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ABSTRACT

1. Miniature electronic device such as GPS have enabled ecologists to document relatively large1

amount of animal trajectories. Modeling such trajectories may attempt (1) to explain mechanisms2

underlying observed behaviors and (2) to elucidate ecological processes at the population scale by3

simulating multiple trajectories. Existing approaches to animal movement modeling mainly ad-4

dressed the first objective and they are yet soon limited when used for simulation. Individual-based5

models based on ad-hoc formulation and empirical parametrization lack of generability, while state-6

space models and stochastic differential equations models, based on rigorous statistical inference,7

consist in 1st order Markovian models calibrated at the local scale which can lead to overly simplistic8

description of trajectories.9

2. We introduce a ’state-of-the-art’ tool from artificial intelligence - Generative Adversarial Net-10

works (GAN) - for the simulation of animal trajectories. GAN consist in a pair of deep neural11

networks that aim at capturing the data distribution of some experimental dataset, and that enable12

the generation of new instances of data that share statistical similarity. In this study, we aim on one13

hand to identify relevant deep networks architecture for simulating central-place foraging trajecto-14

ries and on the second hand to evaluate GAN benefits over classical methods such as state-switching15

Hidden Markov Models (HMM).16
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3. We demonstrate the outstanding ability of GAN to simulate ’realistic’ seabirds foraging trajecto-17

ries. In particular, we show that deep convolutional networks are more efficient than LSTM networks18

and that GAN-derived synthetic trajectories reproduce better the Fourier spectral density of observed19

trajectories than those simulated using HMM. Therefore, unlike HMM, GAN capture the variability20

of large-scale descriptive statistics such as foraging trips distance, duration and tortuosity.21

4. GAN offer a relevant alternative to existing approaches to modeling animal movement since it is22

calibrated to reproduce multiple scales at the same time, thus freeing ecologists from the assumption23

of first-order markovianity. GAN also provide an ultra-flexible and robust framework that could24

further take environmental conditions, social interactions or even bio-energetics model into account25

and tackle a wide range of key challenges in movement ecology.26

Keywords Animal telemetry · Deep Learning · Hidden Markov Model ·Movement model · Seabird27

1 Introduction28

Recent advances in telemetry and electronic systems enabled ecologists to track free-ranging animals and to gather29

large trajectories datasets (Ropert-Coudert et al., 2009; Bograd et al., 2010; Chung et al., 2021). GPS loggers have30

been at the forefront of this breakthrough, and can now provide precise and accurate data on the movements of many31

species, such as seabirds (Wakefield et al., 2009; Yoda, 2019). These movement data contain crucial information about32

animal behaviour including habitat selection, migration patterns, and foraging strategies but present key challenges for33

movement ecologists for elucidating underlying animal movement ecology (Hays et al., 2016).34

Animal trajectories are generally seen as a succession of elementary behavioural events called steps (Nathan et al.,35

2008), and the use of random walk has received increased attention for describing the correlation and dynamics of36

such step sequences (Turchin, 1998; Codling et al., 2008). This includes correlated random walks (e.g. Bergman37

et al., 2000), Lévy random walks (e.g. Viswanathan et al., 2008), state-space models (e.g. Patterson et al., 2008) and38

stochastic differential equations models (e.g. Michelot et al., 2018), which offer different approaches to describing39

animal movement patterns. Random walks have also been used as ”building blocks” for more complex models to40

simulate realistic global movement patterns of different animals. To this end, animal behavioural heterogeneity is41

often taken into account by developing state-switching models where animal movements are seen as the outcome of42

distinct behavioural states (e.g. travelling, resting and foraging) (Morales et al., 2004). This modelling approach43

enabled notably the simulation of central-place foraging trajectories (hereafter CPF), such as seabirds trajectories44

during breeding season (e.g. Boyd et al., 2016; Zhang et al., 2017) or marine mammals trajectories (e.g. Satterthwaite45

& Mangel, 2012; Massardier-Galatà et al., 2017).46

Trajectory simulations models are indeed of crucial interest in the emerging field of movement ecology to assess the47

role of environmental heterogeneity, perceptual ranges, memory, and other mechanisms in creating different movement48

patterns (Avgar et al., 2013). It is also used to assess effectiveness of spatial management regimes and evaluate con-49
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nectivity between different populations (Palmer et al., 2011; DeAngelis & Grimm, 2014). It may also serve as a null50

model for testing hypotheses concerning movement (Michelot et al., 2017). Yet, except few studies that fitted move-51

ment models for the simulation of CPF trajectories by likelihood maximization or through an approximate bayesian52

computation framework (Michelot et al., 2017; Zhang et al., 2017), most approaches consist in individual-based mod-53

els relying on empirical parametrization and on ad-hoc mechanistic assumptions. There is therefore a growing interest54

for data-driven approach in ecology, and in particular for deep learning techniques (Malde et al., 2020), to better match55

the variability of available tagging datasets.56

Deep learning refers to a neural network with multiple layers of processing units (LeCun et al., 2015). By decomposing57

the data into these multiple layers, deep neural networks allow to learn complex features for representing the data with58

high level of abstraction at multiple-scales. It has been widely used in ecology notably for segmentation, classification59

and identification tasks (Christin et al., 2019). Deep learning tools have yet recently demonstrated a great ability for60

simulating complex systems particularly using Generative Adversarial Networks (GAN) (Goodfellow et al., 2014).61

GAN consist in a pair of deep neural networks that aim at capturing the data distribution of some experimental dataset,62

and that enable the generation of new instances of data that share statistical similarity. It has recently become a state-63

of-the-art approach for generating various type of data such as image, audio, and spatio-temporal data including human64

trajectories (Cao et al., 2019; Gao et al., 2020).65

This paper proposes therefore to introduce generative adversarial networks for the simulation of animal trajectories and66

in particular for the simulation of CPF trajectories. Our key contributions are the design of different GAN architectures,67

and the evaluation of GAN benefits over ’state-of-the-art’ tools, i.e. state-switching Hidden Markov Models (HMM)68

over real seabird foraging trajectories. In particular, this study aim to demonstrate the ability of GAN to reproduce69

multiple scales at the same time, thus freeing ecologists from the assumption of first-order markovianity. We further70

discuss the potential use of GAN and the promise of such an approach for tackling nowadays ecological challenges.71

2 Material and Methods72

2.1 Generative Adversarial Network73

2.1.1 Background74

The location of an animal is generally represented by a discrete-time or time-continuous stochastic process (Xt)t≥0 ,75

where t denotes the time. A Markov hypothesis is classically stated for this movement process. It assumes that one76

can fully predict the distribution of the future state of an animal given its current state (Patterson et al., 2008). In77

a probabilistic framework, it consists in elucidating the density function p(Xt+1|(Xt = xt), θt), where θt depends78

on various parameters such as enviromental factors, motion capacity, navigation capacity or the internal state of the79

animal (Nathan et al., 2008). This Markovian hypothesis can only be regarded as an approximation of real movement80

patterns, which generally also involve long-term dependencies. The calibration of these models generally rely on81
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the maximization of the likelihood of observed trajectories at local scales. It typically comes to estimating the joint82

distribution of step distance and heading turning angle from GPS tracks sampled at regular time intervals.83

A wide range of probabilistic models can be restated as the composition of deterministic functionG and of the sampler84

of a random latent variable. We may illustrate this point for correlated random walk (CRW) as presented in Patterson85

et al. (2008). Let is denote by st and φt the step length and the heading at time t. The CRW can be written as:86


(s1, φ1)

...

(sn, φn)

 =


(F−1(z1G|θF ), H−1(z1H |φ0, θH))

...

(F−1(znG|θF ), H−1(znH |φn−1, θH))

 = G(z) (1)

where F and H are cumulative density functions with parameters θF and θH , often chosen as Log-Normal and Von87

Mises distributions , and where ziG and ziH are independent samples from the uniform distribution over [0, 1].88

The generative model in a GAN also relies on the application of a deterministic function G to random samples of a la-89

tent variable z according to a predefined distribution. FunctionG is chosen within a parametric family of differentiable90

functions and implemented as a neural network for flexibility. The other major difference with statistical inference91

approaches classically exploited in movement ecology lies in the calibration approach from data. Rather than stating92

the calibration as the maximization of a likelihood criterion, the calibration of the generator of a GAN involves the93

simultaneous training of another deep network D (referred as the discriminator) that learns how to distinguish simu-94

lated data (i.e. G(z)) from real data. The architecture of GAN is given in Fig. 1A. If no disriminator can distinguish95

the simulated and real data, it means that the generator truly sample the unknown distribution of the training dataset96

(Goodfellow et al., 2014).97

Figure 1: GAN Architecture : Global architecture of a generative adversarial network. G refers to the generator
network that takes as input a random noise vector z and outputs a trajectory x. D is the discriminator network that
aims to distinguish real trajectories from simulated ones

2.1.2 Network Architecture98

Numerous deep networks architecture can be used for both generator and discriminator networks. Long short-term99

memory (LSTM) networks and convolutional neural networks (CNNs) are probably the most popular, efficient and100
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widely used deep learning techniques (Alom et al., 2019). In this study we used two generator and two discriminator101

architectures, in both cases one architecture relies on CNN while the second one is based on LSTM (see Fig. 2). Here,102

we briefly present the motivation and functioning of these networks. We refer the reader to Christin et al. (2019) for a103

detailed introduction to deep networks.104

LSTM Long Short Term Memory (LSTM) Networks are among the state-of-the-art architectures of recurrent neural105

networks dedicated to the modeling and processing of time series. LSTM then seems a natural framework for the106

simulation of trajectories. A key feature of LSTM is its ability to identify and exploit long-term dependencies through107

gating processes (Hochreiter & Schmidhuber, 1997). Various studies that explored deep learning for the analysis of108

animal trajectories relied on LSTMs (Wijeyakulasuriya et al., 2020; Li et al., 2021). LSTM-based architecture have109

also been used in numerous recurrent GAN for music, and medical time-series generation (Mogren, 2016; Esteban110

et al., 2017).111

In our study, we used a generator network composed of a LSTM layer that takes a different random seed at each tem-112

poral input, and produces a sequence of hidden vectors with 16 features. These hidden vectors encode the state of the113

trajectory. An additional dense layer maps the 16-dimensional hidden vector at a given time step to the corresponding114

longitudinal and latitudinal displacements. The cumulative sum of these elementary displacements form the last layer115

of generator to put a time series of positions (see Fig. 2).116

We can also exploit a LSTM for the discriminator. Given a sequence of positions (longitude, latitude), the LSTM acts117

as an encoder of this sequence in some higher-dimensional latent space. A dense layer was then applied to assign a118

probability of being realistic at each position of the sequence. Overall, the output of the discriminator is the associated119

mean probability to assess the quality of the whole trajectory (see Fig. 2).120

CNN CNN architectures exploit convolutional layers and are the state-of-art architectures for a wide range of ap-121

plications, especially for signal and image processing tasks (Alom et al., 2019). They are particularly effective at122

extracting low-level and high-level features from n-dimensional tensors, and have reecntly been illustrated for animal123

trajectory segmentation (Roy et al., 2021).124

CNN are also widely exploited in GANs (Radford et al., 2016), and have been eventually used for spatio-temporal data125

generation (Gao et al., 2020). Here, we follow the general architecture proposed in Radford et al. (2016) for image126

generation. The generator takes as input a random noise vector that can be seen as a latent representation of a global127

time-series. It then applies a series of successive fractional-strided convolutions to map the latent representation into128

time-series with increasing number of points and decreasing features, until it outputs a 2-dimensional vector of the129

required length (see Fig. 2). In our work, we used a batchnorm and a ReLU activation after every fractional-strided130

convolutions, except for the output that used only a Tanh, as suggested by (Radford et al., 2016). We may point out131

that, in this CNN architecture, there is explicit sequential modeling of the trajectory and the latent representation may132

not be a time-related.133
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Regarding the CNN-based discriminator, we also applied successive strided convolutions in order to transform the134

initial trajectory into time-series with decreasing lengths and increasing numbers of features, until we obtained a latent135

vector describing the whole trajectory. We used batchnorm and LeakyReLU activation after every strided convolutions136

as suggested by (Radford et al., 2016). The last layer is a dense layer with a sigmoid activation that transforms the137

latent representation into a probability for the trajectory of being realistic (see Fig. 2).138

Figure 2: LSTM vs CNN : Architecture of LSTM and CNN networks used in this study.

2.1.3 Adversarial training and spectral regularization139

For a given architecture, networks’ parameters are estimated using adversarial training, i.e. the two networks compete140

in a minimax two-player game given by Eq. 2. Discriminator D is trained to maximize the probability of assigning141

the correct label to both training examples and samples from G, i.e. to maximize logD(x) + log(1 − D(G(z))).142

Generator G is simultaneously trained to fool the discriminator, i.e. to minimize log(1−D(G(z))).143

min
G

max
D

Ex pdata(x)[logD(x)] + Ez pz(z)[log(1−D(G(z)))] (2)

Numerically, we apply stochastic gradient descents over the discriminator and generator successively where at each144

iteration, we compute the training losses for a randomly sampled subset of m trajectories within the training dataset1:145

Ldiscriminator =
1

m

∑
m

[log(D(x)) + log(1−D(G(z))]

Lgenerator =
1

m

∑
m

log(D(G(z))

(3)

We may complement the training loss of the generator with additional terms, including both application-specific (Ledig

et al., 2017) and regularization (Durall et al., 2020) terms. In particular, recent studies have demonstrated that a spectral

regularization may have positive effects both on the training stability and output quality of generative networks for

image simulation (Durall et al., 2020). We tested here a similar approach with the following spectral loss Lspectral to

1This subset is referred to as a batch in the deep learning literature.
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the generator’s gradient descent:

Lspectral =
∑

[log(F (x0, ..., xn)− log(F (x̂0, ..., x̂n)]2 (4)

Where F is the module of the Fourier Transform of a 2-dimensional time-series, x and x̂ are real and simulated146

trajectories respectively.147

2.2 Case studies and experiments148

2.2.1 Datasets149

GPS were fitted to tropical boobies during breeding period from two distinct locations (Table 1). Trajectories consist150

in foraging trips where seabirds look for preys at sea and come back to their colony. Data points have been linearly151

re-interpolated at regular time steps, and coordinates have been centered on the colony’s location and reduced. Finally,152

trajectories have been padded with zeros so that all longitude/latitude time-series from a dataset would have the same153

length. Example of real trajectories are given in Fig. 6.154

Table 1: Datasets Overview

Species Country Nb of trips Resolution Padding

Sula sula Brazil 30 1h 20 steps
Sula dactylatra Brazil 50 15s 200 steps
Sula variegata Peru 78 5s 200 steps

2.2.2 Architecture selection experiment155

We first designed an experiment to compare different GAN architectures. For this experiment, we considered the156

simplest dataset with a 1 hour time resolution (see Table 1). All trajectories involved 20 time steps. We evaluated four157

different GANs corresponding to every generator-discriminator pairs for the considered CNN and LSTM architectures158

: e.g., we call ’LSTM-CNN’ the GAN with a LSTM network as generator and a CNN as discriminator.159

For all generators, the input random noise vector consisted in 20 samples from a uniform distribution on [0, 1]. All160

networks had about 1500 parameters, and details on network structure are available on our github repository2. We161

trained all networks over 5000 epochs with a learning rate of 2e-4 using the loss functions given in Eq. 3. The score of162

each approach was assessed by computing the mean squared error of the logarithmic Fourier decomposition spectrum163

of simulated and real trajectories, Lspectral (see Eq. 4).164

2.2.3 GAN vs HMM experiment165

In this section we compared the best GAN architecture from the previous experiment, namely ’CNN-CNN’ GAN166

architecture, to the state-of-the-art approach to animal trajectories simulation, i.e. state-switching Hidden Markov167

2https://github.com/AmedeeRoy/BirdGAN
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Models (HMM). We tested both methods on the two datasets with 200-step time-series consisting in trajectories of168

tropical boobies from two completely distinct ecosystems and with different foraging strategies (see Table 1).169

GAN The input random noise vector consisted in 256 samples from a uniform distribution on [0, 1]. We trained the170

’CNN-CNN’ GAN architecture separately on each dataset over 5000 epochs and with a learning rate of 2e-4. We used171

a spectral regularization to better reproduce the spectral features of real trajectories, especially for fine time scales, and172

to increase learning stability. Details on the structure is available on our github repository1.173

HMM For comparison we fitted a ’state-of-the-art’ state-switching HMM to seabirds CPF trajectories. We followed174

the methodology presented by (Michelot et al., 2017), which relies on a rigorous statistical inference.175

Movements were described as a sequence of step lengths and turning angles that we fitted with gamma distribution176

and von Mises distribution respectively. Three behavioural states were used for the Peruvian datasets i.e., ”searching”,177

”foraging” and ”inbound”, while a fourth state was added with the Brazilian dataset i.e., ”resting” (Fig. 6). For states178

”searching”, ”foraging” and ”resting”, we described movement as correlated random walks (CRW), while for state179

”inbound” we used a biased random walk (BRW) with attraction toward the colony. In order to force the return to180

the colony, we fixed some terms of the transition matrix thus ensuring that the sequence of states alternates first with181

”searching”, ”foraging” and ”resting”, and is then forced to stay in state ”inbound”.182

These state-switching HMM were fitted to real data according to a maximum likelihood criterion. Fitted models were183

used to simulate trajectories. The initial step was sample from real data, and we iteratively sampled next steps, until184

the trajectory went back to the colony. In practice, we stopped the simulation once a location was simulated within a185

1-km radius around the colony.186

Implementation details : GAN were implemented and trained using Pytorch (Paskze et al., 2019). HMM were fitted187

using the momentuHMM R package (McClintock & Michelot, 2018). The code of all the reported experiments is188

available on our github repository: https://github.com/AmedeeRoy/BirdGAN189

3 Results190

3.1 Architecture selection experiment191

From the four GAN architectures the fully deep convolutional GAN lead to the best results with better convergence and192

lowest computation time (Fig. 4 and Table 2). GANs with LSTM-based discriminators seemed particularly unstable193

with highly variable performance through epochs (4). Importantly, only GANs with CNN-based generators managed194

to simulate looping trajectories. For instance, the ’LSTM-CNN’ GAN generated relatively good trajectories with a195

spectral error Lspectral lower than 3, yet without being able to loop (Fig. 3).196
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Figure 3: Real vs Simulated Trajectories: 4 examples of trajectories generated by each GAN architecture tested
on the 20-step dataset (see Table 1). The four different GANs correspond to every generator-discriminator pairs for
the considered LSTM and CNN architectures: e.g., we call ’LSTM-CNN’ the GAN which has a LSTM Network as
generator and a CNN as discriminator.

Table 2: Comparison of GAN architectures

Model Computation Time (min) Lspectral

CNN-CNN 1.95 0.47
LSTM-CNN 2.69 1.93
CNN-LSTM 3.03 3.06
LSTM-LSTM 3.59 4.0

3.2 GAN vs HMM experiment197

On both datasets, GAN and HMM managed to converge and to simulate relatively ’realistic’ CPF trajectories (see198

simulated trajectories in Fig. 6). However, the spectral distribution of GAN-derived synthetic trajectories matched199

better the spectral distribution of real trajectories (Fig. 5). In particular, the mean spectral error Lspectral was about200

4 times smaller using GAN than using HMM (Table 3). This was particularly highlighted for the highest frequencies201

(Fig. 5). On the Peruvian dataset, HMM failed to reproduce spectral distributions both at lower and higher frequencies202

(Fig. 5A), and on the Brazilian dataset, it failed in the higher frequencies only (Fig. 5B). By contrast, HMMs203

outperformed GANs to sample relevant step distributions (Fig. 7).204

Yet, GAN models better capture the real data distribution as it is able to simulate a set a trajectories that has similar205

global statistics the reference dataset does. For instance, our synthetic trajectories have consistent trip distance, trip206

duration and the straightness index distributions (see Fig. 7). The straightness index of a trajectory is defined as207

two times the quotient between the max range to the colony and the trip total distance and is a proxy for tortuosity208

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.461940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461940
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - SEPTEMBER 27, 2021

Figure 4: Convergence of GAN architecture over 5000 epochs : The four different GANs correspond to every
generator-discriminator pairs: e.g., we call ’LSTM-CNN’ the GAN which has a LSTM Network as generator and a
CNN as discriminator. Distance to true spectral density is computed with Eq. 4

Figure 5: Mean Fourier Spectrum of real trajectories used for training (blue), synthetic trajectories generated by a
’CNN-CNN’ GAN (orange) and synthetic trajectories generated by HMM (green). (A) is for the 200-step Peruvian
dataset, and (B) is for the 200-step Brazilian dataset (see Table 1). In these plots, we computed the mean Fourier
spectrum for datasets of 100 simulated trajectories.

(Benhamou, 2004). The trained GANs also capture spatial information as they reproduce position distributions of209

observed trajectories (Fig. 8 and Table 3). GAN-derived synthetic trajectories were indeed mainly heading toward210

some area of interest (i.e. westward to the colony on the Peruvian dataset, and to the north-east and south-east of the211

colony on the Brazilian dataset), while HMM-derived trajectories are uniformly directed to all directions around the212

colony.213

4 Discussion214

Deep learning has become the state-of-the-art framework for a wide range of problems in ecology such as classification215

and segmentation tasks mainly for image analysis (Weinstein, 2018; Christin et al., 2019). Applications to trajectory216
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Figure 6: Example of trajectories Real trajectories used for training are in blue, synthetic trajectories generated by a
’CNN-CNN’ GAN are in orange and trajectories generated by HMM are in green. (A) is for the 200-steps Peruvian
dataset, and (B) is for the 200-steps Brazilian dataset (see Table 1)

Table 3: Properties of GAN and HMM simulations. Lspectral stands for the mean squared error of the logarithmic
Fourier decomposition spectrum presented Fig. 5 and Σ stands for the mean squared error of the position distributions
presented Fig. 8

Dataset Model Lspectral Σ

(A) Peru CNN-CNN 0.08 1.09
HMM 0.91 2.63

(A) Brazil CNN-CNN 0.07 0.03
HMM 0.88 0.32

data (Browning et al., 2018; Peng et al., 2019; Roy et al., 2021) have also recently emerged. Despite recent advances217

in deep learning for the simulation of complex systems, few studies have explored generative models, and particularly218

of Generative Adversarial Networks (GAN) or Variational Auto-Encoders (VAE) for simulating ecological data. To219

our knowledge, deep convolutional GAN have been used only for data augmentation in simulating plant or insect220

images so far (Giuffrida et al., 2017; Lu et al., 2019; Madsen et al., 2019; Silva et al., 2021). Our study demonstrates221

that GANs are also great tools for the generation of other ecological data such as animal trajectories.222

GANs showed their great ability to capture the trajectory data distribution, except for first-order step distribution.223

In opposition, the current state-of-the-art approaches such as multi-state HMM are calibrated at a local scale and224

are unable to bring out global patterns from these local features. Our numerical experiments pointed out that the225

relationship between local and global features may be complex for real trajectory data. GANs are explicitly trained so226

that they best reproduce the characteristic multi-scale features of real trajectories. Through strided convolutions, the227

considered CNN discriminator likely overlooks the highest frequencies to focus on larger-scale information. Besides,228

the CNN generator does not explicitly represent a trajectory as a sequential process, which may also impede its ability229
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Figure 7: Histogram of descriptive statistics derived from real trajectories used for training (blue), 100 synthetic
trajectories generated by a ’CNN-CNN’ GAN (orange) and 100 synthetic trajectories generated by HMM (green). (A)
is for the 200-steps Peruvian dataset, and (B) is for the 200-steps Brazilian dataset (see Table 1)

Figure 8: Position Distribution Kernel Density Estimation of position distributions on real trajectories used for train-
ing (blue), 100 synthetic trajectories generated by a ’CNN-CNN’ GAN (orange) and 100 synthetic trajectories gener-
ated by HMM (green). (A) is for the 200-steps Peruvian dataset, and (B) is for the 200-steps Brazilian dataset (see
Table 1)

to reproduce well step distribution. This may be a general property of convolution GAN architectures. For instance,230

GANs for image generation including object appearance but may not simulate realistically fine-scale textures Cao231

et al. (2019). Future work could further investigate new GAN architectures to address this issue. The combination232

of CNN architectures to sequential ones such as LSTM-based architectures appears as a natural research direction to233

explore.234
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We believe our study will open new research avenues for the exploration of ecological questions using GANs through235

both generator and discriminator networks. The generator network is a sampler of trajectory data, and it could be236

used as a null generative model for testing ecological hypothesis such as segregation of foraging areas (Bolton et al.,237

2019), individual foraging site fidelity (Owen et al., 2019), or for generating relevant pseudo-absence in order to238

calibrate some ecological niche model (Hückstädt et al., 2020). By computing the probability of being a ’realistic’239

trajectory, the discriminator network provides a metric of data similarity, and it could be used within comparative240

study of foraging strategies in order to assess sex-specific (Lewis et al., 2005), breeding stage (Lerma et al., 2020) or241

inter-colony differences (Harding et al., 2013).242

Numerous existing varieties of GAN could also provide a great support for movement ecology, such as conditional243

GAN (Isola et al., 2018). A conditional GAN consists in a GAN with some external variable that is supposed to condi-244

tion GAN’s output. It could therefore be possible to test for condition that would explain behavioural variability such245

as individual characteristics (e.g. sex, mass, breeding stage), or environmental characteristics (e.g. prey distributions,246

oceanographic features). Testing different environmental scenarios and predicting associated animal trajectories is in-247

deed a topic of interest notably for predicting the potential impact of climate change on animal behavioural (Hückstädt248

et al., 2020). Conditional GANs could also be applied to the interpolation of trajectory data and to produce super-249

resolution trajectories as performed in computer vision (Ledig et al., 2017).250

Increasing literature concerns also the use of physics-informed GANs for modeling dynamic systems that aims at en-251

coding known physical laws into the framework of GANs. This can be achieved either by encoding directly stochastic252

differential equations into the architecture of generators (Yang et al., 2018) either in incorporating additional penalty253

terms into the optimization loss function of GANs (Bode et al., 2019; Wu et al., 2020). Such approach might there-254

fore enable ecologists to link GAN-type approaches to a mechanistic formulation of animal movement for instance255

by including bio-energetics equations, animal perceptions or cognitive relationships in their movement processes in a256

straightforward manner.257

GAN provide an ultra-flexible framework where traditional methods such as HMM struggle at accounting for envi-258

ronmental heterogeneity, perceptual ranges, memory, and social interactions and can suffer from computational time259

when maximizing likelihood of a complex state-space model. This study introduces therefore a truly promising tool260

that would allow to simulate free-ranging animal movement and freeing movement ecologists from 1st order Markov261

property that often lead to overly simplistic description of animal behaviour.262
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Christin, S., Hervet, É. & Lecomte, N. (2019) Applications for deep learning in ecology. Methods in Ecology and302

Evolution, 10, 1632–1644.303

Chung, H., Lee, J. & Lee, W.Y. (2021) A Review: Marine Bio-logging of Animal Behaviour and Ocean Environments.304

Ocean Science Journal, 56, 117–131.305

Codling, E.A., Plank, M.J. & Benhamou, S. (2008) Random walk models in biology. Journal of The Royal Society306

Interface, 5, 813–834.307

DeAngelis, D.L. & Grimm, V. (2014) Individual-based models in ecology after four decades. F1000Prime Reports, 6.308

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.461940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461940
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - SEPTEMBER 27, 2021

Durall, R., Keuper, M. & Keuper, J. (2020) Watch Your Up-Convolution: CNN Based Generative Deep Neural Net-309

works Are Failing to Reproduce Spectral Distributions. 2020 IEEE/CVF Conference on Computer Vision and310

Pattern Recognition (CVPR), pp. 7887–7896. IEEE, Seattle, WA, USA.311
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