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Abstract

The development of AlphaFold2 was a paradigm-shift in the structural biology com-

munity; herein we assess the ability of AlphaFold2 to predict disordered regions against

traditional sequence-based disorder predictors. We find that a näive use of Dictionary

of Secondary Structure of Proteins (DSSP) to separate ordered from disordered regions

leads to a dramatic overestimation in disorder content, and that the predicted Local

Distance Difference Test (pLDDT) provides a much more rigorous metric. In addi-

tion, we show that even when used for disorder prediction, conventional predictors can
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outperform the pLDDT in disorder identification, and note an interesting relationship

between the pLDDT and secondary structure, that may explain our observations, and

hints at a broader application of the pLDDT to IDP dynamics.

Introduction

Predicting the three dimensional structure of a protein from its primary amino acid

sequence is a grand challenge in molecular structural biology dating back to the late

1950’s1,2. About a year ago in late autumn 2020, AlphaFold2, a deep-learning program,

provided a a paradigm-shift in this problem3. Not only did it outperform all other

groups at the 14th Critical Assessment of protein Structure Prediction (CASP14)3,

but it did so with an astonishing accuracy and a large margin, and consequently caused

immediate enthusiasm in related fields such as drug development4.

The full problem of protein folding is however, multi-faceted, and despite Al-

phaFold’s stellar success, many problems and open questions remain. As has al-

ready been pointed out by several authors5–7, dynamics of protein folding remains

a formidable problem; prediction of the folding pathways, effects of mutations, the

solution environment, aggregation and, as a very particular category, intrinsically dis-

ordered proteins (IDPs).

IDPs remain a major challenge since they are almost entirely devoid of native struc-

ture and also because they function primarily as a conformational ensemble8–11 with

folding free energy landscapes that are relatively flat12–14. This is a direct consequence

of their amino acid sequences15–17, in particular the enrichment of disorder-promoting

residues over and above order-promoting ones18–21. The application of AlphaFold2 to

the prediction of disordered regions and proteins has only briefly been discussed in the

literature6,7,22, and its performance against traditional predictor methods is currently

absent.

In light of the recent publication of the Critical Assessment of protein Intrinsic Dis-

order (CAID) benchmark23, detailing the performance of over three dozen sequence
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based disorder predictors and their datasets, we saw an excellent opportunity to bench-

mark AlphaFold2. Herein we compare the performance of AlphaFold2 to the top per-

forming sequence predictors as determined at CAID. We find that a näive application of

structure assignment provided by DSSP24, the primary method for assigning secondary

structure based on protein, geometry for the determination of disordered regions, is

inaccurate.

The predicted Local Distance Difference Test (pLDDT), which is correlated to

the confidence of the structure prediction, provides a better metric for identifying

ordered and disordered regions. Furthermore, we find that traditional predictors are

capable of outperforming AlphaFold2 in disorder prediction even when the pLDDT

is used. We also show how secondary structure and pLDDT scores are interestingly

related, providing a potential explanation for the observed performance discrepancy

and suggesting a possible link between IDP dynamics and the pLDDT.

Methodology

Dataset generation

Two datasets were used in this work, DisProt and DisProt-PDB derived from the

DisProt database25. Both reference sets are based on the CAID benchmark dataset

and are composed of 475 targets, annotated between June 2018 and November 2018

(DisProt release 2018 11). Note that this is less than the 646 targets used at CAID

because AlphaFold2 predicted structures do not exist for some sequences. In the

DisProt reference set, all residues not labeled as disordered (1) are labelled as or-

dered (0). In the DisProt-PDB set, residues for which structural data are available

are labelled ordered, however a disorder assignment in the DisProt database over-

rides this order assignment. All residues not covered by either DisProt annotation

or PDB structures are masked and were excluded from analysis. As a result the

DisProt-PDB dataset contains no ‘uncertain’ residues, all residues considered in this
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set have either a DisProt annotation or belong to a PDB structure. Additional de-

tails pertaining to dataset construction are provided in Supplementary Information

and the full list of proteins, structures and combined disorder data are available at

https://github.com/SoftSimu/AlphaFoldDisorderData.

AlphaFold2 structures were downloaded from the EMBL database (https://alphafold.

ebi.ac.uk/) and run using DSSP24 to assign secondary structure. We assume residues

belonging to helices, strands, or H-bond stabilized turns are ordered (0) and all other

residues are disordered (1). We refer to this as the DSSP predictor or DSSPp for short.

We also collected the predicted Local Distance Difference Test (pLDDT) for each

structure. Every residue in an AlphaFold2 structure is assigned a value, scaled between

0 and 100, that estimates how well the experimental and predicted structure would

agree based on the Local Distance Difference Test (lDDT)3,22,26. We transform this

value according to the equation,

tpLDDT = 1− pLDDT/100, (1)

as suggested by Tunyasuvunakool et al.22, giving us a pLDDT-based predictor of dis-

order, where 1 is disordered and 0 is ordered. We refer to this prediction method as

the transformed pLDDT or tpLD for short.

We can discretize this pLDDT predictor by classifying a residue with a pLDDT

score ≥ n as ordered (0) and disordered (1) otherwise; we use pLDDTn (or pLDn for

short), to indicate this binary predictor. Thresholds for n were chosen based on the

Matthews correlation coefficent (MCC), that has been documented to be an excellent

metric for assessing the accuracy of binary classifiers27 and was the approach used at

CAID23.

The CAID dataset contains predictions made by three dozen predictors; we se-

lected the top 10 performing on the DisProt and DisProt-PDB giving a combined non-

redundant set of 11 (fIDPnn28, SPOT-Disorder229, RawMSA30, fIDPln28, Predisor-

der31, AUCpreD32, SPOT-Disorder133, SPOT-Disorder-Single (SPOT-Disorder-S)34
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, DisoMine35, AUCpreD-np32 and ESpritz-D36). The sequence predictors provide a

score between 0 and 1 inclusive as well as a binary disorder/order assignment. No modi-

fication to the classification thresholds for these predictors was attempted. Descriptions

of disorder prediction methods are provided in the Supplementary Information of the

original CAID paper23.

For two vectors v and w we compute the RMSD as

RMSD =

√√√√ 1

m

m∑
i=1

|vi − wi|2,

where m is the number of elements (residues) in each vector (protein), v and w. Given

binary vectors a random predictor has an RMSD of ∼0.7 on a uniform dataset. Receiver

operating characteristic (ROC), area under the curve (AUC), precision-recall, F1-score

and correlation analysis were all performed using scikit-learn37 and kernel density esti-

mates (KDE) analysis was performed in seaborn38. Descriptions of statistical methods

are provided in Supplementary Information.

Results

pLDDT performs better than näive use of DSSP for disor-

der prediction

Improved performance with tpLD (Eq. 1) over and against DSSPp is evidenced by the

ROC curves and AUC values (Figs. 1a, S1a), as well as the precision-recall (PR) curves

and Fmax values (Figs. 1b, S1b) on both the DisProt-PDB and DisProt datasets (Ta-

bles S1 and S2). Thresholds for the binary pLDn predictor were selected based on

the Matthews correlation coefficients which gave values of 76 and 68 for the DisProt

and DisProt-PDB datasets respectively (Tables S3 and S4). We refer to these discrete

predictors as pLD76 and pLD68. Unsurprisingly, these values agree with the minimum

distance from the ROC curve to the top left of the plot (i.e. (0,1)) (Fig. 1). The dif-
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ference between these two values undoubtedly stems from the nature of the underlying

datasets, while DisProt-PDB contains no uncertain residues, Disprot does. For analysis

purposes, we opt to use a combined pLDDT metric, denoted pLD72 that is the mean

of these two. Data using multiple pLDDT values is provided in Tables S1 and S2.

RMSD calculations comparing DSSPp and pLD72 demonstrate improved perfor-

mance for all protein classes, including highly disordered (i.e. > 95%) and highly

ordered (i.e. < 10%), irrespective of dataset (Fig. 2). We note that overall RMSD

values are markedly lower for the DisProt-PDB dataset, again likely a result of it lack-

ing ”uncertain” residues – residues for which no PDB or experimental data exists.

Shifts towards lower RMSD irrespective of dataset, or protein length and disorder con-

tent, are also evident for pLD72 (Figs. S2, S3). Regression analysis revealed stronger

correlations between pLD72 and the traditional disorder predictors with respect to

residue-wise disorder RMSD when compared with DSSPp (Figs. S4–S7).

Considering global disorder content prediction, we find that on the DisProt dataset,

pLD72 shows slightly better performance than DSSPp, with a lower mean and a more

accurate distribution; however, we note that both methods significantly overestimate

disorder content (Fig. 3). On the DisProt-PDB dataset, closer agreement between

pLD72 and DSSPp is evident based on the mean with both methods returning values

similar to experiment. The two distributions are, however, notably different. While

that produced by pLD72 has a peak around 0.15 in close agreement with experiment,

the peak in the distribution produced by DSSPp is larger and shifted to a higher value

around 0.3. This is all to say that a näive application of DSSP for the prediction of

disordered and ordered regions for AlphaFold2 structures, specifically the assumption

that helical and strand regions are ordered and coiled regions are unstructured, leads

to poorer prediction (i.e., higher RMSD, lower AUC and higher Fmax) of disordered

regions and an overestimation in disorder content.
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Sequence predictors can still outperform AlphaFold2 on

disorder prediction

Comparing the pLDDT-based and DSSPp predictors to various sequence-based pre-

dictors revealed performance differences amongst the methods. Notably, tpLD (Eq. 1)

performed exceptionally well on the DisProt-PDB dataset posting the largest Fmax

(0.784) and one of the largest AUC (0.905) values of the methods considered (Fig. 1,

Tables S1 and S3). This was also evidenced by pLD72 which had the highest MCC

(0.701) (Table. S1) and one of the lowest RMSD values (Fig. 2) on the Disprot-PDB

dataset. Interestingly, on the DisProt dataset, both tpLD (Eq. 1) and DSSPp per-

formed significantly worse and were readily outperformed by the other predictor meth-

ods, in particular fIDPnn (Fmax: 0.357 (DSSPp), 0.429 (tpLD), 0.457 (fIDPnn); AUC:

0.635 (DSSPp), 0.731 (tpLD), 0.794 (fIDPnn)), which outperformed all other predic-

tors, as evidenced by the ROC, PR, and RMSD analyses. We note that with respect

to MCC, pLD72 still performed well on both the DisProt and DisProt-PDB datasets

achieving scores of 0.310 and 0.697 respectively (Tables S1, S2). In agreement with

the CAID results we found that SPOT-Disorder2, fIDPnn, RawMSA and AUCpreD

all performed exceptionally well (Figs. 1 and S1, Tables S3 and S4)23.

Secondary structure codons (SSC) reveal relationships be-

tween the pLDDT and secondary structure

In order to explain the discrepancy between the pLDDT-based and DSSP predictors

with respect to local and global disorder prediction, we considered how pLDDT val-

ues were assigned to the secondary structures. Kernel density estimates (KDE) of

the distribution of pLDDT values sampled over all residues reveal a strong left-skew

for all but the coil secondary structure which exhibits a right-skewed bimodal dis-

tribution with peaks around 94 and 35 (Fig. 4). Residues assigned to β-strand and

β-bridge structures are the most likely to be assigned to large pLDDT values, followed

by helical and H-bond stabilized turns. To provide a more detailed picture of the dis-
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tributions, we introduce the concept of a secondary structure codon (SSC), a triplet

describing the local secondary structure at a given residue. Analysis of the distribu-

tions of pLDDT values for each SSC revealed that residues predicted to belong to both

the ends (HHC/CHH/HHT/THH) and middle (HHH) of helices can have pLDDT val-

ues <50 (Fig. S8), this was not observed for residues belonging to the middle (EEE)

and ends of β-strands(EEC/CEE/EET/TEE) (Fig. S9). For highly coiled residues

(CCC/CCT/TCC), both high (> 80) and low (< 50) pLDDT values were observed

(Figs. S10 and S11).

Discussion

AlphaFold2 has been a paradigm-shift in structural biology, providing a tentative so-

lution to the protein folding problem that has persisted over half a century1. Since

the time that problem was posed by Perutz and Kendrew, a new class of proteins has

been discovered and IDPs have become the focus of much study8,9,39,40. Over the past

two decades much effort has been devoted to developing methods for identifying dis-

ordered regions given the primary sequence of a protein23,41–45, herein, we assess the

applicability of AlphaFold2 to this problem.

We find, and strongly stress, that simply inferring a residue in an AlphaFold2

structure assigned by DSSP to a helical, strand, or H-bond stabilized turn is ordered,

and otherwise is disordered, results in an overestimation of disorder content and a

poor prediction of disordered regions. Instead, employing the pLDDT, a measure of

the expected position error at a given residue and originally purposed to assess inter-

domain accuracy, provides a much more accurate metric for determining global and

local disorder content. Using the pLDDT as a disorder predictor metric we observe

impressive performance on the DisProt-PDB dataset when compared to conventional

disorder predictors (Fig. 1). While poorer performance is observed on the plain DisProt

dataset, pLDDT does outperform näıve use of DSSP in both cases.

Secondary structure and global disorder analyses point to a potential root of the
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prediction discrepancy between pLDDT and DSSP, simply put, for AlphaFold2, not all

secondary structures are created equal. AlphaFold2 will readily assign a coiled geom-

etry and a high pLDDT value to the same residue, and conversely assign low pLDDT

values to structured regions (Fig. 4). While a DSSP predictor assumes that coils are

disordered and helices are ordered, a pLDDT predictor will account for the fact that

a coil may be more ordered and a helix more disordered for certain residues in certain

proteins. It is this former case that is likely resulting in the improved performance

observed for pLDDT and underscores the importance of the nuance provided by this

metric for disordered protein prediction.

Second to the problem of predicting the (dis)orderedness of a region within a protein

is predicting the structural dynamics and transitions (i.e. order-to-disorder, disorder-

to-order, disorder-to-disorder) that an IDP may undergo41,46. In light of the secondary

structure analysis, the pLDDT may be just such a means for extracting this informa-

tion, namely the transientness of secondary structures, their potential for transition

upon binding and their functional importance. A helix with a low pLDDT may be

more transient, existing frequently in a disordered, unfolded state, than a helix with

a high pLDDT and conversely, a coiled region with a high pLDDT, may suggest a

disorder-order transition and/or its conserved role in some biophysical interaction. We

here reiterate that by their very nature IDPs exhibit a high degree of conformational

flexibility, allowing them to interact with multiple binding partners in a variety of

ways47–53. While it is the case that a single, static, AlphaFold2 structure cannot ad-

equately describe these often large conformational ensembles8–10, the ability of the

program to predict with relatively high accuracy the location of disordered regions is

nonetheless impressive, and refinement of the training set to account for more accurate

disordered structures could further improve performance. In addition, thorough anal-

ysis of the pLDDT score as it relates to disorder-order transitions, as well as the local

function and dynamics of IDP motifs, may further enhance the utility of AlphaFold2

to the IDP community.

While experimental NMR54–63, and high-quality molecular simulations64–75 are
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some of the most accurate methods for determining the (dis)ordered nature and dy-

namics of proteins, fast and computationally efficient methods play an important role.

Unlike conventional predictors however, AlphaFold2 supplies both a pLDDT score,

that can provide an accurate prediction of protein disorderedness, in addition to a

three-dimensional structure, that when taken in tandem, may also provide insight into

the underlying dynamics of disordered protein regions.

Conclusion

In this study, we have assessed the ability of AlphaFold2 to predict disordered protein

regions. We benchmark the program on the DisProt-PDB and DisProt datasets de-

veloped for CAID, and find it to perform quite well, exceeding the performance of 11

traditional predictors on the DisProt-PDB dataset. Furthermore, we observe that the

pLDDT score assigned to each residue by AlphaFold2 provides an impressive metric

for assessing disorder, far surpassing a näive application of DSSP. Our analysis also

reveals a link between secondary structure and the pLDDT score, suggesting that con-

tinued research into this metric may reveal a fundamental connection to the dynamics

of disordered proteins.
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Figures

Figure 1: Receiver operating characteristic (ROC) curves (top) and precision-recall (bot-
tom) are depicted for various predictors calculated per-residue on the DisProt-PDB dataset.
tpLD (Eq. 1) and various discrete pLDn predictors are indicated alongside DSSPp. Inset bar
plots show the Fmax (top inset) and AUC (bottom inset) for the various predictors on the
DisProt-PDB dataset (colors correspond to the legend; red is tpLD). The tpLD predictor
resulted in one of the highest AUC values and the highest Fmax on the DisProt-PDB dataset.
pLDDT is abbreviated pLD for plotting purposes.
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Figure 2: Average RMSD values calculated for the DisProt-PDB (upper) and DisProt (lower)
datasets using various prediction methods calculated per-protein. Proteins were assigned to
classes (highly disordered i.e. > 90% disorder and highly ordered i.e. < 10% disorder) based
on datasets; specifically with DisProt-PDB, only residues for which PDB or DisProt data
were available are considered in the total disorder calculation. Bootstrapping was used to
compute averages and estimate errors with 10,000 samples of size 60. pLD72 resulted in lower
RMSD values on the DisProt-PDB dataset compared to DSSPp, however both showed much
higher RMSD on the DisProt dataset. pLDDT is abbreviated pLD for plotting purposes.
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Figure 3: Distribution of disorder content per-protein in the DisProt-PDB and DisProt
datasets depicted alongside the distributions predicted by pLD72 and DSSPp. Bin-widths
were set at 0.5 and bootstrapping was used to compute the distributions and average values
(vertical dashed lines) with 10,000 samples of size 60. On the DisProt-PDB dataset close
agreement between experiment and pLD72 is evident; conversely, on both the DisProt-PDB
and DisProt datsets, DSSPp predicted a higher disorder content. pLDDT is abbreviated
pLD for plotting purposes.
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Figure 4: Distribution of pLDDT values per-residue calculated for each secondary structure
class. Bin-widths were set at 0.5 and bootstrapping was used to compute the distributions
and mean values (colored vertical dashed lines; black dashed line represents pLD72) with
10,000 samples of size 500. A bimodal distribution is evident for the coil structures, and
while strand, helical and turn regions are on average assigned to high pLDDT values, residues
belonging to each can sample much lower values. pLDDT is abbreviated pLD for plotting
purposes.
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