox analyses were

performed for each important biological data such as sex, age, smoking status, and asbestos exposure as

explanatory variable to evaluate their individual association with survival. In order to respect the minimal

proportion of samples per group at 10%, we gathered current and former smoker groups together. Among

the clinical data tested, only age and sex were both significantly associated with survival (Cox model

p-value = 0.00021 and p-value = 0.045 respectively) (Table S13). As a results of univariate analyses

results, in order to assess survival associations with continuous molecular variables, we fited Cox’s

models by including sex and used the attained age scale, which provides a control for age effects without

needing to fit an additional age parameter compatible with the proportional hazards assumption (Griffin

et al., 2012) (Table S13).

DNA extraction

Samples included were extracted using the Gentra Puregene tissue kit 4g (Qiagen, Hilden, Germany),

following the manufacturer's instructions. All DNA samples were quantified by the fluorometric method

(Quant-iT PicoGreen dsDNA Assay, Life Technologies, CA, USA), and assessed for purity by NanoDrop

(Thermo Scientific, MA, USA) 260/280 and 260/230 ratio measurements. DNA integrity of Fresh Frozen

samples was checked with Tapesation system (Agilent Biotechnologies, Santa Clara, CA95051, United

States) using Genomic DNA ScreenTape (Agilent Biotechnologies).

RNA extraction

Samples included were extracted using the Allprep DNA/RNA extraction kit (Qiagen, Hilden, Germany),

following manufacturer's instructions. All RNA samples were treated with DNAse I for 15 min at 30 °C.
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RNA integrity of frozen samples was checked with Tapesation system (Agilent Biotechnologies, Santa

Clara, CA95051, United States) using RNA ScreenTape (Agilent Biotechnologies).

Because of unsuccessful extraction (impacting either the quality or the quantity), we obtained different

numbers of MPM samples for which Whole-Genome sequencing, DNA methylation, or RNA-sequencing

data is available (Table S1).

DNA Sequencing

Whole-Genome DNA Sequencing (WGS)

Whole-genome sequencing was performed by the Centre National de Recherche en Génomique Humaine

(CNRGH, Institut de Biologie François Jacob, CEA, Evry, France) on 130 fresh-frozen MPMs, 54 of which

with matched-normal tissue or blood samples. After a complete quality control, genomic DNA (1µg) has

been used to prepare a library for whole genome sequencing, using the Illumina TruSeq DNA PCR-Free

Library Preparation Kit (Illumina Inc., CA, USA), according to the manufacturer's instructions. After

quality control and normalization, qualified libraries have been sequenced on a HiSeqX5 platform from

Illumina (Illumina Inc., CA, USA), as paired-end 150 bp reads. Two lanes of HiSeqX5 flow cells have been

produced for each sample paired with matched-normal tissue or blood, in order to reach an average

sequencing depth of 60x and one lane for the others in order to reach an average sequencing depth of 30x

for the others. Sequence quality parameters have been assessed throughout the sequencing run and

standard bioinformatics analysis of sequencing data was based on the Illumina pipeline to generate

FASTQ files for each sample.

Data processing

WGS reads were mapped to the reference genome GRCh38 (with ALT and decoy contigs) using our

in-house workflow (https://github.com/IARCbioinfo/alignment-nf, release v1.0), as described in (Alcala

et al., 2019b). In summary, this workflow relies on the Nextflow domain-specific language (Di Tommaso et

al., 2017) and consists in 4 steps: reads mapping (software bwa version 0.7.15; Li and Durbin, 2009),

duplicate marking (software samblaster, version 0.1.24), reads sorting (software sambamba, version

0.6.6; Tarasov et al., 2015), and base quality score recalibration using GATK v4.0.12.

Variant calling and filtering on DNA

We performed somatic variant calling using software MuTect2 from GATK v4.1.5.0 (Benjamin et al.; Van

der Auwera and O’Connor, 2020) as implemented in our Nextflow workflow based on the GATK best

practices (https://github.com/IARCbioinfo/mutect-nf release v2.2b), using a set of 79 blood samples (16

from the MESOMICS cohort and 73 from Gabriel et al., 2021) coming from the same sequencing machine

from CNRGH in Paris as panel of normal and using GATK4’s filtering module (FilterMutectCalls) with the

recommended known variants VCF (gnomAD variants from GATK’s Mutect2 bundle) and per sample

estimates of the contamination rate obtained with GATK4’s CalculateContamination (using the small

panel of EXAC SNPs from GATK4’s Mutect2 bundle). Multi-region samples were processed jointly using

the multi-sample calling mode of Mutect2. We called germline variants using Strelka2 v2.9.10-0 (Kim et
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al., 2018) using our Nextflow workflow (https://github.com/IARCbioinfo/mutect2-nf release v1.2a).

Normalization of resulting variant calling format (VCF) files was performed with BCFtools v1.10-2 as

implemented in our workflow (https://github.com/IARCbioinfo/vcf_normalization-nf v1.1), and

annotation was then performed with ANNOVAR (2018Aprl16) (Wang et al., 2010) using the GENCODE

v33 annotation, COSMIC v90, REVEL databases.

To call somatic variants on tumor-only samples (72/115) a similar procedure was performed

(Mutect2 tumor-only mode) but including further germline filtering steps using a random forest (RF)

classifier. A total of 20 features (gnomad, cosmic, genomic location/impact, and features obtained directly

from Mutect2) were selected to build a RF model to classify single nucleotide variants and small Indels

into somatic or germline. For training the RF model a total of 46 tumors with matched normal

mesothelioma whole-genome sequences were used. Variants on this subset were called using both the

tumor-only and matched modes of Mutect2. The matched somatic calls (ground-truth) were used to split

the variants of the tumor-only calls into germline and somatic classes and subsampled to mitigate bias

arising from class imbalance during training (1:1 somatic:germline ratio, n=407,984). The dataset was

divided into 75% for training (n=305,988) and 25% for testing (n=101,996), and the trained model

reached an accuracy of 0.93 in the test set. A random forest model for SNVs (rfvs01) was trained using a

total of 326,388 (80%) variants (1:1 ratio). For indels, a random forest model (rfvi01) was built using a

total of 337,442 variants (1:1 ratio, including 305,988 SVNs and 31,454 indels). To control the false

positives (RF Model FDR=6.4%), given the highest expected proportion of germline variants in the

prediction set, we set a cutoff (RF votes) of 0.5 and 0.75 for coding and non-coding variants, respectively.

Finally, the RF models (rfvs01 and rfvi01) were used to classify a total of 1,454,942 variants

(SNVs=1,317,200 and indels=137,742) of which 217,436 variants (including SNVs and indels) were

classified as somatic. The point mutation calls for the MESOMIC cohort (n=448,434) include the matched

calls (43 WGS) and the filtered tumor-only calls (72 WGS) (Table S5). The source code and the random

forest models are available in the Github repository at https://github.com/IARCbioinfo/RF-mut-nf.

Copy number variant calling

Somatic Copy Number Variants (CNVs) were called using the PURPLE software (Priestley et al., 2019) , as

implemented in our Nextflow workflow (https://github.com/IARCbioinfo/purple-nf, version 1.0). We

used a total of 57 (including multi-region samples) matched whole-genome sequences (WGS) of MPM for

benchmarking the tumor-only mode of PURPLE. We ran PURPLE twice for each matched sample: first

using as input the matched WGS Normal/Tumor pair, and second, using as input only the tumor WGS. We

benchmarked the PURPLE tumor-only mode by comparing the estimation of tumor purity, tumor ploidy,

number of segments, percentage of genome changed (amplified, deleted), percentage of genome in

neutral LOH (Loss Of Heterozygosity), and major/minor copy number alleles at gene level for matched

and tumor-only PURPLE calls. CNV calls are reported in Table S7 and presented in Figure 3B-C, and

compared to that from the Bueno and TCGA cohorts in Figure S3A. TCGA copy number data has been

downloaded from the TCGA portal (TCGA-MESO, https://portal.gdc.cancer.gov/, March 2021)

corresponding to the allele-specific copy number segment data from genotyping arrays.
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We observed a high concordance (pearson correlation) between tumor-only and matched

PURPLE calls for tumor purity (r > 0.98), tumor ploidy (r=1), number of cnv segments per tumor (r >

0.98), percentage of genome changed (amplified, deleted, r > 0.99), and percentage of genome in neutral

LOH (r > 0.99). Moreover, the concordance between tumor-only and matched PURPLE calls was also high

at gene level with major and minor copy number alleles reaching R > 0.96. However, we observed

artifactual focal amplifications and deletions near telomeric and centromeric regions that were not called

when using the matched data. These regions were identified and the segments overlapping these regions

were removed from the tumor-only calls. The copy number calls for the MESOMIC cohort (115 WGS)

include the matched PURPLE calls (43 WGS) and the filtered tumor-only PURPLE calls (72 WGS). Whole

genome doubling samples were called in genomes with more than 10 autosomes with major allele copy

number > 1.5. Near haploid samples were identified as those with LOH genome percentage larger than

80%. Finally, recurrent genomic regions of DNA copy-number alterations in the 115 WGS were identified

with GISTIC2.0 (Mermel et al., 2011, version 2.20.23, -conf 99%) using as input the PURPLE CNV calls

(log2(totalcopynumber)-1) (Table S8).

For replication of the analyses using the whole-exome sequencing data from the TCGA and Bueno

cohorts (Figure S3A), because PURPLE is only suited for WGS data, we used software Facets (Shen and

Seshan 2016) instead, as implemented in our pipeline (https://github.com/IARCbioinfo/facets-nf v. 2.0).

Structural variant calling

To identify somatic structural variants (SVs), including insertions, deletions, duplications, inversions, and

translocations, we built a consensus SVs call set by integrating SvABA (v1.1.0, Wala et al., 2018), Manta

(v1.6.0, Chen et al., 2016), and Delly (v0.8.3, Rausch et al., 2012) calls with SURVIVOR (v1.0.7, Jeffares et

al., 2017). For matched WGS, Delly was run in somatic SV discovery mode using the hg38 blacklisted Delly

regions (“-x human.hg38.excl.tsv”; the list excludes centromere, telomere, and heterochromatin regions, as

well as alt, decoy, and unknown contigs of hg38) and the tumor/normal WGS pairs. A list of somatic SVs

passing all filters was generated using the Delly somatic filter, which considers somatic SVs as those with

at least 10 fold coverage in the tumor sample and without evidence of normal read support for the

alternative allele (ALT support in normal equal 0). Manta was run in somatic SV discovery mode using the

tumor/normal WGS (--normalBAM and –tumorBAM options) and excluding the non-chromosome contig

sequences (alt and decoy) of hg38 (--callRegions option). The somatic SVs passing all Manta filters

(minPassSomaticScore >=30) were considered for the consensus step. SvABA was run using our in-house

Nextflow workflow (https://github.com/IARCbioinfo/svaba-nf, revision number 1.0) to identify somatic

and germline SVs using the tumor/normal WGS. The somatic SVs passing all SvABA filters were

considered for the consensus step. The overlap of filtered somatic SV calls was performed using

SURVIVOR (merge subcommand) considering as matching SV breakpoints those at a maximum distance of

1kb (ignoring SV type and SV strand). Somatic SVs (minimum SV size 50bp) identified by at least two

callers and single caller predictions with a minimum read support of 15 pairs (including pair-end and

split-read evidence) were included in the consensus set of each matched sample.

To filter germline SVs in tumor-only samples we trained a random forest model for each SV caller.

The SV random forest model includes a total of 19 features, which are associated with external SV
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databases, custom panel-of-normal SVs, genomic regions, and SV features derived from SV callers. The

training of the random forest model for each SV caller was performed using the matched WGS (57

including multi-region samples). First, the somatic calls from the matched WGS were used as the

ground-truth during training and evaluation of each SV random forest model. Second, tumor-only calls

were generated for the matched data using the tumor WGS for Manta and Delly. For SvABA, the somatic

and germline SVs called by the somatic mode were merged to generate the tumor-only calls from the

matched data. Third, the panel of normals for each matched WGS and SV caller combinations were

generated by integrating 45 germline SV calls (excluding the respective normal sample) with SURVIVOR

(merge command). Fourth, a total of 12,454, 16,720, and 12,264 SVs at 1:1 somatic:germline proportions

were used to train (75%) and evaluate (25%) the random forest models of Delly, Manta, and SvABA,

respectively.. The accuracy achieved on the benchmark set was 0.9, 0.89 and 0.88 for Delly, SvABA, and

Manta SV RF models, respectively. Finally, the SV random forest models were used to filter the germline

SVs from tumor-only samples using a cutoff (RF votes) of 0.5 and 0.75 for coding and non-coding SVs,

respectively. SVs matching one present in the custom PON or located in centromeric regions were

discarded. SV call set for each tumor-only sample was created using the same steps performed for the

matched WGS (merging Delly, SVaba and Manta calls with SURVIVOR and keeping single caller predictions

with read support >= 15). Moreover, SVs found in more than 4 samples in the tumor-only series were also

classified as potentially germline and removed from the final consensus set. The SVs calls for the

MESOMIC cohort (Table S6, n=12,914) include the matched SV calls (43 WGS, n=4,685) and the filtered

tumor-only SV calls (72 WGS, n=8,229). The source code and the SV random forest models are available in

the Github repository at https://github.com/IARCbioinfo/ssvht.

Damaging variants and driver detection

Mutational cancer driver genes have been detected using the state-of-the-art integrative oncogenomics

pipeline (IntOGen; Martínez-Jiménez et al., 2020), that distinguishes signals of positive selection from

neutral mutagenesis across a cohort of tumors by combining multiple driver detection methods. The

IntOGen pipeline was run for each cohort separately, and also for the combined cohort to gain in statistical

power, and to detect mutational driver genes that may be specific to each of them (Figure S4F and Figure

4, left panel). Of note, variants occurring on mitochondria chromosome chrM have not been considered in

this analysis. Genes that drive tumorigenesis upon SVs have simply been selected based on their

recurrence, using a cutoff of 5 samples (Figure S4C).

The damaging SNVs, indels and structural variants have been selected as follows. First, for SNVs

and small indels, we used ANNOVAR annotations to restrict the list to the exonic or splicing,

non-synonymous variants. For multi-nucleotide polymorphisms (MNP), we used the Coding Change

ANNOVAR procedure to infer the protein changes occurring and in case of any amino acid changes, we

classified the event as damaging. Finally, we removed structural variants for which the breakpoints lead to

harmless changes for the coding sequence of the gene such as large in frame deletion in a single intron.
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Comparison  with PCAWG  and TCGA

Tumor mutational Burden comparison of Mesothelioma and TCGA cohorts (Figure S4A) was performed

with the mafftool (Mayakonda et al., 2018) package (v2.6.05). The PCAWG data for mRNA fusions (version

1.0), SVs (version consensus_1.6.161116), CNVs (consensus.20170119), and number of SNVs represented

in Figure S4B were downloaded from the PCAWG site (https://dcc.icgc.org/releases/PCAWG).

Identification of complex mutational process in MPM tumors

Mutational SBS signatures were de novo discovered and decomposed into COSMIC mutational signatures

with the SigProfilerExtractor (Alexandrov et al., 2020) tool. The SNVs called by both Mutect2 and Strelka

(Kim et al., 2018, nextflow workflow https://github.com/IARCbioinfo/strelka2-nf v1.2a) on the T/N

samples were used as input for SigProfilerExtractor (v1.0.17) to avoid caller specific signatures. Copy

Number signatures were called using SigProfilerExtractor as described in (Steele et al., 2021) (Table S7)

and using as input the PURPLE copy number segments. SV signatures were also called using the

SigProfiler framework but using a newer version of SigProfilerExtractor (v1.1). Finally, detection and

classification of clustered mutations (kataegis analysis) was performed as described in (Bergstrom et al.,

2021). The list of clustered mutations per tumor including their classes are provided in Table S9, and

represented in Figure S3C.

Chromothripsis regions were identified by combining SVs and CNV calls with the svpluscnv R

package (Lopez et al., 2021). To identify shattered regions’ breakpoints from CNVs and SVs, breakpoints

were counted by splitting the genome into 10Mb windows. Contiguous windows with a high density of

breakpoints were merged into larger shattered regions. Then interleaved SVs and variations in copy

number state signatures were used to differentiate chromothripsis from focal events such as double

minutes. Additionally, following recent practices (Cortés-Ciriano et al., 2020), we classified the shattered

region into high and low confidence by considering the number of oscillating CN segments:

high-confidence calls were classified as those displaying an oscillation pattern between two copy number

states in at least seven adjacent CN segments, others were classified as low-confidence calls (Table S9,

Figure S3D).

Amplicon predictions were performed using the AmpliconArchitect program version 1.2

(Deshpande et al., 2019). In Brief, the copy number variants were called using the CNVkit program

(version 0.9.7), which is the recommended CNV caller to identify seed for AmpliconArchitect. Seed

selection was performed following the recommended criteria (minimum segment length of 50Kb and

minimum copy number gain of 4.5) using the amplified_intervals.py (amplified_intervals.py --gain 4.5

--cnsize_min 50000 --ref GRCh38) script provided by the AmpliconArchitect package. AmpliconArchitect

(Version 1.2) was then run with default parameters using the selected seeds and the tumor CRAM files as

input. Finally, the AmpliconClassifier program was run to classify the amplicons generated by

AmpliconArchitect into ecDNA, BFS, Complex, linear or non-amplified classes (Table S9, Figure S3B).

Finally, the homologous recombination deficiency samples were identified using the R package CHORD

(Nguyen et al., 2020) version 2.0 (Table S9). Following CHORD recommendation, four HRD positive

samples were marked with a not determined HRD type because they have less than 30 SV.
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TERT promoter mutation analyses

Point mutations within the TERT promoter region (chr5: 1,294,956-1,295,406, hg38) were identified

from the VCF file outputs of WGS prior to filtering T-only variants using the random forest filter (see

Variant calling and filtering on DNA). Pre-filtered VCF files were used due to low mappability of the region

that results in high false negative point mutation detection rates. Genomic coordinates were selected

specifically as all previously reported TERT promoter mutations in mesothelioma (C158A, A161C, C228T,

C250T) are contained within the above region (Pirker et al., 2020; Quetel et al., 2020). Three of four

reported mutations were identified in seven samples: A161C (chr5: 1,295,046 in hg38 coordinates),

C228T (chr5: 1,295,113), and C250T (chr5: 1,295,135). Results are presented in Figure S5A.

RNA Sequencing

RNA Sequencing (RNA-seq)

RNA sequencing was performed on 126 fresh frozen MPM in the Cologne Centre for Genomics, of which

109 MPM belonged to the discovery cohort (Table S1). In addition, we collected two technical replicates,

MESO_051_TR and MESO_115_TR, from two different patients and coming from the same RNA extraction

as MESO_051_T and MESO_115_T respectively but sequenced separately. Libraries were prepared using

the Illumina® TruSeq® mRNA stranded sample preparation Kit. Library preparation started with 1 µg

total RNA. After poly-A selection (using poly-T oligo-attached magnetic beads), mRNA was purified and

fragmented using divalent cations under elevated temperature. The RNA fragments underwent reverse

transcription using random primers. This is followed by second strand complementary DNA (cDNA)

synthesis with DNA Polymerase I and RNase H. After end repair and A-tailing, indexing adapters were

ligated. The products were then purified and amplified (14 PCR cycles) to create the final cDNA libraries.

After library validation and quantification (Agilent 4200 Tapestation), equimolar amounts of library were

pooled. The pool was quantified by using the Peqlab KAPA Library Quantification Kit and the Applied

Biosystems 7900HT Sequence Detection System. The pool was sequenced by using an Illumina Novaseq

6000 sequencing device and a paired end 100nt protocol.

Data processing

The 126 raw reads files from the MESOMICS cohort and the 21 files from the Iorio and colleagues (2016)

mesothelioma cohort (downloaded from the EGA and SRA websites, datasets EGAS00001000828 and

PRJNA523380) were processed in three steps using the RNA-seq processing workflow based on the

Nextflow language and accessible at https://github.com/IARCbioinfo/RNAseq-nf (release v2.3), as

described first in Alcala, Leblay, Gabriel et al. (2019b). In summary, reads were trimmed for the adapter

sequence using Trim Galore v0.4.2, then mapped to reference genome GRCh38 (using annotation gencode

version 33) with STAR software (v2.7.3a). Then, reads were realigned locally using ABRA2 (Mose et al.,

2019; workflow https://github.com/IARCbioinfo/abra-nf release v3.0), and base quality scores were

recalibrated using GATK (workflow https://github.com/IARCbioinfo/BQSR-nf release v1.1). Once

processed, expression was quantified for each sample, generating a raw read count table with gene-level

quantification for each gene of the comprehensive gencode gene annotation file (release 33), as well as a

table with Gene fragments per kilobase million (FPKM), using StringTie software (v2.1.2) (Nextflow
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pipeline accessible at https://github.com/IARCbioinfo/RNAseq-transcript-nf release v2.2). Quality

control of the samples was performed at each step. FastQC software (v0.11.9;

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to check raw reads quality and

RSeQC software (v3.0.1) was used to check alignment quality

Normalisation and quality controls

The raw read counts of the 59,607 genes in the expression data matrix, from MESOMICS, TCGA, and Bueno

cohorts, from which we removed non-chimionaif samples, were normalised using the variance

stabilisation transform (vst function from R package DESeq2 v1.14.1); this transformation enables

comparisons between samples with different library sizes and different variances in expression across

genes. We performed dimensional reduction on expression data as quality control, using Principal

Component Analysis (PCA) (function dudi.pca from R package ade4 v1.7-16). PCA was performed on the

variance-stabilised read counts of the 5,000 most variable genes for (i) (MESOMICS) 109, (ii) (Bueno)

180, (TCGA) 73, and (iii) (3-cohorts: MESOMICS, Bueno, and TCGA) 362 samples (Table S3). For each set,

samples were plotted by their coordinates to visualise outliers. For each dataset, linear regression

analysis was performed to determine any significant association between these PCs and technical

variables such as RNA-seq batch, macrodissection and provider. We found no outliers, and no batch effect

in this data.

Variant calling and filtering on RNA

We used Mutect2 with the --allele flag to force genotyping of variants identified by mutect in the

whole-genome sequencing data to call variants on the 126 RNA sequencing data for validation (workflow

https://github.com/IARCbioinfo/mutect2-nf release v2.2b with option --genotype).

Fusion transcript analysis

Fusion transcripts were detected using Arriba (Uhrig et al., 2021) for the MESOMICS, Bueno, and TCGA

cohorts. First, RNA-seq reads were aligned using STAR (2.7.6a) to the hg38 reference. Second, Arriba was

used to call mRNA-fusions using the STAR alignment (BAM) and Arriba blacklisted regions (-b option). For

the MESOMICS cohort, we additionally integrated the genomic SVs by including the SV breakpoints into

the calling (-d option). Finally, high-quality mRNA-fusion predictions for all MPM cohorts were defined as

those Arriba predictions classified as high confidence and with a minimum support of 10 reads from

paired-end and split-read alignments. The Table S6 contains all the mRNA fusions passing the

aforementioned filters, and Figure S4E represents recurrently altered genes.

Processing of publicly available expression array data

Raw expression array CEL files from Iorio and colleagues (Iorio et al., 2016) and de Reynies and

colleagues (de Reyniès et al., 2014) were downloaded from public repositories (GEO: GSE29354 and

ArrayExpress: E-MTAB-1719, respectively) and processed using the RMA algorithm (justRMA function

from the affy R package v1.68.0). Annotations were downloaded from the hgu219.db and hgu133plus2.db

packages (v3.2.3).
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Immune contexture deconvolution from expression data

The proportion of cells that belong to each of ten immune cell types (B cells, macrophages M1,

macrophages M2, monocytes, neutrophils, NK cells, CD4+ T cells, CD8+ T cells, CD4+ regulatory T cells,

and dendritic cells) were estimated from the RNA-seq data using software quanTIseq (downloaded 14

September 2020) using our workflow for parallel processing of samples

(https://github.com/IARCbioinfo/quantiseq-nf release v1.1). Additionally, as technical validation, we

used EpiDISH R package (v2.6.0) to estimate seven immune cell types (B cells, monocytes, neutrophils, NK

cells, CD4+ T cells, CD8+ T cells, and eosinophils) as well as epithelial cells and fibroblasts from the DNA

methylation data. The immune cell types for which the association with archetypes were the strongest

(absolute Pearson’s correlation coefficient r > 0.4, B cells, CD8+ T, and neutrophils) presented significant

concordance between softwares (additionally to monocytes). The other estimates (NK cells and CD4+ T)

have not been confirmed in EpiDISH estimation, possibly because of the reference differences —such as

the reference size, the number of cell types estimated— between softwares. Proportion of cells in the

TCGA and Bueno samples were taken from the supplementary tables of Alcala et al. (Alcala et al., 2019a),

which used the exact same software and version.

WGD expression analyses

To identify significant differentially expressed genes associated with WGD status, we employed the same

strategy introduced by (Quinton et al., 2021). In brief, the expression of each gene (TPM values) was

modeled as a function of WGD + purity + local_copy_Number. The purity, local_copy_number (log2(total

copy number)), and WGD status were obtained from PURPLE predictions. Genes were considered

significantly associated with WGD status if they had an FDR q-value of less than 0.05. Pathway enrichment

analyses were performed with the hypeR (Federico and Monti, 2020) package (v1.9.0) using the MSigDB

Hallmark gene sets (v7.4.1) and the list of differentially expressed WGD genes. Pathways with an FDR

q-value of less than 0.05 were considered significantly associated with WGD status. Results are reported

in Table S10 and presented in Figures 5B and S5C.

DNA methylation

EPIC 850k methylation array

Epigenome analysis was performed on 119 MPMs (Figure S1A, Table S1), two technical replicates and

three adjacent normal tissues. Epigenomic studies were performed at the International Agency for

Research on Cancer (IARC) with the Infinium EPIC DNA methylation beadchip platform (Illumina) used

for the interrogation of over 850,000 CpG sites (dinucleotides that are the main target for methylation).

Each chip holds eight samples, and the 140 samples were spread over 19 chips. We used stratified

randomisation to mitigate the batch effects, samples were arranged over the chips to evenly distribute, in

order of priority, histopathological type, major epithelioid subtype, provider, sex, smoking status, age and

professional asbestos exposure. However, due to differences in the number of each histopathological type,

and date of sample arrival, four of the 19 chips contained exclusively one type. Technical replicates were

placed on different chips, whilst ITH and adjacent normal samples were placed on the same chip as their

corresponding tumour sample. The position of samples on each chip was then randomised.
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For each sample, 600 ng of purified DNA were bisulfite converted using the EZ DNA Methylation

kit (Zymo Research Corp., CA, USA) following the manufacturer's recommendations for Infinium assays.

Then, 250 ng of bisulfite-converted DNA was used for amplification, fragmentation and finally

hybridisation on Infinium Methylation EPIC beadchip, following the manufacturer’s protocol (Illumina

Inc.). Chips were scanned using Illumina iScan to produce two-colour raw data files (IDAT format).

Data processing

The resulting IDAT raw data files were pre-processed using R packages minfi (v. 1.34.0) and ENmix (v.

1.25.1). We first performed quality control checks on the raw data. Two-colour intensity data of internal

control probes were manually inspected to check the quality of successive sample preparation steps

(bisulfite conversion, hybridisation, extension, and staining; function plotQC, ENmix). There was one

outlier, the technical replicate MESO_056_T1, when comparing per sample log2 methylated and

unmethylated chip-wise median signal intensity (function getQC, minfi), and no samples displayed an

overall p-detection value > 0.01 (function detectionP, minfi). The poor quality sample, MESO_056_T1, was

excluded from subsequent processing. Sex was assigned using a predictor based on the median total

signal intensity of sex chromosomes, with a cutoff of -2 log2 estimated copy number difference between

males and females (function getSex, minfi). One sample was identified to be discordant between predicted

(female) and clinically reported (male) sex, MESO_071_T. Whole genome sequencing results from matched

blood confirmed that the participant was male, whilst the tumour displayed losses on chrY and gains on

chrX.

Raw data were then normalised using functional normalisation (function preprocessFunnorm,

minfi) to reduce technical variation within the data, and probe removal steps were performed to ensure

reliability and accuracy of the final dataset. Four groups of probes were removed: (i) poor performing

probes with a p-detection value > 0.01 in at least one sample (16,497 probes discarded), p-detection value

was computed by comparing the total signal (methylated and unmethylated) of each probe with the

background signal level from non-negative control probes (function detectionP, minfi) (ii) cross-reactive

probes (42,552 probes discarded), cross-reactive probes co-hybridise to multiple locations within the

genome and therefore cannot be reliably investigated (Pidsley et al. Genome Biology 2016 PMID:

27717381) (iii) probes on the sex chromosomes (17,144 probes discarded), and (iv) probes with SNPs

within the single base extension site, or target CpG site, at a minor allele frequency of > 5% (database

dbSNP build 137), (8,411 probes discarded, function dropLociWithSnps, minfi). This resulted in a

normalised, filtered dataset of 781,245 probes for 139 samples. Finally, beta and M-values were extracted

(functions getBeta and getM, minfi). Nine probes recorded m-values of -∞ for at least one sample, and

these values were replaced with the next lowest m-value in the dataset. The three normal tissues and one

remaining technical replicate were then removed from the beta and m matrices for the subsequent

analyses. This resulted in 135 samples, 122 for discovery and an additional 13 for ITH analyses.

Processing of publicly available DNA methylation data

DNA methylation array data (IlluminaHumanMethylation450k BeadChip array IDAT files) from the TCGA

mesothelioma cohort (Hmeljak et al., 2018) were downloaded from the GDC legacy archive
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(https://portal.gdc.cancer.gov/legacy-archive/search/), and from the Iorio et al. (2016) cell line cohort

from GEO repository (dataset GSE68379), respectively. Datasets were then imported into R and

pre-processed using R packages minfi (v. 1.34.0) and ENmix (v. 1.25.1) individually. Data processing was

performed as per the MESOMICS cohort, no samples failed QC steps or were discordant for sex. Probes

with p-detection value > 0.01, cross-reactive probes (Chen et al., 2013), probes on sex chromosomes, and

those associated with SNPs were discarded. This resulted in normalised, filtered datasets of 439,417

probes for 74 samples for the TCGA cohort, and 436,125 probes for 21 samples for the Iorio cell line

cohorts. Beta and M-values were extracted (functions getBeta and getM, minfi), and probes recording

M-values of -∞ for at least one sample were replaced with the next lowest m-value in the dataset.

Where DNA methylation array data was required for the MESOMICS and TCGA cohorts together

(see Integrative unsupervised analyses), data were combined and processed as follows. IDAT files for

126 MESOMICS samples (excluding ITH samples), and 74 TCGA samples were imported into R as separate

RGSets. The TCGA RGSet was converted to array type IlluminaHumanMethylationEPIC and combined with

the MESOMICS RGSet (function convertArray and combineArrays from R package minfi). All samples

passed QC. One sample was identified to be discordant between predicted and clinically reported sex,

MESO_071_T, as previously described. Subsequent processing was as per the MESOMICS cohort, and

56,308 probes were discarded (16,588 with p-detection value > 0.01, 26,254 cross-reactive, 8,838 sex

chromosome, and 4,628 SNP-associated). This resulted in a normalised, filtered dataset of 396,145 probes

for 200 samples. Beta and M-values were extracted (functions getBeta and getM, minfi), one hundred and

twenty eight probes recorded m-values of -∞ for at least one sample and were replaced with the next

lowest M-value in the dataset. Seven samples were then removed from the beta and m matrices (all

MESOMICS samples), three normal tissues, one technical replicate and three non-chimionaif samples,

resulting in a dataset of 193 samples.

Global methylation level

DNA methylation level at LINE1 repetitive elements was used as an estimate of global methylation level.

Methylation level at LINE1 repetitive elements were calculated using the REMP package (v 1.12.0)

functions to extract m and beta values of CpGs that are located in LINE1 (Zheng et al., 2017). REMP

functions were performed on the normalised, filtered M table containing 781,245 probes, and identified

23,906 probes located in LINE1 elements. Average M and beta values were then calculated for each

individual sample across all LINE1 probes respectively to obtain mean LINE1 methylation levels per

sample. The mean M values were used for statistical analysis of associations between global methylation

levels and features of interest (Table S2), while beta values were used for plotting significant findings. An

examination of the mean methylation level across LINE1 probes identified one outlier, MESO_040_T, for

which the global level of methylation appears particularly low in comparison to the rest of the cohort,

nevertheless this single sample only marginally influenced the relationship between LINE1 and other

variables mentioned in the main text.
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Regional methylation analysis

Methylation profile within promoter, enhancer and gene body regions were examined as follows. Array

probes were classified as promoter, enhancer, gene body or other, using annotations provided in the EPIC

850K array manifest b5 (version 1.0 b5, downloaded from:

https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html).

Probes with a value of “Promoter_Associated” in the column ‘Regulatory_Feature_Group’ were assigned as

promoter probes, those with any value in the column ‘Phantom5_Enhancers’ were assigned as enhancer

probes, and probes with a value including “Body” or “1stExon” in the column ‘UCSC_RefGene_Group’ were

assigned as gene body probes. Probes which fell into multiple groups were classified as promoter first, if

applicable, then as enhancer probes. The dataset of 781,245 probes contained 102,341

promoter-assigned probes, 23,858 enhancer-assigned probes, and 317,281 gene body assigned probes.

Average M and beta values were calculated for each individual sample across all promoter,

enhancer and gene body probes to obtain mean promoter, enhancer and gene body methylation levels per

sample respectively. The mean M-values were used for statistical analysis of associations between

regional methylation levels and features of interest, while beta values were used for plotting significant

findings.

Deconvolution of enhancer methylation profile

Deconvolution of enhancer methylation levels was performed with non-negative matrix factorisation

using R package MeDeCom (v1.0.0) (Lutsik et al., 2017). The 5,000 most variable enhancer probes

(variance calculated from beta values) were input to identify latent methylation components (LMC,

cell-type specific methylation profiles). Values of k = 3 and 𝜆 = 0.01 were selected by examining the

resulting cross-validation error plot; LMC values are reported in Table S2. Attributing the three resulting

latent methylation components to cell types was performed through Pearson correlation tests of

proportion of each LMC present in a sample against the proportion of individual cell types within each

sample (Figure S1H-J). Proportions of B cells, M1 and M2 macrophages, monocytes, neutrophils, NK cells,

T-CD8+, T-CD4+, T regulatory cells and dendritic cells were estimated from the result of quanTIseq

analysis of RNA sequencing data (Figure S1H), see Immune contexture deconvolution from expression

data. Proportions of sarcomatoid and epithelioid cell types were estimated by histopathological review by

the study pathologist FGS, see Pathological review (Table S1).

CpG island methylator phenotype index

A CpG island methylator phenotype (CIMP) index value was calculated for all samples as follows. Probes

located within Cpg islands (denoted as “Island” in the Epic 850k array manifest b5 column

Relation_to_UCSC_CpG_Island) were retained, the mean beta value across all probes within each island

(identified from manifest column Island_name) was calculated per sample resulting in beta values for

24,891 and 24,924 CpG islands, MESOMICS (EPIC array), TCGA (Hmeljak et al., 2018), and Iorio and

colleagues (Iorio et al., 2016) cell lines (HM450K array), respectively. The CIMP index was then calculated

as the proportion of these 24,891 or 24,924 islands with ≥ 30% methylation (beta value ≥ 0.3) per sample.

CIMP index values ranged from 0.32 to 0.56, meaning 32% to 56% of all islands represented on the array
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were considered methylated per sample. A proxy for this CIMP index was computed based on the mean

methylation level of promoter CpG islands for five genes only: CACNA1G (island coordinates (hg19):

chr17:48636103-48639279), IGF2 (chr11:2158951-2162484), NEUROG1 (chr5:134870740-134872051),

RUNX3 (chr1:25255527-25259005), and SOCS1 (chr16:11348541-11350803) (selected from

Weisenberger et al., 2006, Table S2).

A previously published method for calculating CIMP index that was also tested (in the MESOMICS

cohort only), here called CIMP-normal index, as follows (Blum et al., 2019). Probes located within CpG

islands were retained, the mean beta value across all probes within each island was calculated for the

three adjacent normal tissues available in the MESOMICS cohort. Islands whose methylation level was <

30% in all three adjacent normal samples were retained (n = 15,824), denoted as normally

hypomethylated islands. The CIMP-normal index was then calculated as the proportion of these 15,824

islands with ≥ 30% methylation (beta value ≥ 0.3) per sample. CIMP-normal index values ranged from

0.013 to 0.19, corresponding to 0.13% to 19% of normally hypomethylated islands to be hypermethylated

per sample (Table S2). There was a significant correlation between the two CIMP index values calculated

(p-value = 3.27e-66, r = 0.96). The method for CIMP-normal index was based on first identifying normally

hypomethylated islands, therefore requiring normal pleura or mesothelium. The normal tissues available

in the MESOMICS cohort are adjacent to mesothelioma samples, therefore that they are unlikely to be pure

non-tumour tissues, as such, the CIMP index rather than the CIMP-normal index was used for subsequent

analysis.

Annotating IlluminaHumanMethylationEPIC array probes with gene ID

Probes were assigned to a gene based on the contents of the EPIC 850K array manifest b5 column

‘UCSC_RefGene_Name’. Additionally, promoter and enhancer only associated probes which did not have

any gene annotation in the manifest column ‘UCSC_RefGene_Name’ were then assigned a ‘nearest gene’

annotation using the function matchGenes with the TxDb.Hsapiens.UCSC.hg19.knownGene library from R

package bumphunter.

Correlation between methylation and expression

Correlation between methylation levels and gene expression was performed as follows. Regional level

testing: probes were divided into promoter, enhancer and gene body (see Regional methylation

analysis), probe groups were then filtered to retain only those with a difference of > 0.1 beta value

between lowest and highest methylation level across 119 samples (samples input to MOFA analysis i).

Pearson correlation tests were performed between the m-value of all probes within a region group and

their corresponding gene expression level (normalised using variance stabilisation transformation,

filtered for genes having > 1 FPKM difference across 109 samples). This resulted in testing within 109

samples with both methylation and expression data of 37,067 promoter probes against expression of

8,444 genes, 20,308 enhancer probes against expression of 6,539 genes, and 262,820 gene body probes

against expression 15,825 genes. p-values were adjusted for multiple testing using Benjamini-Hochberg

method within region groups, probes were considered correlated with expression at q-value ≤ 0.05.
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Island level testing: probes located within Cpg islands (denoted as “Island” in the Epic 850k array

manifest b5 column Relation_to_UCSC_CpG_Island) were retained, the mean M-value across all probes

within each island (identified from manifest column Island_name) was calculated per sample resulting in

M-values for 24,891 CpG islands. Pearson correlation tests were performed between the M-value of each

island and their corresponding gene expression level (normalised using variance stabilisation

transformation, filtered for genes having > 1 FPKM difference across 109 samples). Corresponding genes

for each island were identified as the corresponding gene for each probe within the island (see Annotating

IlluminaHumanMethylationEPIC array probes with gene ID). This resulted in testing within 109 samples

with both methylation and expression data of 21,189 islands against expression of 12,992 genes.

Epithelial-mesenchymal transition methylation quantification

Epithelial-mesenchymal transition expression score. A score of epithelial-mesenchymal transition (EMT)

per sample was calculated from variance-stabilized read counts as the mean expression of 52

mesenchymal-associated genes minus the mean expression of 25 epithelial-associated genes, as

previously described (Hmeljak et al., 2018; Mak et al., 2016). A higher EMT score indicates a more

mesenchymal-like gene expression profile than epithelial-like. Results are reported in Table S2.

Methylation. EMT gene methylation levels were calculated as follows. Firstly, all probes within promoter,

enhancer, or gene body groups associated with at least one of the panel of 77 EMT-associated genes (Mak

et al., 2016) in the manifest column ‘UCSC_RefGene_Name’ or ‘nearest gene’ annotation (function

matchGenes, bumphunter) were selected. This resulted in 3,764 probes across all 77 genes, specifically

150 promoter probes corresponding to 17 EMT genes, 207 enhancer probes corresponding to 54 EMT

genes, and 2,446 body probes corresponding to 76 EMT genes. The mean M- and beta-values across all

epithelial and mesenchymal genes separately for each region group were then calculated per sample.

Epithelial (E) and Sarcomatoid (S) scores

For each sample, E- and S-scores were computed for the MESOMICS, TCGA, Bueno and cell-lines samples

using expression data (normalized read count for MESOMICS, TCGA, Bueno and expression array data for

cell-lines) and the method WISP from Blum et al. (2019). The method relies en unsupervised clustering to

identify three clusters, enriched for samples of the Epithelioid, Sarcomatoid histopathological types and

Normal cells, respectively, and then uses these samples to produce signature expression profiles that are

used to perform a deconvolution of all the samples using a constrained linear model. Results are

presented in Table S2, S13, and S14.

Genomic instability scores

We estimated genomic instability from all omic’s layers: genomic, expression, and methylation profiles.

From the genome, we calculated the proportion of changes in the genome in terms of copy number. From

expression data, we computed a hallmark score using hallmarks of cancer (Keifer et al. 2017) by summing

the normalized read count of the genes belonging to each hallmark. Finally, we used global methylation
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level (see Global methylation level section) as a third proxy of genomic instability. Values are reported in

Table S2.

Integrative unsupervised analyses

We performed four series of analyses, with different subsets of samples: (i) discovery analyses with all

our discovery cohort (MESOMICS cohort, 120 samples) for which WGS, RNA-seq, and/or 850 K

methylation array data are available, (ii) and (iii) replication analyses with the already published data

from Bueno (2016) (Bueno cohort, 181 samples after exclusion of non-chemonaive samples) and Hmeljak

and colleagues respectively (2018) (TCGA cohort, 73 samples in the curated list), (iv) combined analyses

integrating the MESOMICS, Bueno, and TCGA cohorts with a total of 374 samples, (v) replication

combining cell lines from the Iorio (2016)—for which whole-exome sequencing, expression arrays and

RNA-seq, 450K methylation arrays, and drug responses in the form of IC50 scores are available—(21

samples, 265 drugs) and the de Reyniès (2014) and Blum et al. (2019) datasets—for which expression

arrays and drug responses are available—(38 samples, 3 drugs). In addition, some single-omic analyses

are also described in this section.

Pre-processing of expression data

We used normalised read counts matrices (see RNA Sequencing) for (i), (ii),(iii) and (iv) encompassing

59,607 genes. Among these genes, those having less than one FPKM difference across the samples have

been excluded from the unsupervised analyses. Also, in order to mitigate sex influence on the expression

profiles, we removed genes from the sex-chromosomes. For each analysis, the top 5,000 most variable

genes were selected. Similarly, the 5,000 most variable genes from the normalized array expression of cell

lines (see expression array processing section) were selected. Whenever several probes were available for

a same gene, the one with the highest intensity was selected.

Pre-processing of methylation data

DNA methylation was available for both MESOMICS and TCGA cohorts. Firstly, we extracted the M-values

of the resulting 781,245, 426,213, and 396,145 CpGs from MESOMICS, TCGA, combined MESOMICS/TCGA,

and Iorio cell line cohorts cohorts respectively, which theoretically range from −∞ to +∞ and have a

bimodal distribution, being not affected by heteroscedasticity contrary to beta-values (Du et al., 2010).

Following the same approach as for expression data, sex-chromosomes CpGs have been excluded (see

Methylation section), and from the resulting 781,245, 426,213, 396,145, and 436,125 CpGs available

following QC (see DNA methylation Sequencing section), those having less than 0.1 β-value difference

across the (i) 119, (iii) 73, (iv) 192, and (v) 59 samples have been excluded from the unsupervised

analyses. Based on this annotation, the CpGs list representing the methylation data has been divided

according to their association with promoters, enhancers or gene body using EPIC 850K array manifest b5

(see Regional methylation analysis section) resulting in three data sets respectively named MethPro,

MethEnh, and MethBod gathering respectively, 37,884, 23,169 and 291,877 CpGs for analysis (i); 27,235,
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4,953 and 125,228 for analysis (iii); 37,951, 5,174, and 132,546 for analysis (iv), and 30,387, 4,757, and

111,774 for analysis (v). For each analysis and data set, the top 5,000 most variable CpGs were selected.

Pre-processing of copy number changes

Copy number changes data was available for both MESOMICS and TCGA cohorts. We assessed the global

(Total) and the minor (Minor) allele copy number states at the gene level using respectively the total

(total) and the minor (minor) copy number estimate given by PURPLE (see Copy number variant calling

section) on hg38 genome for the MESOMICS cohort, and SNP array estimates downloaded from the GDC

portal for the TCGA MESO cohort. Of note, for the TCGA samples, the copy number state has been aligned

on the hg19 genome. Hence, specifically for analysis (iv), the transformation of hg19 coordinates into

hg38 has been required to integrate copy number data from both MESOMICS and TCGA samples within

the same data set. To do so, we used liftOver R package (v.1.14.0) to transform segment coordinates into

hg38 genome. Hg19 positions not found by the software because overlapping uncertain regions such as

centromeres, have been replaced by the corresponding hg38 centromere coordinates. Then, for the

remaining positions not found in the hg38 genome, we first listed, for each segment, the overlapping

genes in hg19 and hg38 coordinates and compared the two lists. Then, we saved the same coordinates in

case of identical lists and expanded the coordinates to include the overlapping genes that are missing.

This expansion has been made only and only if the resulting segment length did not exceed an increase of

5% of the original segment and less than the maximum length difference observed in the transformation

process made by liftOver. If these criteria were not filled, the given gene was not included and thus, the

coordinates remained unchanged.

For the three analyses, the resulting value assigned to each gene is an average of the copy number

estimate of the tumor by taking into account the tumour purity (purity) estimated by PURPLE. As a result,

total = purity × total + (1-purity) × 2 and minor = purity × minor + (1-purity) with total and minor the

value assigned for each gene in the Total and Minor data set, respectively. In case of segment breaks

occurring within a given gene sequence, the mean value of the two segments overlapping is assigned to

the gene. In order to avoid redundancy, genes with exactly the same resulting copy number value in all

samples (because of their genome location proximity) were grouped as one single feature in the data set.

Only the genes or groups of genes altered in at least three samples have been selected. For consistency,

each feature of the resulting data sets (10,292 genes or groups of genes—Total and Minor) were centered

and scaled to unit variance using the scale R function, and SCNVs occuring on sex-chromosomes were

removed. Finally, the top 5,000 most variable genes or groups of genes were selected to be integrated.

Note that although available (see Figure S3A), because they were computed from exome data instead of

genome-wide data as the MESOMICS and TCGA cohorts, CNVs from the Bueno cohort were not included in

MOFA.

Pre-processing of genomic alterations data

Somatic structural variants data has been used only for the integrative analyses (i) and (iv), while somatic

mutations have been used in all analyses. Each gene, altered by somatic splicing or exonic, damaging

mutations or structural variants (see Damaging variants and driver detection section), has been
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integrated in a common data set. Of note, for missense mutations, we used REVEL annotation included in

ANNOVAR, for predicting the pathogenicity of these variants and used a 0.5 cut-off to restrict to the most

likely damaging missense events. We also removed genes altered in less than three samples. For

consistency, we selected genes in non sex-chromosomes, protein coding or long non-coding RNA genes

and with minimum expression of 0.01 FPKM within the cohort to be sure to include genes expressed in

mesothelioma. We integrated the resulting data sets as a boolean variable in the following analyses.

Pre-processing of drug response data

We used drug response data (used IC50 in units of mean µM) only for the analysis (v) on MPM cell lines,

combining the drug response of 265 drugs from Iorio. Among them, 3 have also been tested on the de

Reyniès cell lines and their responses are reported in Blum et al. (2019).

Multi-omic integrative analyses

To provide an integrative low-dimensional summary of the molecular variation across the samples, we

performed continuous latent factors identification using software MOFA (R package MOFA2 v1.1.21).

Indeed, MOFA is able to integrate different omic data sets by generating independent continuous

variables, named latent factors (LF) that transcribe most variation from the joint data sets. In total, we

performed four analyses (i) MOFA-MESOMICS (n = 120, Figures 1 and S1A), (ii) MOFA-Bueno (n = 181,

Figure S1C), (iii) MOFA-TCGA (n = 73, Figure S1C), (iv) MOFA-3-cohorts (n = 374, Figure S1B), and (v)

MOFA-Cell lines described above (n = 59, Figure S7A). Additionally, we ran MOFA on our discovery cohort

including the ITH samples (MOFA-ITH, n = 134) to evaluate the ITH within MPM samples. Also, note that

some samples did not have all the data sets chosen to be integrated available, such as for Bueno and

colleagues’ samples missing methylation array data. Fortunately, MOFA was shown to handle missing data,

including samples with entire ‘omic techniques missing, by using the correlated signals from several

datasets to accurately reconstruct latent factors (Arguelaget et al. 2018).

MOFA was performed independently for each analysis, setting the number of latent factors to 10

(function runMOFA from R package MOFA2 v1.1.21). The summary of all these runs are given in Figures

1, S1A-G, and S7 and coordinates and proportions of variance explained for (i)-(iv) are given in Table S2,

while those for MOFA-ITH are given in Table S4, and those for the cell lines (model v) are given in Table

S14. To compare multi-omic with uni-omic unsupervised analyses, we correlated the MOFA coordinates of

the samples shared by MOFA and the PCAs with their coordinates in PCA-exp (see RNA Sequencing).

Results show that the main 4 MOFA factors all have a counterpart in the PCA. For the MOFA-Cell lines,

weights of the features from the drug layer and their correlations with the latent factors are represented

in Figure S7H-I and Table S14.

Interpreting MOFA latent factors

We tested the association between each LF and clinical, morphological, and epidemiological variables

using linear regression (Table S2). As quality control, we also assessed their associations with the

technical variables selected to detect potential batch effects in the data using linear regression (Figure

S6D). The proportion of cells that belong to different immune cell types (see Immune contexture
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deconvolution from expression data section) has been quantified and correlated with each dimension

using Pearson correlation tests (Table S2).

Survival prediction. In order to evaluate the ability of the MOFA factors to predict survival, we compared

twenty-two survival models: (i) a model based on the three histopathological types (categorical variables,

MME, MMB, and MMS); (ii) a model based on the proportion of sarcomatoid content (continuous variable,

fitted with a penalized cubic spline); (iii) a model based on the log2 ratio of CLDN15/VIM (C/V)

expression in Bueno and colleagues (2016) (continuous variable, fitted with a penalized cubic spline; see

values in Table S2); (iv-vi) a model based on the E-score, S-score and the combination of the two,

respectively from Blum and colleagues (2019) (continuous variable, fitted with penalized cubic splines

without interaction; see values in Table S2); (vii) a model based on AI prognostic score (continuous

variable, fitted with a penalized cubic spline); (viii-xi) models based on the a-dimensional summary of

molecular data using either LF1, LF2, LF3, or LF4 as a continuous variable, respectively (each with a single

continuous variable, fitted with a penalized cubic spline); (xii-xxii), models based on the two, three,

four-dimensional summary of molecular data using both the combination of two, three, and four of the

four LFs as continuous variables, respectively (continuous variables, fitted with penalized cubic spline

without interaction). To do so, we assessed their fits using the time-dependent Area Under the ROC Curve

(AUC) and its integral (iAUC; Chambless and Diao, 2006; R package survAUC, v.1.0–5), computed using the

test set. This time-dependent AUC is used to evaluate the ability of an explanatory variable to predict

patients with a survival lower or higher than a given threshold. Its integral summarises the results of

time-dependent AUC over the threshold value, providing an interpretation similar to that of classical AUC.

In each model, we included sex and age; penalized splines were fitted using the pspline function from

package survival, with three degrees of freedom. Because of the high proportion of missing asbestos and

smoking status information and the absence of significant association between these variables and

survival in univariate models (see Survival analysis section), smoking and asbestos were not included in

the model as covariables. Nevertheless, results for survival prediction from these twenty-two models and

including both asbestos and smoking status as covariables are also reported in Table S13.

To assess the out-of-sample prediction performance, we used 4-fold cross-validation in the

MESOMICS cohort (Figures S6H-J and Figure 6B). We also assessed the prediction performance on a

completely independent cohort by fitting the model on the whole MESOMICS cohort and testing it on the

TCGA cohort, using bootstrapping (n=2,000 bootstraps) on the test set to assess variation in performance

(Figure 6B). Standard errors in the iAUC mean estimate were computed either from the 4 folds or the

2000 bootstraps, respectively for the MESOMICS and TCGA. We also looked at the model fits on the

MESOMICS cohort (Figure S6 E-G and Table S13), which confirmed that the MOFA with 4 LFs (xxii)

provided the best fit of all models, and also led to the lowest Akaike Information Criteria (AIC=554.324 for

the model with the LFs, vs AIC=569.806 for the best AIC of non-MOFA models, that of the S-score +

E-score; Table S13), which shows that the greater number of parameters in the MOFA survival model is

not enough to explain its better performance.
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Intra tumor heterogeneity analyses. The ploidy, morphology, and CIMP factors represented in Figure 2

were identified in the MOFA-ITH by correlating the coordinates of non-ITH samples in the MOFA-ITH with

their coordinates in the MOFA from Figure 1, and choosing the largest match (correlations were all r>0.9).

To avoid spurious ITH to be detected, and because the ploidy factor overwhelmingly represents variance

in genomic data (CNVs; Table S4), samples with missing WGD information were not represented in the

ploidy factor (NA values in Table S4). Similarly, the Pareto front was fitted on the MOFA-ITH using the

method described below (Table S4). Euclidean distances between each pair of samples were then

computed for each factor of the MOFA-ITH separately (Figures 2A and S2A). Proportions of the tumor

from different components (% Sarcomatoid, % Acinar, % immune infiltration) presented in Figure 2B

matched that reported by the pathologist, and include the constraint that % Sarcomatoid + % Epithelioid

+ % infiltration=100%, and % Acinar <= % Epithelioid (see data in Table S4).

Evolutionary tumor trade-off analyses

Pareto theory fit

The Pareto front model has been fitted to different sets of samples using the ParetoTI R package

(https://github.com/vitkl/ParetoTI, release v0.1.13), following the above mentioned analyses (i), (ii), (iii)

and (iv), and additionally, on two different kinds of molecular maps: using MOFA, restricting to latent

factors LF1, LF2, LF3, and LF4 and using expression PCA as technical validation (see RNA Sequencing). In

brief, the algorithm tries to find polyhedra by testing successively 1 to n axes adding them one after

another in a decreasing order of transcriptomic variance explained. For this technical reason, the MOFA

LFs have been ordered as follows by decreasing transcriptomic variance explained: Morphology factor

(LF2), Adaptive-response factor (LF3), CIMP factor (LF4), and Ploidy factor (LF1). For each number n of

axes used, ParetoTI identifies the position of the n+1 = k vertices (archetypes) in the molecular map

defined. Each polyhedron fit is assessed by the ratio of the volume of the best-fitting polyhedron to the

volume of the convex hull of the data (t-ratio). The more the data follows the Pareto optimality theory, the

more the t-ratio metric, higher than 1, approaches 1. Finally, the algorithm re-calculates the t-ratio on

1000 shuffles keeping the distribution of loading on each axis but not the associations between them and

computes a one-sided p-value to estimate the statistical significance of the fit.

Here, we chose to represent the most significant fit with the smallest number k because of the

limited number of samples. Using MOFA axes, we found k = 3 archetypes in the LF2-LF3 space and

reproduced, for each analysis (i), (ii), (iii), and (iv), the fit using the corresponding expression PCA in the

PC1-PC2 space (see Figure S1G for the fit for model ii, and iii). In order to evaluate the reproduction of

the three archetypes discovered in (i) (MESOMICS cohort) into (ii) (Bueno’s cohorts) and (iii) (TCGA

cohort), we used (iv) (3-cohorts) and correlated the pairwise distance between archetypes and samples

within each molecular map (Table S3). Overall, we found a strong concordance between the three

analyses (minimum absolute Pearson’s r = 0.84).

Interpretation of MPM polyhedron

To further characterise the phenotype of each archetype we used the proportion of each archetype for

each sample estimated by ParetoTI. These proportions have been used as continuous variables to further
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test the association between each archetype and clinical, epidemiological, morphological variables, as well

as molecular data (Table S3).

More specifically, we inferred each archetype phenotype by performing integrative gene set

enrichment analysis (IGSEA) on the expression data. To do so, we used the ActivePathways r package

(https://github.com/reimandlab/ActivePathways, release v1.02) which is a tool able to integrate different

sources of molecular variations to assess the enrichment of GO terms, by combining p-values from

different association tests between sources and gene level data. Here, we integrated these proportions as

different axes of molecular variation. We restricted the GO terms to a minimum size of 20 genes to a

maximum size of 1000 genes as the default parameters of ActivePathways. To infer the pathways

specifically altered in each archetype, we integrated the Pearson’s p-value correlation of each gene from

the expression matrix of 59,607 genes with the proportion from each archetype and we selected the

pathways for which the enrichment source only correspond to the tested archetype. We performed two

kinds of analyses: one restricted to the genes positively correlated with the proportion to get the

upregulated pathways and a second one restricted to the negatively correlated genes to identify the

down-regulated pathways. In all the analyses, the proportion of enriched genes within the enriched

pathways ranged from 0.04 to 0.75 (Table S3). Used as a quality control of the enrichment results, we

assessed the fold change between the 10% closest samples vs the 10% furthest samples from each

archetype of the enriched genes belonging to each enriched pathway. More specifically, in order to assign

universal cancer task to each archetype, we referred to Hausser et al. (2019) and examined the GO term

descriptions to gather pathways in super-pathways as reported in Table S3.

Similarly, we tested the association between each archetype and genomic event using linear

regression and more specifically, in order to infer genomic event effect-size on the Pareto front, we

calculated the vector linking the centroids of the altered and wild-type groups (centroids function from

sda R package v.1.3.7). To infer to what extent alterations drives the tumour cells toward specialisation,

we followed the method from Hausser et al. (2019) and calculated the alignment of vectors with the front

(angle between the Pareto front and the vector built from the altered and wild-type groups within the

4-factors space), after having normalised each LF (centering and division by standard deviation). Finally,

we evaluated the driving role of genomic events associated to at least one archetype (Table S11) using

these two variables (vector size and angle to Pareto front) by permutation tests (with 1,000

permutations) in which we randomised, one genomic event at a time, the altered and wild-type groups

and compared this distribution from shuffled values with the observed values (Figure 5C).

Clonal reconstruction

Small variants subclonal reconstruction

To obtain accurate estimates of variant allelic fractions (VAFs), we restricted the model fitting to somatic

alterations with high-confidence VAF estimations (read depth greater than or equal to 60X and VAF

greater than or equal to 0.05), and focused on samples with matched normal tissue or blood (n=43). We

only selected variants in high-confidence CN calls: regions with confident calls, excluding centromeric

regions (based on UCSC annotation) that have notoriously more difficult CNV calling due to larger

variance in reads mapping.
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We inferred whether small somatic variants were clonal or subclonal using R package MOBSTER

v1.00. MOBSTER uses a mixture model to identify different clones in the VAF distribution. Importantly, the

model uses evolutionary theory predictions to perform more accurate subclonal reconstructions, and can

test whether subclones are under natural selection or neutral evolution by testing the presence of a

“neutral tail” component, a Pareto type I distribution that is expected to be present in exponentially

growing tumors evolving under neutral evolution (Williams et al., 2016). For each sample, we first fit a

mixture model to the VAF distribution from variants in regions with the most frequent CN (major and

minor CN of 1 for most samples, major and minor CN of 2 and 1 or 3 and 1 for WGD samples, and 1 and 0

or 2 and 0 for GNH samples). For each sample, we compared the fit of models with or without neutral tail

and with 1 to 3 clusters, with 10 repetitions per model with different initializations, resulting in 6×10

models per sample; we chose the best model using the ICL statistic. We assessed the robustness of the fit

using parametric bootstrapping; only models that were correctly inferred in more than 80% of the

simulations were used. Of Note, the clonal cluster also provides an estimate of the sample purity based on

the VAF distribution. Multiple clusters denoting the presence of a subclone were identified in 13 samples.

All 13 samples presented a single subclone, and all were in the low-adaptive response factor range (close

to archetype 3), as expected from the high purity required to detect subclonal alterations (see Table S1);

3 samples presented a neutral tail, while the 10 others presented a selected subclone (Figure S5I).

We finally assigned mutations that were not included in the model fit (small variants in regions

with another CN, subclonal CNVs) to clones and subclones using their VAF and the fitted model. For each

of the 13 samples where a subclone was identified, we recovered the cutoff cancer cell fraction (CCF)

separating clonal and subclonal alterations according to the selected MOBSTER model. We then converted

this threshold CCF to a threshold VAF by taking into account the CN state of each alteration using the

formula VAFthres = CCFthresɸ/[CNnormal ✕ (1-ɸ) + CNtotal✕ ɸ], where CNnormal is 2 for autosomal regions and 1

for sex chromosomes, CNtotal is the total CN of the tumor, and ɸ is the MOBSTER-estimated purity. Variants

were then assigned to the clonal and subclonal categories depending on which side of the threshold they

fell. Note that this approach is similar to that used in the DPClust software (Nik-Zainal et al., 2012), but

using the recent evolutionary-theory aware probability distributions from MOBSTER instead of Dirichlet

distributions. The proportion of clonal and subclonal alterations in the 13 samples where this analysis

was possible are reported in Table S1 and Figure S5J.

Note that the small number of samples with such clusters of subclonal alterations detected

allowed to further check visually the consistency between the fits of different CN regions (e.g., CN neutral

LOH regions should have two clonal modes-one corresponding to variants in 1 or 2 copies-while diploid

regions should have only clonal mode). Results for alterations in the driver list from Figure 4 are

presented in Figures S5G and I.

CNV clonality reconstruction

Clonality of CNVs was assessed using the estimated fractional copy number from PURPLE. Indeed, the

PURPLE algorithm uses a penalised estimation of CN so that clonal CN segments are expected to have CN

values close to an integer while subclonal segments have non-integer CN values; we thus classified as

subclonal segments with a CN deviating from an integer value (fractional part between 0.2 and 0.8).
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Because of the difficulty of inferring the clonality of CNVs, we also assessed the clonality of CNVs using

software Facets (Shen and Seshan, 2016; https://github.com/IARCbioinfo/facets-nf; release 2.0); only

CNVs consistently called as clonal or subclonal by PURPLE and Facets are reported in Figure S5H (see

Table S7 for all CNV clonalities). Although CNVs are generally called more accurately than small variants

in T-only samples, for consistency with the rest of the clonality and evolutionary analyses, we restricted

the analyses to tumors with a matched normal (n=43).

Inferring the timing of alterations

Due to the low tumor mutational burden in MPM, we restricted the analysis to samples with large scale

events (WGD or more than 10% of the genome with LOH), and to samples with matched normal tissue or

blood.

Molecular time dating

Similarly to the approach from Gerstung and colleagues (2020) implemented in package MutationTimeR,

copy number gains and copy neutral losses of heterozygosity (LOH) were dated by comparing the number

of alterations that were present in a single copy (that appeared after the event), Nr, to the ones that were

present in multiple copies (that appeared before the event) Nl (Figure S5F).

We computed Bayesian credibility intervals (BCI) for the timing of each gain and compared

results with parametric bootstrapping confidence intervals (CI). BCI were obtained by assuming that Nr

followed a Poisson distribution of parameters λr and λl, and uniform prior distributions over the interval

[0,104] with the constraints that λr < λl , because the mutation rate λl includes both mutations that occurred

before and after the copy number gain, while λr is limited to mutations that occurred before the gain;

posterior distributions were numerically computed using a discrete grid approximation of size 1001, and

used to compute the posterior distribution of timings te. Bootstrapping CI proceeded as in Gerstung and

colleagues (2020), first drawing 1000 Nri values from a Poisson distribution of parameter Nr, and finally

inferring te from the simulations. We show in Figure S5E that both approaches provide very similar

results (correlation between the center of the CI and BCI across dated events is r=0.99, p=4.8×10-14), but

the Bayesian estimates have the advantage of ensuring that 0<te<1, because of the prior imposing that λr <

λl , so they are the ones reported in the main text.

Synchronicity of duplications in the WGD sample was assessed by checking the overlap between

CI for gains in the different segments considered.

Chronological time dating

We used the method validated by Gerstung and colleagues to date amplification events (Gerstung et al.,

2020) first estimated the temporal accumulation of CpG to TpG mutations ([C>T]pG), mostly due to

spontaneous de-aminations that would accumulate at an approximately constant rate through time. In

order to check whether the small number of alterations present in some segments led to biases in our

estimates, we performed the same analysis but using all mutations instead of just [C>T]pG mutations.

Results showed no significant systematic bias (linear regression coefficient estimated at 0.85, with 95%CI

[0.69,1.01]; Figure S5D), and CI of [C>T]pG and CI of all mutations overlapped except for MESO_008, a

non-chemonaive tumor that showed an excess of chemotherapy associated mutational signatures that
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likely influenced the proportion of signatures associated with ageing relative to other signatures. Overall,

our results show that using all mutations increases the precision of estimates but does not bias the results

as long as we exclude non-chemonaive samples, probably because MPM do not have SBS signatures of

exogenous sources but rather only a slow temporal accumulation of mutations (see mutational

signatures section), so results in the main text correspond to results for all mutations. Finally, we

checked whether mutation accumulation showed a sign of temporal acceleration by comparing the

number of small variants corrected for the effective genome size (defined as in Gerstung et al. 2020 as

1/mean(mi/Ci), with mi the number of copies of alteration i and Ci the total CN at this position) with the

age at diagnosis (Figure S5G); the analysis showed that small variants fit a linear accumulation model,

thus we used a rate of x1 for chronological dating.
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Figure 6. Clinical relevance of the four identified factors.
(A) Forest plot of hazard ratios of MOFA latent factors for overall survival (OS). 
(B) Integral AUC (iAUC) of 11 Cox proportional hazards survival models: (i) a model based on the three histopathological types; (ii) a model based 
on the proportion of sarcomatoid content; (iii) a model based on the log2 of the CLDN15/VIM (C/V) expression ratio from Bueno et al. (2016); (iv-vi) 
models based on the E and S-score from Blum et al. (2019), individually and in combination; (vii) a model based on the AI prognostic score from 
Courtiol et al. (2019); (vii-xi) models based on each MOFA LF individually; (xii), a model based on all four MOFA LFs; (xiii) a model based on 
simpler proxies of the four MOFA LFs. Left: iAUC in the MESOMICS cohort, estimated using cross-validation. Right: iAUC estimated in the TCGA 
cohort. Bars correspond to standard errors of estimations (based on cross-validation sets for MESOMICS and bootstrapping for TCGA).
(C) Increase in AUC in models (ii)-(xi) compared to model (i) as a function of OS, in two sample groups: long- (OS > 30 months) and short-
survival (OS < 10 months), in the MESOMICS cohort. Increases in AUC are quantified as a percentage of change compared to the AUC of model (i).
(D) Kaplan–Meier curves of OS for the three histopathological types (left) and prognostic groups from Cox model (xi) predicted using cross-
validation (right), in the MESOMICS cohort. Dashed lines represent the median OS of each group. Prognostic groups were defined as the 25% 
of samples with the most extreme good and bad prognostic based on the cross-validated predictions of the Cox model (xi). Up: MKI67 expression 
level in nrc in the good and bad-survival prognostic groups defined by Cox model (xi). 
(E) Correlations between drug sensitivity (IC50) of MPM cell lines and MOFA factors. Drugs have been selected from Figure S7 H-I, as being 
significantly correlated with at least one of the four factors and displaying an extreme factor weight within the empirical feature weight distribution 
(within 2 standard deviations of the mean). Of note, only drugs for which at least 10 cell-lines have been tested have been considered.
(F) Correlation between four clinically accessible features and MOFA factors.
See also Figures S6 and S7 and Tables S13 and S14.
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