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Abstract 11 

Efficient transport of proteins into the primary cilium is a crucial step for many signaling 12 

pathways. Dysfunction of this process can lead to the disruption of signaling cascades or cilium 13 

assembly, resulting in developmental disorders and cancer. Previous studies on ciliary 14 

trafficking were mostly focused on the membrane-embedded receptors. In contrast, how 15 

soluble proteins are delivered into the cilium is poorly understood. In our work, we identify 16 

the exocyst complex as a key player in the ciliary trafficking of soluble Gli transcription factors. 17 

Considering that the exocyst mediates intracellular vesicle transport, we demonstrate that 18 

soluble proteins, including Gli2/3 and Lkb1, can use the endosome recycling machinery for 19 

their delivery to the primary cilium. Finally, we identify GTPases: Rab14, Rab18, Rab23, and 20 

Arf4 involved in vesicle-mediated Gli protein ciliary trafficking. Our data pave the way for a 21 

better understanding of ciliary transport and uncover novel transport mechanisms inside the 22 

cell. 23 

Introduction 24 

Hedgehog (Hh) signaling is essential for embryonic patterning and organ morphogenesis1. 25 

Malfunctions of this pathway can lead to developmental disorders and cancer. The expression 26 

of Hh target genes is controlled by Gli transcription factors: Gli1 which acts as an activator, 27 

and Gli2/Gli3, which display both activator and repressor functions2. 28 

Processing of Gli transcription factors to activator and repressor forms requires their efficient 29 

transport to the primary cilium, which integrates proteins necessary to a variety of Gli 30 

modifications3–8. Cilia are indispensable for the transduction of the Hh signal and the 31 

translocation of Gli activators into the nucleus9. In humans, defects in the ciliary function and 32 

the trafficking of ciliary proteins often result in developmental defects associated with the 33 

dysfunction of the Hh/Gli cascade. 34 

Gli proteins are large and slowly diffusing proteins, so it is puzzling how they accumulate at 35 

the cilium within a mere few minutes upon signal reception10. This accumulation is a result of 36 

a three-step process: (1) targeted transport to the cilium base, (2) gated entry through a 37 

diffusion barrier, and (3) active trafficking along the cilium. The mechanisms of Gli transition 38 

across the diffusion barrier and the model of transport from the base to the tip are relatively 39 
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well-described11–13. However, it is still unclear how Gli proteins are delivered so quickly and 40 

precisely from the cytoplasm to the cilium base.  41 

Most previous studies on protein delivery to the ciliary base were focused on membrane 42 

proteins. Three different transport routes have been described for their delivery from the 43 

Golgi complex to the primary cilium14. Some ciliary proteins first reach the plasma membrane 44 

and then move to the ciliary membrane by lateral transport15. Others reach the base of the 45 

cilium using regulated vesicular transport, either directly or through the recycling trafficking 46 

pathway16. 47 

The process of protein trafficking to the primary cilium is supported by many players involved 48 

in endocytosis and the vesicle transport machinery17,18. Prominent among them are small 49 

GTPases, which act as molecular switches that allow for the guidance of their associated 50 

vesicles19–21. In addition to GTPases, the protein ciliary trafficking depends on several 51 

multiprotein complexes, such as the BBsome22,23 and the exocyst24,25. The exocyst is a 52 

conserved protein complex that mediates the tethering of secretory vesicles to the plasma 53 

membrane26. It interacts with the ciliary transport machinery to transport transmembrane 54 

proteins necessary for ciliogenesis and signaling16,27,28. 55 

In our quest to identify the molecular machinery that delivers Gli proteins to the cilium base, 56 

we performed a proteomic analysis of Gli3 interactors. Interestingly, among Gli3-binding 57 

proteins, we detected several exocyst subunits26. Loss-of-function assays show the 58 

dependence of Gli2 and Gli3 ciliary localization on the exocyst. Consistent with the role of this 59 

complex in vesicle trafficking, we show that Gli2 uses intracellular vesicles as trafficking 60 

vehicles. In addition, several small GTPases, including Rab14, Rab18, Rab23, and Arf4, regulate 61 

the ciliary transport of Gli2. Finally, we show that this vesicle-based transport machinery is 62 

used for the ciliary delivery of Lkb1, another soluble protein that concentrates at cilia.   63 
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Results 64 

The exocyst complex interacts with Gli3  65 

To identify proteins that help guide Gli proteins to the primary cilium, we immunoprecipitated 66 

proteins that interact with Gli3 in cells treated with the Smoothened (Smo) agonist SAG29. 67 

Cells were separated into “nuclear” and “cytoplasmic” fractions and then immunoprecipitated 68 

with anti-Gli3 antibodies. The eluates were separated using SDS-PAGE, and prominent bands 69 

were submitted for MS-based protein identification (Fig. 1A).  70 

We identified 473 high confidence Gli3 interactors by rejecting frequent IP/MS contaminants 71 

based on the CRAPome database30. In this dataset, we found well-known Gli interaction 72 

partners, such as SuFu, Kif7, and Xpo731–34. The dataset was enriched for proteins involved in 73 

intraciliary and vesicle transport, chromatin remodeling, and DNA repair (Fig. 1B) and 74 

contained components of multi-subunit ciliary transport complexes, including 75 

the BBSome and the exocyst (Fig. 1C, Supplementary Table S1).  76 

Because exocyst, a multi-subunit protein complex involved in vesicle transport and docking35, 77 

had previously been implicated in the trafficking of proteins to primary cilia, we decided to 78 

focus on its components as potential mediators of the Gli proteins delivery to the cilium base. 79 

The exocyst has mostly been studied in the context of its binding to intracellular vesicles and 80 

the plasma membrane, but the subunits that were specifically enriched in the Gli3 81 

interactome are positioned away from the putative lipid-binding surface of the complex, 82 

consistent with Gli3 being a soluble, rather than a lipid-embedded protein (Fig. 1D).  83 

In agreement with the proteomic data, Gli3, as well as Gli2, co-immunoprecipitate with Sec5 84 

(Fig. 2A). Moreover, Sec5 and Gli2 tightly colocalize in cells, as shown using the proximity 85 

ligation assay (Fig. 2B). Similarly, overexpressed Sec3, Sec5, and Sec8 interact with the 86 

constitutively active Gli2 mutants Gli2(P1-6A) (Fig. 2C, D)36. We decided to use Gli2(P1-6A) in 87 

most experiments because it localizes to cilia in the absence of upstream activation, allowing 88 

us to study its trafficking independently of the transport of membrane proteins regulating 89 

endogenous Gli proteins, such as Smo and Ptch37,38. 90 

To identify the Gli2 domain responsible for interaction with the exocyst, we performed co-91 

immunoprecipitation of Sec3/5/8 with the N-terminal domain of Gli2 and a construct lacking 92 

the N-terminus. The exocyst subunits interact with the N-terminus of Gli2 (HA-Gli2-N) but 93 

interact only weakly with Gli2(P1-6A)-ΔN (Fig. 2E, F).  94 

Trafficking of Gli2 to cilia depends on the exocyst 95 

Because the exocyst is required for the trafficking of some ciliary proteins, we hypothesized 96 

that the loss-of-function of the exocyst could impair Gli ciliary localization. To test this 97 

assertion, we knocked down individual exocyst subunits in cells expressing Gli2(P1-6A). Both 98 

shRNA- (Fig. 3A) and siRNA-mediated knockdown (Fig. 3B) of exocyst subunits resulted in a 99 

significant reduction of Gli2(P1-6A) ciliary localization (Fig. 3C and D). 100 

Similarly, mislocalization of Sec5 using the mitochondrial trap39 impairs the ciliary trafficking 101 

of Gli2(P1-6A). We fused Sec5 with the mitochondrial protein Tom20 and mScarlet and co-102 

expressed the resulting Tom20-mScarlet-Sec5 construct with Gli2(P1-6A) (Fig. 4A). We 103 
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observed a reduced Gli2 ciliary level in cells overexpressing the Tom20-mScarlet-Sec5 104 

mitochondrial trap, compared to those overexpressing two negative control constructs – 105 

Tom20-mScarlet and mScarlet-Sec5 (Fig. 4B).  106 

Finally, the exocyst inhibitor endosidin2 reduces Gli2(P1-6A) ciliary localization in the stable 107 

cell line after just two hours of treatment (Fig. 4C). 108 

Because the exocyst binds to Gli2 mostly via its N-terminal domain (Fig 2E, F), we suspected 109 

that removing the N-terminus would impair Gli2 ciliary accumulation. Accordingly, we 110 

observed a strong reduction of the Gli2(P1-6A)-ΔN mutant localization in the primary cilium 111 

compared to the full-length protein (Fig. 4D).  112 

Having demonstrated that the exocyst is required for the trafficking of Gli to cilia, we 113 

wondered if the localization of the exocyst is affected by Hh pathway activation. Indeed, the 114 

treatment with SAG increases the amount of Sec3 and Sec5 at the ciliary base suggesting that 115 

the exocyst is co-transported with Gli proteins upon pathway activation (Fig. 4E). 116 

Gli2 associates with intracellular vesicles 117 

While the best-known role of the exocyst complex is the transport of vesicle-embedded 118 

membrane proteins, our results suggest that soluble cytoplasmic Gli proteins may also use the 119 

exocyst as a vehicle for intracellular trafficking. We, therefore, wondered if Gli proteins use 120 

vesicles for their transport into the cilium. To verify this hypothesis, we used super-resolution 121 

AiryScan microscopy to image cells co-expressing HA-Gli2(P1-6A) and EGFP-Sec5, and 122 

surprisingly, we observed Gli2 around Sec5-positive vesicle-like structures. It suggests that 123 

Gli2 could accumulate on the surface of vesicles, where it could interact directly with the 124 

exocyst (Fig. 5A). 125 

 126 
We also looked at Gli2 localization by immunogold electron microscopy. In HEK293T cells 127 

overexpressing EGFP-Gli2(P1-6A), we observed EGFP-positive clusters adjacent to membrane 128 

vesicle-like structures (Fig. 5B). 129 

To check if Gli-positive structures represent intracellular vesicles, we isolated vesicles using 130 

cell fractionation. HA-Gli2(P1-6A), endogenous Gli3, and Sec5 co-fractionated with the 131 

endosome marker EEA1 in the endosomal fraction. ERK was used as the cytoplasmic control 132 

marker. The total abundance of proteins in fractions we showed by silver staining (Fig. 5C).  133 

The most likely explanation for our results is that Gli proteins are transported on the surface 134 

of vesicles towards the ciliary base. The two potential sources of these vesicles are the Golgi 135 

apparatus via the exocytic pathway40,41 and the plasma membrane by endocytosis42–44. Firstly, 136 

we inhibited endocytosis using two inhibitors: dynasore45 and pitstop246 in cells expressing 137 

constitutively active Gli2. Surprisingly, after 2h of dynasore treatment, we observed an almost 138 

complete inhibition of Gli2 ciliary accumulation. This effect was independent of Smo because 139 

treatment with two Smo inhibitors cyclopamine and vismodegib did not affect the Gli2(P1-6A) 140 

ciliary level (Fig. 5E and Fig. S2). 141 

If the dynasore effects are a consequence of the reduced rate of new vesicle formation, we 142 

would expect these effects to be fully reversible once the proper formation of vesicles is 143 
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restored. We used a pulse-chase assay with 2h vismodegib + dynasore treatment, and then 144 

we washed out dynasore from the media and collected cells at several time points. We 145 

observed a clear recovery of Gli2 ciliary transport within 1h from the dynasore washout (Fig. 146 

5D).  147 

We also used another inhibitor of endocytosis – pitstop2. Because of its lethal effect on 148 

NIH3T3 fibroblasts in less than 30min, we treated cells with pitstop2 for 15 min, followed by 149 

a 30min incubation without the drug. Similar to the dynasore effects, we observed a decrease 150 

of Gli2 ciliary level in pitstop2-treated cells (Fig. 5F). 151 

To determine if the vesicle transport from the cis-Golgi was also important for Gli2 ciliary 152 

trafficking, we treated stable HA-Gli2(P1-6A) cells with brefeldin A, a Golgi-disrupting drug47. 153 

We did not observe changes in Gli2 ciliary localization after 2h treatment (Fig. 5G). 154 

The stimulation of target gene transcription by Gli2 is enhanced by its localization at the 155 

cilium9,48. We expected that dynasore would inhibit Hh target gene transcription in cells stably 156 

expressing the Gli2(P1-6A). Indeed, the expression of the Hh target gene Gli1 was decreased 157 

after dynasore treatment, although the expression of HA-Gli2(P1-6A) was unchanged (Fig. 5H). 158 

Rab and Arf proteins mediate Gli2 transport 159 

The trafficking of vesicles in cells is guided by the reversible association of small GTPases, 160 

especially from the Rab and Arf families18,49. Because their association with vesicles and 161 

associated proteins is transient, we hypothesized that under the stringent conditions of our 162 

initial co-IP/MS, the Gli-associating GTPases may have been washed away from the bait 163 

protein. Thus, we performed another co-IP/MS, with less stringent detergents, using HA-164 

Gli2(P1-6A) as bait in cells that either had normal cilia or were devoid of cilia by means of 165 

overexpression of a dominant-negative mutant Kif3a motor50. We expected the GTPases 166 

promoting Gli ciliary trafficking to be associated with Gli2 in ciliated, but not in unciliated cells 167 

(Fig. 6A). 168 

We identified 200 high-confidence interactors (<10% FDR in the CRAPome database) including 169 

the same well-known regulators of Gli, such as SuFu, Kif7, Xpo7, and Spop34,32,51,52, as well as 170 

component proteins of the cilium and basal body (Fig. 6B, Supplementary Table S2). Among 171 

proteins associated with Gli2(P1-6A) in ciliated cells were Rab14, Rab5c, Rab11b, Rab18, and 172 

Arf4 (Fig. 6C). In addition, we tested two other Rab-family GTPases: the well-known Hh 173 

regulator Rab2353–55 and Rab8, which cooperates with the exocyst56,57. 174 

Initially, we established by co-IP that Rab14, Rab18, Rab23, and Arf4 proteins interact with 175 

Gli2(P1-6A) (Fig. 7A). In contrast, two Rab GTPases that had been implicated in ciliary 176 

trafficking of membrane proteins: Rab8 and Rab11a, do not strongly bind to Gli2(P1-6A) (Fig. 177 

S3A). 178 

Subsequently, we performed loss-of-function experiments using shRNA and CRISPR/Cas9 179 

mutagenesis. The knockdown of Rab14, Rab18, and Arf4 caused the reduction of the Gli2(P1-180 

6A) ciliary level (Fig. 7B-D). Likewise, the CRISPR/Cas9-mediated Rab14, Rab18, and Rab23 181 

knockout also significantly decreased the Gli2(P1-6A) ciliary accumulation (Fig. 7E). Moreover, 182 

we engineered cell lines expressing dominant-negative Rab23S51N and Arf4T31N mutants 183 
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from doxycycline-inducible promoters. Consistent with shRNA- and CRISPR/Cas9-based 184 

experiments, we observed a significant decrease of Gli2(P1-6A) ciliary accumulation in cells 185 

expressing Arf4 and Rab23 mutants(Fig.7F). 186 

The trafficking of Lkb1, but not Ubxn10, depends on endocytosis and the exocyst 187 

To establish if the mechanism of transport to cilia by endocytic vesicles is unique to Gli 188 

proteins or more common, we imaged several HA or GFP tagged soluble ciliary candidate 189 

proteins: HA-Dvl258, Kap3a-EGFP59, HA-Lkb160, HA-Mek161, HA-Nbr162, HA-Raptor63, Tbx3-190 

GFP64, and Ubxn10-GFP65. Only two proteins clearly localized at cilia in NIH/3T3: Ubxn10-GFP, 191 

and HA-Lkb1 (Fig. 8A and Fig. S4). 192 

To examine if the ciliary serine-threonine kinase Lkb1 uses an analogous transport mechanism, 193 

we treated stable expressing HA-Lkb1 cells with dynasore and observed decreased Lkb1 ciliary 194 

level (Fig. 8D). Similar to Gli2, ciliary accumulation of HA-Lkb1 also dropped after the shRNA 195 

knockdown of Sec3/5/8 (Fig. 8B). Accordingly, we detected HA-Lkb1 in the endosomal fraction 196 

(Fig. 7G). Finally, we observed using co-IP that Lkb1 binds to the exocyst subunits  (Fig. 8F). 197 

Another soluble ciliary protein that we studied was Ubxn10. Dynasore treatment did not 198 

negatively affect the ciliary trafficking of Ubxn10-GFP (Fig. 8E). Unlike for Gli2(P1-6A), we 199 

observed no effect of Sec5 knockdown on Ubxn10 ciliary localization (Fig. 8C). Consistent with 200 

these results, we detected Ubxn10 predominantly in the cytosolic cell fraction (Fig. 8H). 201 

  202 
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Discussion 203 

The cilium is an essential organelle that relays environmental signals to the nucleus. 204 

Nevertheless, the mechanism of the signaling protein delivery to cilia is still poorly 205 

understood, especially for soluble proteins. To gain a better understanding of cytoplasmic 206 

proteins' transport to cilia we studied Gli transcription factors, large soluble proteins that 207 

accumulate at the tip of the cilium before their conversion into transcriptional activators 5,9,11.  208 

Using proteomic screening, we found that Gli proteins interact with the exocyst, a complex 209 

implicated in ciliary delivery of membrane receptors16,35. We found that loss-of-function of 210 

the exocyst by RNAi, mitochondrial trap, or drug treatment decreases ciliary localization of 211 

the constitutively active mutant Gli2(P1-6A) independently of their effect on transmembrane 212 

Hh signaling proteins Ptch and Smo.  213 

On a molecular level, we show that the N-terminal region of Gli proteins binds to the 214 

subcomplex I of the exocyst26,66. This agrees with our data and published reports suggesting 215 

agree that the N-terminal domain is necessary for the Gli proteins ciliary accumulation5,9,11. 216 

The N-terminus is, however, not sufficient for Gli ciliary transport, with other domains, 217 

particularly the central domain of Gli2/35,9 likely participating in other stages of ciliary 218 

translocation. 219 

Our results suggest that soluble cytoplasmic proteins, like Gli2/3, can use the exocyst as a 220 

vehicle for intracellular trafficking. The exocyst was shown to collaborate with the BLOC-1 221 

complex and IFT20 in the transport of membrane proteins polycystin-2 and fibrocystin to 222 

cilia16. However, IFT20 does not interact with HA-Gli2(P1-6A) (Fig. S3A). This suggests that the 223 

exocyst may mediate Gli protein ciliary trafficking independently of IFT20, which implies that 224 

the pathways directing membrane and soluble cilium components are somewhat divergent. 225 

Importantly, the exocyst can be transported to the cilium despite IFT20 loss-of-function16. 226 

Consistent with the requirement of the exocyst in the transport of Gli2 to cilia, it appears that 227 

Gli2 is associated, at least transiently, with intracellular vesicles. Interestingly, the subunits of 228 

the exocyst that most strongly interact with Gli2 are positioned away from the putative lipid-229 

facing surface of the complex26,66, indicating that the exocyst may form a tether between 230 

vesicle lipids and soluble proteins. Structural ciliary proteins had been previously found to be 231 

attached to the outer surfaces of intracellular vesicles carrying ciliary membrane proteins in 232 

Chlamydomonas67. We now provide functional data that corroborate and extend these 233 

findings. Protein delivery by vesicles to the cilium is persistent and essential for maintaining 234 

proper cilium function and structure68,69. Thus, the strategy of using vesicles as universal 235 

carriers of proteins, both soluble and membrane-embedded, to cilia, solves the logistical 236 

problem of homing many protein classes onto the tiny cilium base.  237 

The trafficking of vesicles in cells is coordinated by the small GTPases from the Rab and Arf 238 

families. Intriguingly, we found that Rab14, Rab18, Rab23, and Arf4, interact with Gli2 and are 239 

essential for its accumulation in the ciliary compartment. The Rab14 GTPase localizes at early 240 

endosomes and plays a role in protein exchange between the endosomes and the Golgi 241 

compartment70–73, and exocytic vesicle targeting74. On the other hand, Rab18 is usually 242 

associated with the endoplasmic reticulum and lipid droplets75,76. Intriguingly, we identify 243 
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COPI and TRAPP complex components in Gli2(P1-6A) and Gli3 interactomes, and these 244 

complexes have been implicated in lipid droplet recruitment of Rab1877. This suggests that Gli 245 

may recruit Rab18 via TRAPPII and COPI to promote ciliary trafficking. Interestingly, all three 246 

of the above GTPases: Rab18, Rab14, and Arf4, were recently identified as proximity 247 

interactors of the cilium base-localized kinase Ttbk278, strengthening the case for their 248 

involvement in the targeting of Gli-laden vesicles to the cilium. 249 

Finally, Rab23 had previously been implicated in Hh signaling and ciliary transport of 250 

receptors79. Rab23 is described as a negative regulator of the Hh pathway but several different 251 

mechanisms have been proposed, from affecting Smo to directly regulating Gli proteins54,80,53. 252 

Here, we propose Rab23 as one of the key players in the trafficking of Gli transcription factors 253 

into the primary cilium. This is consistent with the recently discovered role of Rab23 in the 254 

transport of another soluble protein, Kif17, to primary cilia and with the ciliary and early 255 

endosome enrichment of Rab2381,82. 256 

In addition to Rab family GTPases, we found Gli2 to associate with Arf4, which functions in 257 

sorting ciliary cargo at the Golgi and is a crucial regulator of ciliary receptor trafficking83,84. 258 

Arf4 binds the ciliary targeting signal of rhodopsin and controls the assembly of the Rab11a-259 

Rabin8-Rab8 module for the proper delivery of cargo to the ciliary base85. Although Rab8 and 260 

Rab11a were found to cooperate with both the exocyst and Arf485 in the targeting of ciliary 261 

cargos, we found that the expression of dominant-negative Rab8 and Rab11a did not 262 

negatively affect Gli2 ciliary accumulation, with Rab8 DN actually promoting higher Gli2 263 

accumulation in cilia (Fig. S3B). Moreover, we did not find Rab8 or Rab11a among interactors 264 

of Gli2 and Gli3. Instead, among Gli2 interactors was a Rab11a ortholog Rab11b, which had 265 

also been implicated in ciliogenesis and found to associate with Rab886,87. Disentangling the 266 

roles of the two Rab11 orthologs as well as Rab8/Rabin8 in the trafficking of soluble ciliary 267 

components will be an interesting subject for future studies. 268 

Many of the implicated Rab/Arf proteins had been known to associate both with Golgi-derived 269 

exocytic vesicles and with plasma membrane-derived endosomes. To decipher the relative 270 

importance of these two potential vesicle sources, we used pharmacological inhibitors to 271 

show that Gli2 is likely delivered to cilia via endocytic vesicle trafficking rather than the 272 

canonical secretory pathway. 273 

In addition to Gli2, other soluble ciliary proteins can adopt a similar transport mechanism. 274 

Specifically, we show that Lkb1 levels at primary cilia drop upon exocyst loss-of-function and 275 

inhibition of endocytosis. Like Gli2, Lkb1 associates with intracellular vesicles and interacts 276 

with the exocyst. In contrast, another soluble ciliary component Ubxn10 localizes at the cilium 277 

normally in cells depleted of Sec5 or treated with dynasore. This suggests that while the 278 

vesicle-mediated transport is important for the ciliary localization of some cytoplasmic 279 

proteins, others use different routes of ciliary trafficking.  280 

In summary, we describe a novel mechanism for the transport of soluble cytoplasmic proteins 281 

to primary cilia, which relies on the association of these proteins with dynamically cycling 282 

endocytic vesicles. While we identify several key players in the ciliary trafficking of these 283 

vesicles, further work will dissect the precise sequence of events that are involved in this 284 
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process. In particular, it will be interesting to discover potential similarities and differences 285 

between the canonical ciliary targeting pathways for membrane proteins, such as polycystin 286 

2, fibrocystin, Smo, and rhodopsin with those described here for soluble ciliary proteins. Our 287 

work brings us closer to gaining a broad understanding of ciliary trafficking and the 288 

coordinated transport of proteins among membrane compartments. 289 
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Materials and methods 299 

Constructs and molecular cloning 300 

Gli2/3 constructs were cloned based on the Gli2(P1-6A) mutant previously described36 tagged 301 

with the N-terminal 3xHA. Initially, Gli2 fragments were amplified by PCR and then cloned into 302 

the pENTR2B (Life Technologies) vector by Gibson assembly88 using the NEBuilder® HiFi DNA 303 

Assembly Master Mix (NEB). Subsequently, the constructs were shuttled into pEF/FRT/V5-304 

DEST (Life Technologies) using the Gateway method (Gateway LR Clonase II mix; Life 305 

Technologies). Plasmids with Sec3/5/8, Rab8/11/14/18, and Arf4 on the pEGFP vector were 306 

ordered from the Addgene site (Tab. 1). Rab23 wild type and mutant cDNA sequences were 307 

obtained by DNA synthesis (DNA Strings; Thermo) and cloned by Gibson assembly into the 308 

LT3GEPIR plasmid ordered from addgene (Tab. 1). Tom20 sequence was amplified from mouse 309 

cDNA and then fused with mScarlet cloned from pmScaret (addgene, Tab. 1) and Sec5 by 310 

Gibson assembly in the pEGFP-C3 vector with the EGFP sequence removed by restriction 311 

digestion. Other soluble proteins sequences of Dvl2, Nbr1, Mek1, Lkb1, Raptor were amplified 312 

from mouse cDNA and cloned into the pENTR2B with 3xHA tag vector by Gibson assembly. 313 

Ubnx10 was cloned from pHAGE-NGFP-UBXD3 - gift from M. Raman65. Tbx3 was cloned from 314 

the construct with Tbx3-Myc - a gift from A. Moon64. pEGFP-Kap3a was a gift from P. Avasthi 315 

and pEGFP-Rab11a was a gift from M. Miaczynska.  316 

Tab. 1. Plasmids used in our experiments ordered from the addgene site 317 

 Plasmid name Addgene No. Gift from References 

1 pEGFP-C3-Sec3 #53755 Channing Der 89 

2 pEGFP-C3-Sec5 #53756 Channing Der 89 

3 pEGFP-C3-Sec8 #53758 Channing Der 89 

4 pmScarlet_C1 #85042 Dorus Gadella 90 

5 pLKO.1 - TRC cloning vector #10878 David Root 91 

6 pLKO.1 - blast #25566 Keith Mostov 92 

7 lentiCas9-Blast  #52962 Feng Zhang 93 

8 LT3GEPIR #111177 Johannes Zuber 94 

9 lentiGuide-Puro #52963 Feng Zhang 93 

10 pRSV-Rev #12253 Didier Trono 95 

11 pMDLg/pRRE #12251 Didier Trono 95 

12 pMD2.G #12259 Didier Trono unpublished 

13 EGFP-Rab14 #49549 Marci Scidmore 96 

14 EGFP-Rab18 #49550 Marci Scidmore 96 

15 Arf4-GFP #39556 Paul Melancon 97 

16 pCAG/hArf4(T31N)-HA #79405 Kazuhisa Nakayama 98 

17 GFP-rab11 DN #12678 Richard Pagano 99 

18 pGFP-Rab8A #24898 Maxence Nachury 100 

19 pGFP-Rab8A[T22N] #24899 Maxence Nachury 100 

20 pLenti-IFT20-EGFP #118032 Ken Ichi Takemaru unpublished 
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Cell culture 318 

HEK293T (ATCC) and NIH/3T3 Flp-In (Thermo) cells were maintained in media composed of 319 

DMEM (high glucose; Biowest), sodium pyruvate (Thermo), stable glutamine (Biowest), non-320 

essential amino acids (Thermo), 10% fetal bovine serum (EurX), and penicillin/streptomycin 321 

solution (Thermo). HA-Gli2(P1-6A) and HA-LKB1 NIH3T3 stable cell lines were generated using 322 

the Flp-In system according to the manufacturer’s protocols (Thermo Fisher). Stable cell lines 323 

were reselected with hygromycin on every other passage to preserve selection pressure. 324 

To stimulate ciliogenesis the cells were cultured in the same medium but containing 0.5% FBS 325 

for 24h before fixing. For activation of the Hh pathway, we used SAG (Smoothened agonist) 326 

treatment 200nM for 24h. Transient transfections of cells we performed using the JetPrime 327 

reagent (Polyplus) according to the manufacturer’s protocol.  328 

All inhibitors were suspended in DMSO and used with indicated times. The following 329 

concentrations of inhibitors were used: dynasore (40µM, Sigma), endosidin2 (200µM, Sigma), 330 

pitstop2 (30µM, Sigma), brefeldin A (5µg/ml, Sigma). 331 

Large scale co-IP/MS on Gli3 332 

NIH/3T3 cells were cultured to confluence on 50 15cm dishes and starved overnight to 333 

promote ciliogenesis. They were treated with 100nM SAG for 4h. The cells were fractionated 334 

into nuclear and cytoplasmic fractions as previously described101. Each fraction was 335 

immunoprecipitated overnight with 150µL Dynabeads-Protein G (Invitrogen) covalently cross-336 

linked with goat-anti-Gli3 (AF3690; R&D Systems; 30µg antibody per fraction). The beads were 337 

washed with the following buffers: harsh RIPA lysis buffer (50mM Tris pH 7.4, 150mM NaCl, 338 

2% Nonidet P-40, 500mM LiCl, 1mM DTT, 0.25% sodium deoxycholate, 0.1% SDS, protease 339 

and phosphatase inhibitors), RIPA lysis buffer supplemented with 0.8M urea, and mild 0.1% 340 

NP-40 lysis buffer (50mM Tris pH 7.4, 150mM NaCl, 0.1% Nonidet P-40, 1mM DTT, 1% glycerol, 341 

phosphatase inhibitors). The samples were eluted from beads using preheated 2x Laemmli 342 

sample buffer without DTT at 85°C for 5 min. The samples were then reduced and alkylated 343 

using DTT and iodoacetamide and loaded onto a 6% SDS-PAGE gel. The gel was stained using 344 

the GelCode Blue reagent (Pierce) and prominent bands were excised using a sterile scalpel 345 

and submitted for further processing to MS Bioworks (Ann Arbor, MI). The bands were 346 

destained and subjected to in-gel digest using trypsin. Each gel digest was analyzed by nano 347 

LC/MS/MS with a Waters NanoAcquity HPLC system interfaced to a ThermoFisher LTQ 348 

Orbitrap Velos. Peptides were loaded on a trapping column and eluted over a 75µm analytical 349 

column at 350nL/min; both columns were packed with Jupiter Proteo resin (Phenomenex). 350 

The mass spectrometer was operated in data-dependent mode, with MS performed in the 351 

Orbitrap at 60,000 FWHM resolution and MS/MS performed in the LTQ. The fifteen most 352 

abundant ions were selected for MS/MS. Data were searched using a local copy of Mascot 353 

with the following parameters: Enzyme: Trypsin, Database: IPI Mouse v3.75 (forward and 354 

reverse appended with common contaminants), Fixed modification: Carbamidomethyl (C), 355 

Variable modifications: Oxidation (M), Acetyl (N-term, K), Pyro-Glu (N-term Q), Deamidation 356 

(N,Q), Phospho (S,T,Y), GlyGly (K), Mass values: Monoisotopic, Peptide Mass Tolerance: 10 357 

ppm, Fragment Mass Tolerance: 0.5 Da, Max Missed Cleavages: 2. Mascot DAT files were 358 

parsed into the Scaffold algorithm for validation, filtering, and to create a nonredundant list 359 
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per sample. Data were filtered using a minimum protein value of 90%, a minimum peptide 360 

value of 50% (Prophet scores), and requiring at least two unique peptides per protein. 361 

To determine high-confidence Gli3 interactors, we rejected all proteins found in more than 362 

10% of negative control affinity purification/MS experiments in the CRAPome database102 363 

(FDR < 10%). Enrichment of proteins representing specific Gene Ontology terms was 364 

performed using PANTHER with GO-Slim Cellular Component and GO-Slim Biological Process 365 

terms 103. 366 

Large scale co-IP/MS on HA-Gli2 (P1-6A) in ciliated and non-ciliated cells 367 

NIH/3T3 cells stably expressing HA-Gli2 (P1-6A) were transduced either with the control vector 368 

or with a retroviral vector encoding the dominant-negative variant of Kif3a (headless – amino 369 

acids 441-701 of the mouse Kif3a; dnKif3a) and selected with puromycin to eliminate 370 

untransduced cells. Each cell line was expanded from a single clone and ciliogenesis or lack 371 

thereof was verified by immunofluorescence.  372 

Both cell lines were starved for 36h and lysed in a gentle lysis buffer (50mM Tris pH 7.4, 373 

150mM NaCl, 0.1% Nonidet P-40, 5% glycerol, protease and phosphatase inhibitors) and 374 

scraped at 4°C. The lysate was clarified for 30min at 15,000xg and the supernatant was 375 

immunoprecipitated for 2h at 4°C with Dynabeads-protein G covalently coupled to the rat 376 

anti-HA antibody (Roche). The beads were washed 3x5 min. with the lysis buffer and 1x5min 377 

with the lysis buffer with the addition of 350mM NaCl (total NaCl concentration 500mM). 378 

Protein was eluted from beads using 2x Laemmli sample buffer at 37°C for 30min with 379 

vigorous mixing (500rpm).  380 

Eluted proteins were submitted for mass spectrometric protein identification to MS Bioworks 381 

(Ann Arbor, MI). The entire amount of sample was separated ~1.5cm on a 10% Bis-Tris Novex 382 

mini-gel (Invitrogen) using the MES buffer system. The gels were stained with coomassie and 383 

excised into ten equally sized segments. Gel segments were processed using a robot (ProGest, 384 

DigiLab) with the following protocol: Washed with 25mM ammonium bicarbonate followed 385 

by acetonitrile. Reduced with 10mM dithiothreitol at 60°C followed by alkylation with 50mM 386 

iodoacetamide at RT. Digested with trypsin (Promega) at 37°C for 4h. Quenched with formic 387 

acid and the supernatant was analyzed directly without further processing. 388 

The gel digests were analyzed by nano LC/MS/MS with a Waters M-class HPLC system 389 

interfaced to a ThermoFisher Fusion Lumos. Peptides were loaded on a trapping column and 390 

eluted over a 75µm analytical column at 350nL/min; both columns were packed with Luna C18 391 

resin (Phenomenex). A 30min gradient was employed (5h LC/MS/MS per sample). The mass 392 

spectrometer was operated in data-dependent mode, with MS and MS/MS performed in the 393 

Orbitrap at 60,000 FWHM resolution and 15,000 FWHM resolution, respectively. APD was 394 

turned on. The instrument was run with a 3s cycle for MS and MS/MS. Data were searched 395 

using a local copy of Mascot with the following parameters: Enzyme: Trypsin, Database: 396 

Swissprot Mouse (concatenated forward and reverse plus common contaminants), Fixed 397 

modification: Carbamidomethyl (C), Variable modifications: Oxidation (M), Acetyl (Protein N-398 

term), Deamidation (NQ), Mass values: Monoisotopic, Peptide Mass Tolerance: 10 ppm, 399 

Fragment Mass Tolerance: 0.02 Da, Max Missed Cleavages: 2. Mascot DAT files were parsed 400 
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into the Scaffold software for validation, filtering, and to create a nonredundant list per 401 

sample. Data were filtered at 1% protein and peptide level FDR and requiring at least two 402 

unique peptides per protein. 403 

Viral transduction 404 

For lentivirus production, we transfected HEK293T cells with pRSV-rev, pMDLg/pRRE, pMD2.G 405 

lentiviral packaging vectors (addgene, Tab. 1) and the construct encoding our protein or 406 

shRNA or sgRNA of interest, and then after 2 days, we collected the virus-containing medium 407 

and added it to target cells. We used puromycin to select transduced cells. 408 

siRNA mediated knockdown 409 

For siRNA-mediated knockdown of Sec5, we used the Sec5 ON-TARGET plus siRNA set of four 410 

siRNAs with non-targeting controls (Horizon Dharmacon). For siRNA transfection, we used 411 

Lipofectamine RNAiMAX (Thermofisher). Each siRNA was introduced at 40 pmol/well on a 24-412 

well plate for 48h. 413 

shRNA mediated knockdown 414 

shRNAs were cloned into pLKO.1-TRC cloning vector (Tab. 1). Targeting sequences were 415 

designed using the BlockIT software from the Thermo-Fisher website. 416 

CRISPR-Cas9-mediated mutagenesis 417 

CRISPR-Cas9-mediated mutagenesis was performed on NIH/3T3 Flp-In cells stably expressing 418 

HA-Gli2(P1-6A) and Cas9 (Tab. 1). sgRNA sequences were designed using the Broad Institute 419 

sgRNA designer tool 104 and cloned into the pLentiGuide-puro vector (addgene, Tab. 1). We 420 

transduced the target cells with lentiviruses carrying the sgRNA of interest and either fixed 421 

72h later or subjected to antibiotic selection. 422 

Tab. 2. Sequences used for shRNA knockdown, CRISPR edition, and qPCR primers.  423 

name  sequence  

shRNA-Sec3  GGAGGTGGACCAGATTGAACT  

shRNA-Sec5  GCATACGGCCGAAGAGATAAA  

shRNA-Sec8  GCAGGAGCTAAAGCAGATTGT  

shRNA-Rab14  CGGTTACACGGAGCTACTATA  

shRNA-Rab18  TATCATGGCAGTGAGTATTTG  

shRNA-Arf4  CGGTTACACGGAGCTACTATA  

shRNA-Luciferase GCTGGAGAGCAACTGCATAAG 

sgRNA Rab23  AAAGACTACAAGAAAACCAT  

sgRNA Rab14  CATATAACCACTTAAGCAGC  

sgRNA Rab18  ATACTCATCATCGGCGAGAG  

sgRNA Arf4  GATCGTGAAAGAATCCAGGA  

qPCR Rab14 F  GGTTCAGAGCGGTTACACG  

qPCR Rab14 R  TGAGATTCCTTGCGTCTGTC  

qPCR Rab18 F  GCACGCAAGCATTCTATGTTG  

qPCR Rab18 R  AGCTTGACTCCTTTGTTCTGG  
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qPCR Arf4 F  AGGATCTGCCAAACGCTATG  

qPCR Arf4 R  CCTCATACAGACCAGTTCCTTG  

qPCR Sec3 F  TCGCGCTGAGAAAAGATGAC  

qPCR Sec3 R  TTCTTGCCAGCTTTGCAGAC  

qPCR Sec5 F  CGGAGGTGCAAGTTTTCA AG  

qPCR Sec5 R  GCATGGAGGTCGGAAAGA TAC  

qPCR Sec8 F  AATTGACCACAGCCATTCGC  

qPCR Sec8 R  TCATCCCGTTTGCAATGCAG  

 424 

Immunostaining and microscopy. 425 

Cells were cultured on glass coverslips. After low-serum starvation to promote ciliogenesis, 426 

we fixed cells in 4% [w/v] paraformaldehyde in PBS for 15min at room temperature (RT) and 427 

then washed 3 x 10min in phosphate buffer saline (PBS). Subsequently, cells were blocked and 428 

permeabilized in 5% [w/v] donkey serum in 0.2% [w/v] Triton X-100 in PBS. We incubated cells 429 

with the primary antibodies diluted in blocking buffer overnight at 4°C. Next, we washed the 430 

coverslips 3 x 10min with 0.05% [w/v] Triton X-100 in PBS, followed by incubation with 431 

secondary antibodies in the blocking buffer for 1 hour at RT. Cells were washed as above and 432 

mounted onto slides using a fluorescent mounting medium with DAPI (ProLong Diamond, 433 

Thermo). We acquired images on an inverted Olympus IX-73 fluorescent microscope equipped 434 

with a 63x uPLANAPO oil objective and the Photometrics Evolve 512 Delta camera. For 435 

superresolution microscopy, we used the Zeiss LSM800 confocal microscope with the Airyscan 436 

detector and Plan Apochromat 63x/1.4 Oil DIC objective. 437 

For the quantitative analysis of fluorescence intensities, images were acquired with the same 438 

settings of exposure time, gain, offset, and illumination. Fluorescent intensities were 439 

measured in a semi-supervised manner by a custom ImageJ script. To calculate the Gli ciliary 440 

accumulation, we calculated the log10 values of the ratios of intensities of the fluorescent 441 

signal at the tip of the primary cilium and the surrounding background in each cell. 442 

Tab. 3. Antibodies used for western blot, immunofluorescence staining, and proximity ligation 443 

assay 444 

Antibody Application Company Ref No.  

Primary antibodies Western blot (WB), Immunofluorescence (IF) 
 

anti-HA High Affinity WB (1:1000); IF (1:2000) Roche 11867423001 

anti-HA WB (1:1000) BioLegend 901501 

anti-GFP WB (1:1000) Genetex GTX113617 

anti-Arl13b IF (1:2000) Proteintech 17711-1-AP 

anti-Sec5 WB (1:500); IF (1:200); 

PLA 

Proteintech 12751-1-AP 

anti-Sec5 WB (1:2000) Proteintech 66011-1-Ig 

anti-Sec3 WB (1:1000); IF (1:500) Proteintech 11690-1-AP 

anti-Sec8 WB (1:300) Proteintech 11913-1-AP 
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anti-α-tubulin WB (1:1000) Sigma T6199 

anti-beta-actin WB (1:1000) Sigma A1978-100UL 

anti-Gli2 WB (1:1000) home-made by Davids biotechnologie 

anti-Gli2 PLA R&D Systems AF3635 

anti-Gli3 WB (1:1000) R&D Systems AF3690 

anti-Pericentrin IF (1:200) BD Biosciences 611814 

anti-EEA1 WB (1:1000) BD Biosciences 610456 

anti-acetylated tubulin IF (1:1000) Sigma T6793 

Secondary antibodies 

anti-mouse alexa-488 IF (1:1000) Jackson Immunoresearch 715-545-151 

anti-rabbit alexa-488 IF (1:1000) Jackson Immunoresearch 711-545-152 

anti-rat alexa-488 IF (1:1000) Jackson Immunoresearch 712-545-153 

anti-rabbit alexa-Cy3 IF (1:1000) Jackson Immunoresearch 711-165-152 

anti-mouse alexa-594 IF (1:1000) Jackson Immunoresearch 715-585-151 

anti-rabbit alexa-594 IF (1:1000) Jackson Immunoresearch 711-585-152 

anti-rat alexa-647 IF (1:1000) Jackson Immunoresearch 712-605-153 

HRP anti-mouse WB (1:2500) BioLegend 405306 

HRP anti-rabbit WB (1:2500) BioLegend 406401 

HRP anti-goat WB (1:2500) Sigma A5420 

 445 

Co-immunoprecipitation  446 

We performed co-immunoprecipitation using Pierce Anti-HA Magnetic Beads (Life 447 

Technologies) or using Dynabeads-protein G (Thermo) magnetic beads with primary 448 

antibodies (anti-GFP Genetex No#GTX113717; anti-Sec5 Proteintech No#12751-1-AP) cross-449 

linked using dimethyl pimelimidate (Life Technologies).  450 

For the production of whole-cell lysates, cells were lysed in 4°C in lysis buffer (50 mM Tris at 451 

pH 7.4, 1% NP-40 [v/v], 150 mM NaCl, 0.25% sodium deoxycholate [v/v], protease inhibitor 452 

cocktail [1× EDTA-free protease inhibitors, Sigma], 10mM NaF). 1/10 part of the clarified lysate 453 

was saved as an input fraction, and the rest was subjected to immunoprecipitation.  454 

After adding beads, binding of the protein of interest was performed overnight with gentle 455 

rotation at 4°C. The next day, beads were washed 4 x 10min in 4°C in the same lysis buffer to 456 

remove unbound proteins, and complexes were eluted off the beads using 2x SDS sample 457 

buffer at 37C for 30min. We analyzed the composition of eluent using the SDS-PAGE and 458 

Western Blot method. 459 

SDS-PAGE and Western Blot 460 

Proteins were denaturated for 30min at 65°C and resolved by SDS-PAGE. Afterward, we 461 

performed electrotransfer onto a nitrocellulose membrane. Immunocomplexes were 462 

detected using an enhanced chemiluminescence detection system (Clarity or Clarity Max, Bio-463 

rad) on Amersham Imager 680 and 800 as 16-bit grayscale TIFF files. The molecular weight of 464 

proteins was estimated with pre-stained protein markers (Bio-rad).  465 
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Proximity Ligation Assay  466 

We performed the proximity ligation assay105 using the Duolink PLA Kit (Merck) according to 467 

the manufacturer’s protocol. Anti-Sec5 and anti-Gli2 primary antibodies (Tab. 3) were used to 468 

detect sites of interaction between the proteins in NIH/3T3 Flp-In cells. 469 

Endosome Isolation 470 

The Trident Endosome Isolation Kit (Genetex) was used to fractionate cell lysates according to 471 

the manufacturer’s protocol.  472 

Electron Microscopy 473 

HEK293 cells expressing EGFP-Gli2(P-16A) were fixed on the dish with 4% PFA in 0.2M 474 

phosphate buffer and 0.25% sucrose. The samples were sent to Biocenter Oulu Electron 475 

Microscopy Core Facility and there processed for EM and immunogold labeled with anti-GFP. 476 

Imaging was performed on Sigma HD VP FE-SEM equipped with ET-SE and In-lens SE detectors, 477 

VPSE G3 detector for low vacuum mode, and 5Q-BSD detector. 478 

Data analysis 479 

The statistical data analysis was performed using Microsoft Excel and R/RStudio. For the 480 

processing of the fluorescence images, we used the FiJi/ImageJ suite. Statistical significance 481 

was calculated using Student’s t-test for experiments involving two experimental groups, or 482 

ANOVA and Tukey posthoc test for multiple comparisons.   483 
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Fig. 1 Gli3 interactome is enriched for proteins involved in ciliary transport of vesicles 
(A) NIH/3T3 Flp-In cells were treated with 100nM SAG for 4h, roughly fractionated into a “cytoplasmic” and 
“nuclear” fraction, and each fraction was pulled down using magnetic beads coated with the anti-Gli3 
antibody. Proteins were resolved on SDS-PAGE, the gel was stained with coomassie brilliant blue and 
prominent bands were excised for mass spectrometry-based protein ID. Shown is the image of the 
coomassie-stained gel with each of the excised bands indicated and numbered. Gli3 is enriched in bands 
1 (“cytoplasmic”) and 2 (“nuclear”). (B) MS-identified proteins from all bands were pooled and common 
MS-AP contaminants (>10% FDR from the CRAPome database 30) were removed. PANTHER 103 was 
used to find overrepresented Gene Ontology (GO) terms in the “PANTHER GO – Slim Biological Process” 
and “PANTHER GO – Slim Cellular Component” categories. Top-level enriched GO terms are shown with 
their corresponding -log10(FDR) values. (C) High confidence Gli3 interactors identified by MS were 
connected into a network using the STRING 106 plugin in Cytoscape. Shown is the main protein network 
with the node color representing the approximate relative abundance of the protein in the Gli3 interactome 
and the edge thickness corresponding to the confidence of connection between proteins in the STRING 
database. Also shown are highly interconnected sub-networks identified using MCODE clustering, which 
typically corresponds to protein complexes or multiprotein functional units. (D) The exocyst complex struc-
ture (PDB ID: 5yfp ref 26) was rendered using Illustrate 107 with each subunit colored according to its 
abundance in Gli3 IP/MS as in C. Subunits not identified in our experiment are rendered in white. The red 
dashed line corresponds to the predicted surface of the exocyst complex that comes into contact with the 
plasma membrane lipids 26. Each subunit is labeled with its alternative gene names.
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Fig. 2 Exocyst subunits interact with Gli2 and Gli3
(A) Co-immunoprecipitation of endogenous Sec5 with Gli2 and Gli3. Beads were coated with anti-Sec5 antibodies. 
Rabbit IgG was used as a control. (B) Proximity Ligation Assay with anti-Gli2 and anti-Sec5 antibodies in NIH/3T3 
mouse fibroblasts. Sites of interaction are marked in red. Cilia were stained with anti-acetylated tubulin (green), and 
nuclei with DAPI (blue) (C) Co-immunoprecipitation of overexpressed HA-Gli2(P1-6A) and HA-Gli3(P1-6A) with the 
exocyst subunits Sec3, Sec5, and Sec8 tagged with EGFP in HEK293T cells using anti-HA beads (D) 
Co-immunoprecipitation of overexpressed HA-Gli2(P1-6A) with single exocyst subunits Sec3, Sec5 and Sec8 tagged 
with EGFP in HEK293T cells using anti-HA beads (E) Reciprocal co-immunoprecipitation of overexpressed EGFP-
tagged Sec3, Sec5 and Sec8 with HA-Gli2(P1-6A) constructs using anti-GFP beads. (F) Co-immunoprecipitation of 
overexpressed HA-Gli2(P1-6A) truncation constructs with the exocyst subunits Sec3, Sec5, and Sec8 tagged with 
EGFP in HEK293T cells using anti-HA beads.
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Fig. 3 Knockdown of exocyst subunits decreases Gli2 ciliary localization
(A) mRNA expression levels of the indicated genes in cells stable expressing Gli2(P1-6A) and transduced with 
shRNA against each of the genes were measured using qRT-PCR. Control cells were transduced with shRNA 
against luciferase. The protein level of the indicated proteins was detected by western blot. (B) The protein level of 
Sec5 in cells transfected with siRNA against Sec5 or non-targeting control siRNA. (C) Relative localization at the 
cilium tip of stably expressed Gli2(P1-6A) in cells with shRNA knockdown of Sec3, Sec5, and Sec8. Results are 
presented as violin plots of log-transformed ratios of fluorescence intensity of anti-HA staining at cilia tips to the inten-
sity in the surrounding background. Cilia per variant n > 170. Student’s t-test analysis control-shSec3 p-value = 
5.399e-12; control-shSec5 p-value = 2.206e-06; control-shSec8 p-value < 2.2e-16. Representative images of 
Gli2(P1-6A) ciliary localization for each condition are presented below. Arl13b was used as a ciliary marker. (D) Rela-
tive localization at the cilium tip of Gli2(P1-6A) in cells transfected with indicated siRNAs. Fluorescence intensities 
were quantified as in Fig. 3C from n > 60 cilia per group. Student’s t-test for no-target control-siRNA2 p-value = 
0.0001015; for no-target control-siRNA3 p-value = 1.581e-06. Representative images of Gli2(P1-6A) ciliary localiza-
tion for each condition are presented below. Arl13b was used as a ciliary marker and pericentrin (blue) as a basal 
body marker. 
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Fig. 4 Impairment of exocyst function reduces Gli2 ciliary localization
(A) Schematic representation of the exocyst mitochondrial trap constructs (top) and assay (bottom) (B) Relative local-
ization at the cilium tip of Gli2(P1-6A) in HEK293T cells co-transfected with the HA-Gli2(P1-6A) and the indicated 
constructs in n > 40 cilia. Fluorescence intensities were quantified as in Fig. 3C. Student’s test for control 1 vs trap 
p-value = 4.28e-06; control 2 vs. trap p-value = 0.002. Representative images of Gli2(P1-6A) ciliary localization are 
presented below. (C) The exocyst inhibitor endosidin2 blocks the ciliary accumulation of Gli2(P1-6A). Relative localiza-
tion at the cilium tip of Gli2(P1-6A) in NIH/3T3 cells expressing HA-Gli2(P1-6A) treated for 2h with DMSO or 200µM 
endosidin2 was measured in n > 100 cilia per group. Fluorescence intensities were quantified as in Fig. 3C. Student’s 
t-test p-value < 2.2e-16 (D) Gli2(P1-6A)-ΔN is largely excluded from the tip of cilia. Relative localization at the cilium 
tip of Gli2 constructs stably expressed in NIH/3T3 cells. Fluorescence intensities were quantified as in Fig. 3C in n > 
50 cilia per group. Student’s t-test p-value = 2.2e-14. Representative images are presented below. Arl13b was used 
as a ciliary marker. (E) Effect of Smoothened agonist (SAG) treatment (24h; 200nM) on the accumulation of Sec3 and 
Sec5 at the ciliary base in NIH/3T3 cells. Cells were stained with anti-Sec3 or anti-Sec5 and the ciliary marker acety-
lated α-tubulin (AcTub). Relative localization at the cilium base was measured in n > 40 cells per group as in Fig. 3C. 
Student’s t-test Sec3: control vs SAG p-value = 0.005; Sec5: control vs SAG p-value = 4.6e-05. Representative 
images for each condition are presented below. Arl13b was used as a ciliary marker. White arrows show Sec3/5 accu-
mulation and white arrowheads show Gli2 ciliary accumulation. 
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Fig. 5 Gli2 associates with intracellular vesicles
(A) Airyscan fluorescence imaging of HEK293T cells co-transfected with HA-Gli2(P1-6A) and EGFP-Sec5 
stained with anti-HA. Insets show high magnification of the Sec5- and HA-Gli2(P1-6A)-positive vesicle-like 
structures with Gli2 at the periphery (B) Electron microscopy images of HEK293T cells transfected with 
EGFP-Gli2(P1-6A) and labeled with immunogold-conjugated anti-GFP. EGFP-positive signal accumulates 
around vesicle-like structures (C) Cells stably expressing HA-Gli2(P1-6A) were fractionated using the 
endosome isolation kit and the fractions were resolved using SDS-PAGE. Immunoblot shows HA-Gli2(P1-
6A), Gli3, and Sec5 in the endosomal fraction. EEA1 was used as a marker of the endosomes, and ERK 
was used as a cytosolic fraction marker. The same protein samples were resolved by SDS-PAGE and the 
gel was silver-stained, showing similar total protein abundance in both fractions. (D) Dynasore impairs 
Gli2(P1-6A) ciliary localization. Cells were treated with vismodegib in the presence or absence of dynasore 
for 2h hours and then the drugs were washed out for the indicated times. Relative localization of Gli2(P1-
6A) at the cilium tip was measured as in Fig. 3C for n > 80 cilia per group. Student’s t-test 
DMSO+vismodegib vs dynasore+vismodegib p-value < 2.2e-16; dynasore+vismodegib vs washout 1h 
p-value = 4.25e-05; dynasore+vismodegib vs washout 4h p-value = 6.412e-10. Representative images of 
Gli2(P1-6A) ciliary localization for each condition are presented below. Arl13b was used as a ciliary marker. 
(E) Effect of dynasore treatment on Gli2(P1-6A) ciliary accumulation. NIH/3T3 cells with stable expression 
of HA-Gli2(P1-6A) were treated with dynasore (4h; 40µM) in the presence of Smo inhibitors vismodegib 
(4h; 3µM) and cyclopamine (4h; 10µM). The Smo inhibitors were used to ensure that the effect of dynasore 
was not due to its influence on Smo or Ptch trafficking. The Smo inhibitors did not influence Gli2(P1-6A) 
ciliary accumulation, as expected, and did not prevent dynasore from inhibiting Gli2(P1-6A) localization at 
the cilium tip. Relative localization of Gli2(P1-6A) at the cilium tip was measured as in Fig. 3C for n > 30 
cilia per group. Student’s t-test DMSO vs vismodegib p-value = 0.5533; DMSO vs vismodegib+dynasore 
p-value = 9.047e-08; DMSO vs cyclopamine p-value = 0.8634; DMSO vs cyclopamine+dynasore p-value 
= 1.708e-10. (F) Effect of pitstop2 treatment on Gli2(P1-6A) ciliary accumulation. Pitstop2 (30µM) was 
used for 10min and then wash out to avoid its toxicity effect on cell viability. Effect of treatment was 
observed 30min after washout. Relative localization of Gli2(P1-6A) at the cilium tip was measured as in Fig. 
3C for n > 80 cilia per group. Student’s t-test DMSO vs pitstop2 30min washout p-value = 2.486e-10. Rep-
resentative images of Gli2(P1-6A) ciliary localization for each condition are presented below. Arl13b was 
used as a ciliary marker. (G) Effect of brefeldin A treatment on Gli2(P1-6A) ciliary accumulation. Cells were 
treated with DMSO or brefeldin A (5µg/ml) for 2h. Relative localization of Gli2(P1-6A) at the cilium tip was 
measured as in Fig. 3C for n > 140 cilia per group. Student’s t-test DMSO vs brefeldin A p-value = 0.4565. 
Representative images of Gli2(P1-6A) ciliary localization for each condition are presented below. Arl13b 
was used as a ciliary marker. (H) The relative mRNA expression level of Gli1 (Hh pathway activity marker), 
and HA-Gli2(P1-6A) after 4h and 24h of dynasore treatment.
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Fig. 6 Interaction network of Gli2(P1-6A) in ciliated and non-ciliated cells
(A) Schematic representation of the experiment. NIH/3T3 Flp-In cells stably expressing HA-Gli2(P1-6A) and either 
vector control or Hdominant-negative Kif3a (dnKif3a) were lysed in gentle lysis buffer and the lysates were immuno-
precipitated using magnetic beads coated with anti-HA antibodies. Eluted proteins were submitted for mass spectro-
metric analysis. Common MS-AP contaminants (>10% FDR from the CRAPome database 30) were removed from 
each dataset (control – ciliated, dnKif3a – non-ciliated) (B) High confidence HA-Gli2(P1-6A) interactors identified by 
MS were connected into a network using the STRING 106 plugin in Cytoscape. Proteins identified in Gli2(P1-6A) 
from ciliated and non-ciliated cells were pooled. Shown is the main protein network with the node color representing 
the approximate relative abundance of the protein in the Gli3 interactome and the edge thickness corresponding to 
the confidence of connection between proteins in the STRING database. Also shown are highly interconnected sub-
networks identified using MCODE clustering, which typically corresponds to protein complexes or multiprotein func-
tional units. Proteins that were identified predominantly in the ciliated cells are marked with red borders (C) Small 
GTPases identified in Gli2(P1-6A) co-IP/MS experiments are shown, with their relative enrichment scores, relative 
enrichment in ciliated vs non-ciliated cell co-IP samples, and FDR scores based on the CRAPome database.
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Fig. 7 Rab14, Rab18, Rab23, and Arf4 mediate Gli2 ciliary trafficking into primary cilium
(A) Co-immunoprecipitation of EGFP tagged Rab and Arf proteins with HA-Gli2(P1-6A). HEK293T cells 
were co-transfected with the indicated constructs and co-IP was performed as in Fig. 2C (B) Knockdown 
efficiency of Rab14, Rab18, and Arf4 using shRNA. Cells were transduced with viral constructs encoding 
the indicated shRNAs and mRNA expression of their target genes was measured by qRT-PCR. Control 
cells were transduced with the shRNA against luciferase (C) Effect of Rab14, Rab18, and Arf4 shRNA 
knockdown on relative Gli2(P1-6A) ciliary localization. Relative localization of Gli2(P1-6A) at the cilium tip 
was measured as in Fig. 3C for n > 100 cilia per group. Student’s t-test control vs shRNA Rab14 p-value = 
0.00018; control vs shRNA Rab18 p-value = 0.00027; control vs shRNA Arf4 p-value = 0.0081 (D) Repre-
sentative images of HA-Gli2(P1-6A) localization in cilia of cells with the knockdown of Rab14, Rab18 and 
Arf4. Cells were transduced as in B. Arl13B was used as a ciliary marker (E) Effect of CRISPR-Cas9-
mediated knockout of Rab14, Rab18, and Rab23 on Gli2(P1-6A) ciliary localization. Cells stably express-
ing both HA-Gli2(P1-6A) and Cas9 were transduced with viral constructs encoding the indicated sgRNAs. 
Control cells were transduced with the empty pLentiGuide-puro vector. Relative localization of Gli2(P1-6A) 
at the cilium tip was measured as in Fig. 3C for n > 280 cilia per group. Student’s t-test control vs Rab14 
edit p-value = 1.1e-06; control vs Rab18 edit p-value < 2.2e-16; control vs Rab23 edit p-value = 3.4e-07. 
Representative images of Gli2(P1-6A) ciliary localization for each condition are presented below. Arl13b 
was used as a ciliary marker. (F) Effect of inducible expression of dominant-negative (DN) forms of Rab23 
and Arf4 on Gli2(P1-6A) ciliary localization. Relative localization of Gli2(P1-6A) at the cilium tip was mea-
sured as in Fig. 3C for n > 100 cilia per group. Student’s t-test Rab23 WT vs DN p-value = 2.2e-05; Arf4 WT 
vs DN p-value = 0.00031. Representative images of Gli2(P1-6A) ciliary localization for each condition are 
presented below. Arl13b was used as a ciliary marker.
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Fig. 8 The trafficking of Lkb1, but not Ubxn10, depends on endocytosis and the exocyst
(A) Ciliary localization of Lkb1 and Ubxn10 in NIH/3T3 cells. Cells were transfected and stained with the indicated 
antibodies. Arl13b was used as a ciliary marker. (B) Effect of Sec3/5/8 shRNA knockdown on Lkb1 ciliary localization. 
Cells were transduced as in Fig 3A. Relative localization of Lkb1 at the cilium tip was measured as in Fig. 3C for n > 
70 cilia per group. Student’s t-test control vs shSec3/5/8 p-value = p-value = 0.003 (C) Effect of Sec5 shRNA knock-
down on relative Ubxn10 ciliary localization. Cells were transduced as in Fig 3A. Relative localization of Ubxn10 at the 
cilium tip was measured as in Fig. 3C for n > 160 cilia per group. Student’s t-test control vs shSec5 p-value = 0.037 (D) 
Effect of dynasore treatment on Lkb1 ciliary accumulation. NIH/3T3 cells with stable expression of HA-Lkb1 were 
treated with DMSO and dynasore (4h; 40µM). Relative localization of Lkb1 at the cilium was measured for n > 50 cells 
per group. Student’s t-test p-value = 2.3e-11. Representative images are presented below. (E) Effect of dynasore treat-
ment on Ubxn10 ciliary accumulation. Cells were treated as in B and relative localization was measured for n > 100 
cells per group. Student’s t-test DMSO vs dynasore 4h p-value = 0.05. Representative images are presented below. 
(F) Co-immunoprecipitation of EGFP tagged Sec3/5/8 proteins with HA-Lkb1 in HEK293T cells co-transfected with the 
indicated constructs (G) Cells stably expressing HA-Lkb1 were fractionated using the endosome isolation kit and the 
fractions were resolved using SDS-PAGE. Immunoblot shows Lkb1 in the endosomal fraction. EEA1 was used as a 
marker of the endosomes. Silver-stained gel of the same samples shows similar total protein abundance in both frac-
tions. (H) Fractionation of stably expressed GFP-Ubxn10 cells as in G. Immunoblot shows Ubxn10 mainly in the cyto-
solic fraction. ERK was used as a cytosolic fraction marker.
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Figure S1. Relative localization at the cilium tip of endogenous Gli2 in NIH/3T3 cells with shRNA knock-
down of Sec3, Sec5, and Sec8 and treated for 24h with SAG agonist. Results are presented as violin 
plots of log10-transformed ratios of fluorescence intensity of anti-HA staining at cilia tips to the intensity 
in the surrounding background. Cilia per variant n > 90. Student’s t-test analysis control-shSec3/5/8 
p-value = 0.0026. Representative images of Gli2 ciliary localization for each condition are presented 
below. Arl13b was used as a ciliary marker.
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Figure S2 The relative mRNA expression level of Gli1 (Hh pathway activity marker) after indicated 
dose and time of vismogedib treatment.
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Figure S3 (A) Co-immunoprecipitation of EGFP tagged Rab, Arf, and IFT proteins with HA-Gli2(P1-
6A). HEK293T cells were co-transfected with the indicated constructs and co-IP was performed using 
the HA beads. (B) Effect of inducible expression of dominant-negative (DN) forms of Rab8 and 
Rab11a on Gli2(P1-6A) ciliary localization. Relative localization of Gli2(P1-6A) at the cilium tip was 
measured as in Fig. 3C for n > 120 cilia per group. Student’s t-test Rab11a WT vs DN p-value = 0.70; 
Rab8 WT vs DN p-value = 2.5e-08.
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Figure S4 Ciliary localization of different putative ciliary proteins we tested in NIH/3T3 cells. Cells were 
transfected with indicated proteins tagged with HA or GFP and then we observed their ciliary localization. 
Arl13b was used as a ciliary marker.
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