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Abstract 1 

 2 

In many natural environments, microorganisms self-assemble around heterogeneously distributed 3 

resource patches. The growth and collapse of populations on resource patches can unfold within 4 

spatial ranges of a few hundred micrometers or less, making such microscale ecosystems hotspots 5 

of biological interactions and nutrient fluxes. Despite the potential importance of patch-level 6 

dynamics for the large-scale evolution and function of microbial communities, we have not yet been 7 

able to delineate the ecological processes that control natural populations at the microscale. Here, 8 

we addressed this challenge in the context of microbially-mediated degradation of particulate 9 

organic matter by characterizing the natural marine communities that assembled on over one 10 

thousand individual microscale chitin particles. Through shotgun metagenomics, we found 11 

significant variation in microscale community composition despite the similarity in initial species 12 

pools across replicates. Strikingly, a subset of particles was highly populated by rare chitin-13 

degrading strains; we hypothesized that their conditional success reflected the impact of stochastic 14 

colonization and growth on community assembly. In contrast to the conserved functional structures 15 

that emerge in ecosystems at larger scales, this taxonomic variability translated to a wide range of 16 

predicted chitinolytic abilities and growth returns at the level of individual particles. We found that 17 

predation by temperate bacteriophages, especially of degrader strains, was a significant contributor 18 

to the variability in the bacterial compositions and yields observed across communities. Our study 19 

suggests that initial stochasticity in assembly states at the microscale, amplified through biotic 20 

interactions, may have significant consequences for the diversity and functionality of microbial 21 

communities at larger scales.  22 

 23 

 24 

Significance Statement 25 

 26 

The biogeochemical consequences of the degradation of particulate organic matter by 27 

microorganisms represent the cumulative effect of microbial activity on individual microscale 28 
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resource patches. The ecological processes controlling community dynamics in these highly 29 

localized microenvironments remain poorly understood. Here, we find that complex marine 30 

communities growing on microscale resource particles diverge both taxonomically and functionally 31 

despite assembling under identical abiotic conditions from a common species pool. We show that 32 

this variability stems from bacteriophage predation and history-dependent factors in community 33 

assembly, which create stochastic dynamics that are spatially structured at the microscale. This 34 

microscale stochasticity may have significant consequences for the coexistence, evolution, and 35 

function of diverse bacterial and viral populations in the global ocean. 36 

 37 

 38 

Main Text 39 

 40 

Introduction 41 

 42 

A central challenge in microbial ecology is to connect the microscale world experienced by 43 

microbial cells to observations of large-scale community functions (1, 2). In many environments – 44 

ranging from soils (3) and sediments (4) to bioreactors (5) and hosts (6) – microbes live not in 45 

homogeneous, well-mixed cultures, but rather in diverse, spatially-structured assemblages, 46 

attached to surfaces and other cells in nutrient-dense patches on the order of 100µm in size. 47 

Patches often exist in otherwise nutrient-limiting environments, creating hotspots of ecological 48 

interactions and nutrient fluxes (7, 8). 49 

A well-known example of micron-scale ecological hotspots is marine particulate organic 50 

matter (POM), which is degraded by complex communities of bacteria, archaea, viruses, and 51 

eukaryotes (9) with global biogeochemical consequences (10) (Fig. 1a). These interacting 52 

community members can be broadly classified as primary degraders (that produce extracellular 53 

enzymes to hydrolyze particle biopolymers), exploiters and scavengers (that are facilitated by 54 

primary degraders) (11–14), and predators (such as bacteriophages (15) and grazers (16)). 55 

Although these assemblages are often ephemeral, with organisms migrating through seawater 56 
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from patch to patch, cells can undergo multiple generations of growth while residing on a single 57 

patch of nutrient-rich POM. This implies that the evolution and ecological functions of POM-58 

associated microbes are heavily influenced by their dynamics and interactions on microscale 59 

particles. However, little is known about the processes governing community assembly at these 60 

scales.  61 

A major obstacle to understanding the factors that control populations at the patch level is 62 

the difficulty of characterizing natural microscale communities with high replication. Microbial 63 

communities are usually sampled at spatial scales orders of magnitude larger than those relevant 64 

for microbial life (2), which homogenizes their inherent patchiness and results in inconsistent 65 

inferences about ecological interactions (1, 17). Recent technological advances now permit the 66 

sequencing of only thousands of cells (18, 19), presenting an opportunity to systematically 67 

characterize microbial populations in units more closely approximating in scale the ecological 68 

contexts experienced by microbes. 69 

Here, we leveraged high-replicate sequencing of individual microscale communities to 70 

evaluate the outcomes of assembly processes without the confounding effects of standard 71 

sampling procedures. We employed a hybrid natural-laboratory approach that paired the 72 

complexity of environmental microbial species pools with the controllability of synthetic 73 

microparticles as discrete resource patches (11, 12). We immersed 1222 individual hydrogel 74 

particles (85.0±24.0 µm in diameter) made of chitin – a highly abundant biopolymer in marine POM 75 

(9) – in samples of seawater containing microbes in their native states, which were then enriched 76 

on particle surfaces. By incubating single particles separately under identical abiotic conditions, 77 

each one became a microenvironment harboring a replicate community assembled from initially 78 

similar species pools. We performed a comparative analysis across these microscale ecosystems 79 

to investigate the natural variability in community composition and function among particles and to 80 

identify biological processes that contribute to particle-level variability.  81 
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 82 

 83 

Results 84 

 85 

Bacterial community composition varies significantly across individual particles.  86 

To quantify the variation in community states across replicate microscale ecosystems, we 87 

separately incubated single chitin particles in coastal seawater sampled from a common reservoir 88 

(Fig. 1b; Methods). Assembly outcomes were assessed by removing particles from the seawater 89 

at 13 time points over the course of 167 hours, a duration that aligns with previous measurements 90 

(12, 20) of particle lifetimes (Methods). Shotgun metagenomic sequencing of individual particle-91 

attached communities was used to construct metagenome-assembled genomes (MAGs), which 92 

were annotated to infer strains’ potential ecological roles in a chitin-degrading community as 93 

primary degraders, chitooligosaccharide exploiters, or metabolic byproduct scavengers (Fig. 1b; 94 

Table S1; Methods). These MAGs served as the references for characterizing the community 95 

composition of each particle. 96 

We found a remarkable degree of compositional variability across individual particle 97 

communities at the end of the time course (n = 149, after 154-167 hours of incubation). The 98 

distributions of taxon (MAG) relative abundances across these late-stage particles spanned more 99 

than three orders of magnitude (Fig. 2; Fig. S1a) and were approximately lognormal with a skew 100 

towards high frequencies (Fig. S2). As a result, the community states observed at the single-particle 101 

level diverged so significantly that the relative success of taxa across particles was poorly explained 102 

by their average abundances (Fig. S1b; SI Methods). To assess whether non-ecological factors, 103 

such as sampling bias in initial species pools, could have contributed to this compositional 104 

divergence, we compared the variability in communities across late-stage particles to that across 105 

unincubated aliquots of the seawater used as the inoculum (SI Methods). Inter-sample variation 106 

was significantly higher across particles than across seawater samples (Mann-Whitney U test on 107 

Aitchison distances: p = 1.3´10-13; Fig. S3), indicating that the observed variability stemmed more 108 

from the community assembly process than from differences across inocula. Because other 109 
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technical sources of noise (Methods) also did not significantly impact the measured particle 110 

compositions (Fig. S4) and all particles were chemically identical, we concluded that the variation 111 

in taxon relative abundances across particles was due to biological and ecological factors that 112 

amplified stochasticity in the initial assembly states of these communities. 113 

The skew towards high frequencies in the relative abundance distributions implied that taxa 114 

that were rare on average became dominant on a small number of particles (Fig. 2). As a result, 115 

those particles harbored low-complexity communities (Fig. S5a-b) that diverged highly from the 116 

average particle taxonomic composition (Fig. S5c). We termed the species that displayed this 117 

phenomenon “jackpot taxa” for their simultaneous local success and global rarity (Methods). The 118 

strains in this phylogenetically broad group of organisms included members of the 119 

Enterobacterales, Cytophagales, Pseudomonadales, Flavobacteriales, Rhodobacterales, 120 

Fibrobacterales, and Chitinophagales orders (Fig. S1, Table S1) and were mostly (87.9%) 121 

classified as chitin degraders. Jackpot taxa were more prevalent across late-stage particles than 122 

other taxa that were equally rare across inocula (Mann-Whitney U test: p = 7.1´10-3; Fig. S5d), 123 

indicating that the probability of their success on particles, while influenced by their scarcity in 124 

seawater, was also determined by ecological factors during community assembly. Notably, while 125 

taxon-specific interactions did not explain the abundance patterns observed across particles (Fig. 126 

S6; SI Methods), the most variable strains were likely to be degraders enriched in genes encoding 127 

chitinases (Fig. 2; Fig. S7; coefficient of variation vs. chitinase copy number, Spearman’s ρ = 0.44, 128 

p = 8.5´10-7). These observations indicated that the conditional success of specialized degraders 129 

from a diverse initial species pool contributed to the differentiation of the many rare community 130 

states found at the single-particle level. 131 

 132 

Taxonomic variability translates to divergent community-level productivity. 133 

In contrast to the functionally similar gene content profiles predicted when microbial ecosystems 134 

are characterized at the macroscale (21, 22), we found that the communities formed on particles 135 

in individual microscale ecosystems were highly functionally divergent (Fig. 3a; Fig. S8). By the 136 

end of the time course, most particles (63.8%) – and especially particles dominated by jackpot taxa 137 
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– harbored majority-degrader communities (Fig. 3a), highlighting the importance of degraders for 138 

establishing and maintaining chitin-associated communities. However, the percentage of putative 139 

degraders on each late-stage particle was as low as 13.1% and as high as 97.3%, indicating that 140 

chitin degrading communities did not self-assemble to “optimized” or conserved ratios of ecological 141 

roles after a fixed incubation period. Read mapping to chitinase protein sequences rather than 142 

MAGs supported our interpretation that variability in the estimated proportion of degraders was not 143 

due to the use of MAGs as reference genomes (Fig. S9; SI Methods). We hypothesized that this 144 

extensive variability in community composition, primed by stochasticity in assembly processes, 145 

could have had significant consequences for overall community function. 146 

Consistent with this hypothesis, individual particles sustained highly variable particle-147 

attached biomass levels that were correlated with their community compositions (Fig. S10). The 148 

number of bacterial cells in each late-stage community, estimated using qPCR of the 16S rRNA 149 

region (Methods), ranged from approximately 1,000 to nearly 200,000 cells (Fig. 3b) and was 150 

strongly correlated with the overall frequency of degraders (Spearman’s ρ = 0.45, p = 1.6´10-8). 151 

Accordingly, particles that displayed the jackpot phenomenon had significantly higher cell counts 152 

(Fig. 3b; Mann-Whitney U test: p = 2.3´10-7), revealing that jackpot taxa were dominant not only in 153 

terms of relative abundances but also absolute abundances. The distribution of cells per particle 154 

was approximately lognormal with a skew towards low cell numbers, indicating that some particles 155 

were highly productive while others harbored small populations even by the end of the incubation, 156 

as corroborated by visualizing particle-attached cells using a DNA stain (Fig. 3c; Methods). 157 

Importantly, the initial colonization of single particles incubated together in the same volume of 158 

seawater, rather than individually, resulted in particle-associated cell biomass that also spanned 159 

several orders of magnitude (Fig. S11; SI Methods). This variability in initial particle colonization 160 

was observed across a range of particle densities 15-140 times more concentrated than the 161 

conditions of the individual particle incubations, indicating that phenomena such as jackpot 162 

colonization are not specific to the environmental regime established in our separate microscale 163 

ecosystems. Collectively, these results suggested that a strain’s growth was highly influenced by 164 
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its assembly context, raising the question of which biological or ecological factors could explain the 165 

large variance in species compositions and consequent yields across replicate particles. 166 

 167 

Predation by bacteriophages contributes to variability in community composition and yield.  168 

Our observation that most (63.7%) of our MAGs contained sequences homologous to those of 169 

bacteriophages led us to investigate whether these entities impacted the abundances of bacteria 170 

on single particles. Bacteriophages (or phages, i.e. viruses that infect bacteria) are ubiquitous and 171 

abundant in marine ecosystems, making predation by phages one of the primary forms of top-down 172 

control of bacterial populations (23). High viral densities have been measured on marine particles 173 

relative to ambient seawater (15), but it is unknown to what extent this represents passive 174 

adsorption as opposed to active proliferation with impacts on bacterial growth in a natural, particle-175 

associated context. Therefore, we sought to identify populations of actively replicating phages 176 

within the single particle communities to determine if heterogeneous phage predation could explain 177 

the variability in community composition and yield. 178 

To detect replicating phages, we first classified contigs in our metagenomic dataset as 179 

phage-derived or bacteria-derived using tools (24, 25) that annotate phages from mixed 180 

metagenomes (Methods). We reasoned that contigs classified as phage-derived, especially those 181 

belonging to the genomes of temperate phages, were likely to be binned into the MAGs of their 182 

bacterial hosts. Phage k-mer signatures tend to be more similar to those of their specific hosts than 183 

to those of random bacteria (25, 26), and phages in a lysogenic cycle will have the same 184 

sequencing read coverage patterns as their hosts across samples. Therefore, phages that were 185 

lysogenic in most single-particle communities would tend to be binned with their hosts and have 186 

similar coverage levels, reflected in an inferred virus-to-microbial cell ratio (VMR) close to 1 (Fig. 187 

4a, top left). In contrast, phages in a productive cycle (lytic or chronic) would have higher coverage 188 

than their hosts because of the multiple virion copies produced per bacterial cell (27, 28) (Fig. 4a, 189 

top right). Therefore, we considered a phage-derived contig to be productive in a sample if it was 190 

one of the most highly covered elements of its MAG (Methods). 191 
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Through this pipeline, we identified 256 phage contigs with coverage patterns consistent 192 

with lysogenic infections in all samples and 263 phage contigs with coverage patterns consistent 193 

with productive infections in a subset of samples (Table S2). Because our approach relied on 194 

comparisons between co-binned phages and MAGs, phages that exclusively employ a lytic cycle 195 

were unlikely to be detected. The VMRs of three representative examples of lysogenic and 196 

productive phage contigs are shown for each particle in Figure 4b. Comparing the coverage 197 

patterns of phage- and bacteria-derived contigs provided evidence that variable phage coverage 198 

was not due to sequencing noise, lending confidence to our estimates of VMRs for specific phages 199 

(Fig. S12; SI Methods). Using the VMRs of individual productive phages, we calculated the total 200 

productive VMR per particle as a measure of overall phage replication in each community 201 

(Methods). 202 

The total productive VMRs of particle-associated communities sharply increased during 203 

the early stages of particle incubation in seawater (Fig. 4c), consistent with the phenomenon of 204 

rapid bacterial growth and high host densities driving the lysogeny-lysis switch in some phages 205 

(29–33). The mean productive VMR was lowest for the initial seawater inocula and rose sharply 206 

until the middle of the incubation period (59 hours), suggesting that phages became induced as 207 

their particle-associated hosts began to grow. Concomitant with this increase in productive VMRs, 208 

we observed the accumulation of metabolites in the seawater surrounding each particle until 59 209 

hours of incubation, followed by a decrease in metabolite concentrations (Fig. 4d; Fig. S13; Table 210 

S3; Methods). These observations could be explained by metabolite release upon the initiation of 211 

bacterial growth (34) or lysis by phages (35) and by subsequent metabolite consumption by the 212 

remaining viable bacteria (36). The coinciding timescales of metabolite liberation and rising VMRs 213 

are consistent with our hypothesis that a particle-associated lifestyle among bacteria promoted 214 

phage proliferation; therefore, we sought to assess the impact of variable phage induction on each 215 

community’s composition and consequent yield. 216 

There was a striking negative relationship between cell counts and productive VMRs on 217 

late-stage particles (Fig. 4e main, red data: Spearman’s ρ = -0.56, p = 3.3´10-13), suggesting that 218 

phage predation impacted bacterial growth success on particles upon induction. The degrader 219 
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populations contributed the most to this signal, indicating that strains among this trophic level may 220 

have been especially prone to phage activation (Fig. 4e inset; Fig. S14). Importantly, jackpot 221 

degrader taxa had lower productive VMRs than non-jackpot degraders (Fig. S15a; Mann-Whitney 222 

U test: p = 1.3´10-49). This translated to jackpot particles having significantly lower productive VMRs 223 

than non-jackpot particles (Mann-Whitney U test: p = 4.3´10-8), even controlling for differences in 224 

cell counts between these groups of communities (ANCOVA: F(1,139) = 16.92, p = 4.1´10-4, partial 225 

η2 = 0.09; Fig. S15b). Therefore, jackpot degraders may have been locally successful on a minority 226 

of particles in part because they experienced less predation, supporting the hypothesis that top-227 

down population control by phages contributed to the large variability in the bacterial compositions 228 

and thus yields observed across communities. 229 

While cell counts were significantly correlated with both phage abundances and community 230 

compositions, these features explained, respectively, 23% (Fig. 4e) and 34% (Fig. S10) of the 231 

observed variation in yields, indicating that other factors also contributed to variable growth returns. 232 

Therefore, we sought a more general framework in which to understand the key quantitative 233 

features of the data – namely, the lognormal-like distributions of relative taxon abundances (with 234 

right skews consistent with jackpot taxa) and of absolute cell abundances (with a left skew 235 

corresponding to low-biomass communities). Incorporating (i) stochastic cell arrival on particles, (ii) 236 

degraders as population founders, and (iii) noisy growth rates into a simple mathematical model of 237 

community development on single particles was sufficient to reproduce these features (Figs. S16-238 

S19; SI Text). Taken together with our experimental data, this model indicates that the biological 239 

processes which contribute to the stochasticity of particle colonization and growth rates – and 240 

especially those processes that affect degraders – will result in variable growth returns for strains 241 

across particles. 242 

 243 

 244 

Discussion  245 

 246 
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While there is an abundance of evidence showing that the marine environment as 247 

experienced by microbial cells is biologically, chemically, and physically heterogeneous (7), 248 

characterizing the ecological processes controlling community assembly and development at these 249 

scales remains a fundamental challenge, particularly in situ. Our study takes a step toward 250 

addressing this problem using a hybrid natural-laboratory experiment that monitored the assembly 251 

outcomes of complex marine communities across hundreds of individual chitin-based resource 252 

particles. In accordance with prior work demonstrating small-scale heterogeneity on aquatic 253 

resource particles (37), we found that bacterial compositions and absolute abundances varied to 254 

such an extent across replicate particles that key community features – namely, species 255 

composition and functional potential – were not conserved. Our results contrast with those of 256 

previous studies (11, 13) that describe rapid ecological successions within particle systems that 257 

are reproducible across batches. Despite this apparent reproducibility, biomass distributions in our 258 

single-particle and our multi-particle incubations suggest that particle colonization is likely 259 

heterogeneous in both systems. Thus, the reproducible dynamics previously observed in particle 260 

systems could reflect the increasingly homogenizing effect of exchange between particles over 261 

time or the mean of a process that is highly variable on the individual-particle scale. Future work is 262 

required to determine the effect of dispersal and “cross-colonization” on the dynamics of particle 263 

systems.   264 

Stochastic factors are anticipated to strongly influence community assembly for 265 

populations that are localized to small scales (38), such as in the microscale ecosystems on 266 

resource particles (12, 20). The first step in community assembly – the arrival of cells to a particle 267 

– is an intrinsically random process dependent on encounter probabilities. Our population dynamics 268 

model demonstrated that historical contingencies (created by stochastic arrival times and the 269 

growth dependency of non-degraders on degraders) magnified through noisy growth rates were 270 

sufficient to reproduce the distributions of bacterial abundances observed across individual 271 

particles. Because this chitin microparticle ecosystem is subject to conditions that have been shown 272 

to promote strong priority effects (e.g. a large regional species pool, rapid local growth dynamics, 273 

high resource overlap, and a dependence of late-arriving organisms on early-arriving ones) (38), 274 
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we hypothesize that biotic factors amplified this initial stochasticity in each assembly context and 275 

influenced subsequent community development.  276 

One key biological contributor to noisy growth returns may have been variable predation 277 

by temperate bacteriophages. Phages became increasingly and differentially activated during 278 

community development on particles, with elevated virus-to-microbial cell ratios (VMRs) in low-279 

biomass communities implicating phage-mediated lysis as one factor explaining the biomass 280 

variability on late-stage particles. These results align with those of previous studies documenting 281 

extensive variation in VMRs at small spatial scales (23) and an inverse relationship between VMRs 282 

and cell densities in marine environments (39). Because phage induction was significantly less 283 

associated with jackpot degrader strains, we hypothesize that the jackpot phenomenon – 284 

characterized by globally rare yet locally productive degraders – was partially a reflection of lower 285 

levels of phage-driven population collapse in those community contexts. Therefore, top-down 286 

control by phages may link the highly variable community compositions and yields observed among 287 

particles.  288 

A synthesis of our mathematical model with our observations of bacterial and phage 289 

abundances suggests a conceptual framework for key processes promoting variability in 290 

microscale community composition and function (Fig. 5). We posit that stochastic arrival on 291 

particles diversifies initial assembly states; that the timescale and magnitude of degrader 292 

colonization determine the extent to which scavengers and exploiters are supported; and that 293 

phage induction and subsequent host lysis, primarily among degraders, contribute to noisy growth 294 

returns. Therefore, in this conceptual framework, the high-biomass jackpot particles are those in 295 

which degraders arrive early and resist phage induction, leading to high relative and absolute 296 

degrader abundances (Fig. 5, top). By contrast, low-biomass particles are those in which degraders 297 

are not able to proliferate, either because phage induction leads to their population collapse (Fig. 298 

5, middle) or because they become established on a particle relatively late (Fig. 5, bottom). 299 

In addition to the growing body of evidence that marine aggregates can stimulate the 300 

production of virulent phages (i.e. phages that exclusively engage in lytic cycles) (40), our study 301 

suggests that resource particles may be replication hotspots also for temperate phages (i.e. those 302 
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that conditionally employ both lytic and lysogenic cycles). In marine environments, lysogeny is 303 

promoted under conditions that limit bacterial growth while the lytic cycle is favored during periods 304 

of high bacterial activity (29, 41, 42), indicating that rapid host growth and abundance can regulate 305 

the lysogeny-lysis switch in some temperate phages (30–33). Therefore, in a patchy nutrient 306 

landscape, temperate phages may employ lysogeny as a survival strategy when their bacterial 307 

hosts are at low densities and are foraging for nutrients, hitchhiking with their hosts onto resource 308 

particles. Robust bacterial growth on particles may induce prophages at a time when abundant 309 

host resources can be co-opted and many susceptible cells are nearby, resulting in lytic 310 

suppression of the bacterial population and the release of virions into the surrounding seawater. 311 

Factors such as the variable presence of prophages in the flexible genomes of strains growing on 312 

different particles (43), the co-occurrence of bacterial competitors that trigger induction (44, 45), 313 

and phenotypic heterogeneity resulting in differential induction (46, 47) may all contribute to the 314 

varying levels of phage activation observed on individual particles in our microscale ecosystems. 315 

Further research is required on the mechanisms underlying prophage induction in complex 316 

communities in order to understand how lysogeny and lysis on particle hotspots shape the 317 

dynamics of marine microbial communities. 318 

Our observations of wild marine communities, though made in a laboratory setting, may 319 

provide insights on the ecosystem-level consequences of microscale stochastic assembly 320 

dynamics. First, the stochasticity in bacterial growth, amplified through spatial structuring at the 321 

microscale, may promote the maintenance of a diverse regional species pool. This is because the 322 

variability in growth returns can effectively offset differences in relative fitness between competing 323 

strains or species (48). Second, the variability in microscale community states could be reflected 324 

in larger-scale biogeochemical patterns since the cumulative process of POM degradation can be 325 

approximated as the sum of degradation events on individual particles. We found that late-stage 326 

communities did not converge to a fixed proportion of chitin degraders or to a fixed amount of 327 

biomass per particle; both measures are positively correlated with the rate of particle degradation 328 

(12), suggesting that historical contingencies in community assembly promote functional 329 

divergence (38, 49). These results contrast with those of previous studies on the replicability of 330 
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microbial community assembly at the functional level (21, 22) likely because of the homogenizing 331 

effect of macroscale sampling. Intriguingly, the lognormal-like distribution of biomass on individual 332 

particles aligns with observations and predictions of lognormally-distributed global marine organic 333 

matter export and remineralization rates; these distributions may repeatedly emerge as a reflection 334 

of the multiplicative effects of stochastic variables in ecological settings (50–52). Although our 335 

experimental system significantly simplified the process of POM degradation in the ocean, our 336 

approach provides a quantitative link between the microscale and larger-scale processes, 337 

highlighting the importance of considering local variability when investigating the mechanisms 338 

behind microbial community development in a spatially structured environment. 339 

 340 

 341 

Materials and Methods 342 

 343 

Abridged Methods are provided below; details and additional information are provided in SI 344 

Methods. 345 

 346 

Seawater collection and individual chitin particle incubation. Nearshore coastal seawater was 347 

collected from Nahant, MA; filtered (63µm) to remove large particulate matter; gently concentrated 348 

via centrifugation at 4000 × g for 5 minutes; and aliquoted for incubations and sequencing. Chitin 349 

magnetic particles (New England Biolabs, #E8036L) were washed in sterile artificial seawater 350 

(Sigma-Aldrich, #S9883) and individually selected beneath a dissecting microscope in a laminar 351 

flow hood. Single chitin particles (85.0±24.0 µm in diameter) were transferred to sterile 96-well 352 

plates (Thermo Fisher, #AB0600L), with one chitin particle per well. Plates were inoculated 353 

consecutively with 175µL of filtered, centrifuged seawater per well; sealed (VWR, #89092-056); 354 

and rotated end-over-end (7.5rpm) at room temperature. The particles in an entire plate were 355 

harvested at each time point (after 12, 22.75, 34.5, 46, 59, 69, 82, 92, 103, 116.75, 113, 153.5, and 356 

166.5 hours of incubation) by inspection and pipetting under a dissecting microscope in a laminar 357 

flow hood. Each particle was transferred into sterile 96-well plates (Thermo Fisher, #AB0600L) 358 
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containing TE buffer and stored at -20°C. The seawater surrounding each harvested particle was 359 

also saved in 96-well plates and stored at -20°C. 360 

 361 

Mock communities and negative controls. To quantify the technical error associated with 362 

creating metagenomic libraries from low DNA inputs, mock communities were simulated by 363 

combining the DNA of two strains previously isolated from a chitin particle enrichment (11). 364 

Libraries from three technical replicates of mock communities totaling 50pg or 5pg of DNA (SI 365 

Methods), as well as from six negative controls (containing only nuclease-free water), were 366 

prepared and analyzed with the same protocols used for individual chitin particle-attached 367 

communities. 368 

 369 

DNA extraction and metagenomic sequencing. DNA extractions were performed for twelve 370 

175µL-volume aliquots of the initial, unincubated seawater and for particles harvested after 34.5, 371 

59, 103, 116.75, 113, 153.5, and 166.5 hours of incubation (see Table S5 for sample metadata). 372 

DNA was extracted from all samples with the Agencourt DNAdvance Genomic DNA Isolation Kit 373 

(Beckman Coulter; modifications noted in SI Methods). Metagenomic libraries were prepared with 374 

the Nextera XT DNA Library Prep Kit and index primers (Illumina) using the protocol developed by 375 

Rinke et al. (18) for low DNA inputs (SI Methods). Libraries were quantified on an Agilent 4200 376 

TapeStation system with High Sensitivity D5000 ScreenTapes (Agilent Technologies) and pooled 377 

by time point in equimolar amounts. Sequencing was performed on an Illumina HiSeq 2500 378 

machine (250bp paired-end reads) at the Whitehead Institute for Biomedical Research (Cambridge, 379 

MA). 380 

 381 

Metagenome-assembled genome (MAG) generation, taxonomic assignment, and role 382 

classification. Raw sequencing reads were quality trimmed with Trimmomatic v0.36 (53). Reads 383 

mapping to the PhiX and human genomes were filtered out using BBDuk v38.16 (54) and BBMap 384 

v38.16, respectively (SI Methods). Trimmed, filtered reads that were error-corrected using 385 

BayesHammer (55) were pooled within each time point and co-assembled using MEGAHIT v1.2.9 386 
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(56). Bins were generated with MaxBin v2.2.7 (57) and CONCOCT v1.1.0 (58); consolidated and 387 

filtered using DAS Tool v1.1.1 (59); and evaluated for completeness and contamination using 388 

CheckM v1.1.2 (60). The resulting 251 bins were used as reference MAGs (³50% complete, £10% 389 

contaminated; median completeness 93.7%, median contamination 3.9%; Table S1). Highly similar 390 

MAGs obtained from separate co-assemblies were grouped into 132 clusters (SI Methods). MAG 391 

taxonomic classifications were made using GTDB-Tk v1.1.1 (61). MAGs were functionally 392 

annotated using a custom database of profile hidden Markov models (HMMs) of proteins involved 393 

in growth on chitin (SI Methods; Table S6). Ecological roles for MAGs (as degraders, 394 

chitooligosaccharide exploiters, or metabolic byproduct scavengers) were defined based on the 395 

gene content patterns observed for sequenced and phenotyped (14) strains previously isolated 396 

(11, 13) from particle enrichments (SI Methods).  397 

 398 

Read mapping to MAGs for relative abundance estimation. Trimmed, filtered reads were 399 

mapped competitively against the MAGs generated from sequencing particle-attached 400 

communities, initial seawater samples, and negative controls. Read mapping was performed using 401 

the approach described in Leventhal et al. (62) (SI Methods). Reads that best mapped to predicted 402 

contaminant MAGs (SI Methods) were removed from consideration. MAG relative abundances 403 

were calculated for each sample by (1) tallying the hits to all MAGs in each MAG cluster; (2) 404 

normalizing the tally by the average genome length of all MAGs in each MAG cluster; and (3) 405 

dividing the normalized tallies for each MAG cluster by their sum for each sample. Therefore, for 406 

MAGs clustered together based on similarity, their relative abundances are represented in that of 407 

the entire MAG cluster to which they belong; this calculation circumvents the artificial 408 

underestimation of MAG relative abundances that would otherwise be obtained with a non-409 

dereplicated reference set. The relative abundances of organisms occupying the three ecological 410 

roles (degrader, exploiter, scavenger) on each particle were calculated by summing the relative 411 

abundances of MAGs classified into each role.  412 

 413 
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Definitions of jackpot MAGs and jackpot particles. A jackpot score was calculated for each 414 

MAG cluster to quantitatively reflect the properties of rarity across most particles and dominance 415 

on a few particles (SI Methods) such that MAGs with high scores strongly displayed the jackpot 416 

phenomenon. Each particle’s jackpot score was calculated as the weighted average of MAG 417 

jackpot scores (i.e. the sum of the relative abundance of each MAG cluster multiplied by its jackpot 418 

score). Particles with high jackpot scores and low Pielou’s evenness were categorized as “jackpot 419 

particles” (SI Methods). 420 

 421 

Bacteriophage analyses. Binned contigs were classified as phage-derived or bacteria-derived 422 

using VirSorter v1.0.3 with its RefSeqABVir database (24) and VirFinder v1.1 (25), two tools 423 

designed to detect phage sequences among mixed metagenomes (SI Methods). We used a read 424 

coverage-based approach to categorize phage-derived contigs as productive or lysogenic in 425 

particle-attached communities (Table S2; see SI Methods for analysis controls). Based on read 426 

mapping to MAGs, per-base coverage values for all binned contigs were computed with BEDTools 427 

v2.27.0 (63) and were used to calculate contig-wide average coverage values. For each MAG and 428 

for each sample, a phage-derived contig was considered to be productive if its coverage was 429 

greater than the coverage of the 95th percentile bacteria-derived contig in the same MAG; 430 

otherwise, it was considered to be lysogenic in that sample. The VMR of an individual phage contig 431 

in one sample is defined as the phage contig coverage divided by average coverage of the MAG 432 

with which it is binned (which was calculated using only the bacteria-derived contigs). Total VMRs 433 

– i.e. the total number of phage copies relative to the total number of bacterial MAG copies in an 434 

entire sample – were calculated separately for productive and lysogenic phage contigs. The total 435 

productive VMR for a sample was defined as: 436 

 437 

"#$
𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒	𝑝ℎ𝑎𝑔𝑒	𝑐𝑜𝑛𝑡𝑖𝑔𝑠	𝑖𝑛	𝑀𝐴𝐺9

𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑀𝐴𝐺9	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
: × (𝑀𝐴𝐺9	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒)?

@

9

 438 

=
𝑡𝑜𝑡𝑎𝑙	#	𝑝ℎ𝑎𝑔𝑒	𝑐𝑜𝑝𝑖𝑒𝑠	(𝑑𝑢𝑒	𝑡𝑜	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠)

𝑡𝑜𝑡𝑎𝑙	#	𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙	𝑔𝑒𝑛𝑜𝑚𝑒	𝑐𝑜𝑝𝑖𝑒𝑠  439 
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 440 

where n is the number of MAGs found in a sample. This calculation is equivalent to  441 

 442 

∑ (𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒	𝑝ℎ𝑎𝑔𝑒	𝑐𝑜𝑛𝑡𝑖𝑔𝑠	𝑖𝑛	𝑀𝐴𝐺9)@
9

∑ (𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑀𝐴𝐺9	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒)@
9

 443 

 444 

where n is the number of MAGs found in a sample. Total lysogenic VMRs were calculated using 445 

the same formula while considering only lysogenic-annotated contigs. VMRs for each ecological 446 

role (i.e. for the subpopulation in a community that belongs to one of the three roles of degrader, 447 

exploiter, or scavenger) were calculated using the same formula considering only the MAGs of 448 

each role and their associated phages.  449 

 450 

Cell count estimation. Bacterial DNA extracted from individual particle-attached communities was 451 

quantified through qPCR of the 16S rRNA gene using the Femto Bacterial DNA Quantification Kit 452 

(Zymo Research), which has a lower limit of detection of 20fg. Two sets of standards and negative 453 

controls were included in each qPCR run. The number of bacterial cells for each particle was 454 

estimated from the absolute DNA amounts based on measurements indicating a mean of 2.5fg 455 

DNA per bacterial cell in seawater samples (64). 456 

 457 

Imaging of chitin particle colonization. Subsets of chitin particles incubated individually in 458 

seawater were stained at time points by adding the DNA stain SYTO9 (Invitrogen, #S34854) at a 459 

final concentration of 500nM directly to the particle incubations. Particles were incubated in the 460 

dark at room temperature for 15 minutes before being mounted separately on microscope slides 461 

and imaged with a Zeiss epifluorescence microscope at 100X magnification. 462 

 463 

Metabolomics. We performed untargeted metabolomics of the seawater that surrounded each 464 

harvested chitin particle and of the initial, unincubated seawater (SI Methods). We used a binary 465 

LC pump (Agilent Technologies) and an MPS2 Autosampler (Gerstel) coupled to an Agilent 6520 466 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461956doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

18 
 

time-of-flight mass spectrometer (Agilent Technologies) operated in negative mode, at 2GHz, 467 

extended dynamic range, with an m/z (mass/charge) range of 50-1000. Ions (Table S3) were 468 

annotated against a curated library of metabolites present in marine microbes, based on the BioCyc 469 

database (65). For metabolites that exceeded the limit of detection (SI Methods), the intensities of 470 

each ion were normalized between 0 (the limit of detection) and 1 (the highest measured intensity 471 

of a given ion). Weighted ion intensities for each timepoint were calculated by taking the sum of all 472 

normalized intensities of ions in all samples for each timepoint.  473 

 474 

 475 

Data Sharing Plans 476 

 477 

All data will be made publicly available before publication. Sequencing data will be deposited to the 478 

National Center for Biotechnology Information (NCBI) as a BioProject, with raw reads uploaded to 479 

the Sequence Read Archive (SRA) and metagenome-assembled genomes (MAGs) uploaded to 480 

the Whole Genome Shotgun (WGS) database. All mass spectra files from the metabolomics will 481 

be accessible from MassIVE (ftp://MSV000087936@massive.ucsd.edu) before publication. MAG 482 

relative abundances for each sample and metadata for samples, MAGs, phages, and detected 483 

metabolites are provided as Supplementary Tables. All code and files used to generate figures will 484 

be made available at personal GitHub pages before publication. 485 

 486 
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Figures 654 

 655 

 656 

Figure 1. Modeling particulate organic matter degradation with a laboratory system of 657 

enriching of marine microbes on chitin particles. (a) Microscale marine particles are spatially-658 

separated nutrient-rich habitats dynamically populated and degraded by complex communities of 659 

heterotrophic bacteria. The interparticle distance range is estimated from data reported in Simon 660 

et al. (16). (b) Schematic depicting experimental design and analysis. Microscale chitin particles 661 

were individually incubated in seawater, and the DNA content of particle-attached communities 662 

was quantified and submitted for shotgun metagenomic sequencing. Communities were 663 

characterized using metagenome-assembled genomes (MAGs), which were classified into three 664 

predicted ecological roles for this ecosystem: chitin degraders, chitooligosaccharide exploiters, 665 

and metabolic byproduct scavengers. 666 

  667 
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 668 

Figure 2. High compositional variability across replicate late-stage particles is driven by 669 

conditionally rare degrader taxa. Relative abundances of metagenome-assembled genomes 670 

(MAGs; n = 120) across late-stage particles. Smaller black dots indicate the relative abundance 671 

of each MAG per particle (n = 149). Larger white dots indicate the log10[mean relative abundance] 672 

across the particles on which the MAG was found. MAGs are sorted from left to right by their 673 

prevalence across particles (i.e. the number of particles on which they are detected). The bars 674 

above show the number of chitinases encoded in each MAG. The annotations below show each 675 

MAG’s predicted ecological role (heatmap: blue = degrader, green = exploiter, yellow = 676 

scavenger); jackpot score (heatmap: white = low, black = high); and taxonomic order (E = 677 

Enterobacterales, R = Rhodobacterales, P = Pseudomonadales, F = Flavobacteriales, C = 678 

Cytophagales, O = Other). See Fig. S1 for additional details.  679 
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 680 

Figure 3. Late-stage particles diverge in community-level functional potential and biomass. 681 

(a) Ternary plot of the relative abundances of organisms occupying the three ecological roles 682 

(degrader, exploiter, scavenger) on each late-stage particle (n = 149), calculated by summing the 683 

relative abundances of MAGs classified into each role. Red dots represent jackpot particles, and 684 

black ones represent non-jackpot particles. Jackpot particles harbored significantly higher degrader 685 

populations than non-jackpot particles (79.8% vs. 47.4% on average; Mann-Whitney U test: p < 686 

2.2´10-16). (b) Estimates of absolute bacterial cell counts on late-stage particles through qPCR of 687 

the 16S rRNA gene in DNA extracted from particle-attached communities. Jackpot particles (red 688 

dots) harbored significantly higher numbers of cells (Mann-Whitney U test: p = 2.3´10-7) than non-689 

jackpot particles (black dots). (c) Representative images of late-stage particles that were harvested 690 

after 167 hours of incubation in seawater and stained with the DNA-intercalating dye SYTO 9 (scale 691 

bar, 50µm). Particle-attached communities spanned a range of growth states, from sparsely to 692 

densely populated.  693 
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 694 

Figure 4. Bacteriophages become increasingly activated during community development 695 

and contribute to variability in bacterial abundances on late-stage particles. (a) Schematic 696 

of approach to detect productive phage infections from metagenomic data. Left: during lysogenic 697 

infections, prophages replicate with their bacterial hosts (virus-to-microbe ratio, VMR, » 1, top); 698 

lysogenic phage contigs have read coverage values similar to those of most bacterial contigs of 699 

their host MAG (bottom). Right: during productive infections, prophages replicate much more than 700 
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their hosts (VMR >> 1, top); productive phage contigs have read coverage values much higher 701 

than those of most bacterial contigs of their host MAG (bottom). (b) Representative examples of 702 

phages with lysogenic coverage patterns on all late-stage particles (top three rows), and of 703 

phages with productive coverage patterns on a subset of particles (bottom three rows). For each 704 

phage contig, VMR is shown across late-stage particles on which each MAG is present. Gray 705 

dots, particles on which the phage contig is not a coverage outlier; red dots, particles on which 706 

the phage is a high coverage outlier. Dashed line: VMR = 1. (c) Total VMRs for productive 707 

phages over time. The first time point shows productive VMRs of initial seawater samples; 708 

subsequent time points show productive VMRs for chitin particle-attached communities incubated 709 

in seawater. Smaller red dots, values for individual samples; larger white dots, mean VMR for 710 

each time point. (d) Metabolomic profiles of the seawater surrounding chitin particles as a 711 

function of incubation duration. Values are depicted in terms of fold-change at each time point 712 

relative to the first time point (dashed line: no change). Red line (and shading): mean (±1 713 

standard deviation) weighted ion intensity (Methods). Blue line: number of unique metabolites. (e) 714 

Main: Absolute bacterial cell counts on late-stage particles (n = 142), estimated through qPCR, 715 

vs. each particle’s total VMR for lysogenic phages (gray dots) and productive phages (red dots). 716 

Cell counts were negatively correlated with productive VMRs (Spearman’s ρ = -0.56, p = 3.3´10-717 

13; red line and shading: log-log linear regression and 95% confidence interval, R2 = 0.23, p = 718 

1.3´10-9). Productive and lysogenic VMRs were decoupled (red vs. gray data: Spearman’s ρ = 719 

0.11, p = 0.18). Marginal histograms: distributions of productive VMRs (red), lysogenic VMRs 720 

(dark gray), and bacterial cell counts (light gray). Inset: Bar plot of values of Spearman’s ρ 721 

between cell counts and productive VMRs of bacterial populations by ecological role (blue = 722 

degraders, green = exploiters, yellow = scavengers; see Fig. S14b for details).  723 
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 724 

Figure 5. Conceptual model of key processes contributing to the diversification of 725 

communities on microscale particles. Schematics of community development over time are 726 

shown for three example particles, with the absolute abundances depicted for bacterial 727 

populations by ecological role (blue = degraders, green = exploiters, yellow = scavengers). Based 728 

on our conceptual model (see Discussion), high-biomass jackpot particles are those on which 729 

degraders arrive early and resist phage induction, leading to high relative and absolute degrader 730 

abundances (top). By contrast, low-biomass particles are those on which degraders are not able 731 

to proliferate, either because phage induction leads to their population collapse (middle) or 732 

because they become established on a particle relatively late (bottom).  733 
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Supplementary Information Text 734 

 735 

Models of abundance fluctuations 736 

 737 

Notation and context 738 

 739 

We considered a system with 𝑀 MAGs and 𝑃 particles. Let 𝑥9 be the abundance of MAG 𝑖 on a 740 

particle and 𝑋 = ∑ 𝑥99  be the total abundance. The probability distribution 𝑝(𝑥) is the probability of 741 

observing a given vector of abundance 𝑥, while 𝑝9(𝑥) is the probability that species 𝑖 has abundance 742 

𝑥 and 𝑃(𝑋) is the probability that the total abundance is 𝑋. We also define 𝑦9 = 𝑙𝑜𝑔𝑥9 and 𝑌 = 𝑙𝑜𝑔𝑋 743 

(𝑙𝑜𝑔 means natural log everywhere).  744 

 745 

Models #1-3 are reasonable models that nevertheless do not recapitulate the observed trends (i.e. 746 

the right-skewed distributions of relative taxon abundances [Fig. S2] and the left-skewed 747 

distribution of absolute cell abundances [Fig. 3b]), which model #4 (referenced in the main text) 748 

does reproduce. 749 

 750 

Model #1: Stochastic arrival and exponential growth 751 

 752 

We assume that MAGs arrive stochastically to a particle and grow exponentially with a fixed MAG-753 

specific growth rate 𝑟9. The log-abundance of MAG 𝑖 at time 𝑡 will therefore be 𝑦9 = 𝑟9(𝑡 − 𝑡9L)), 754 

where 𝑡9L is the arrival time of MAG 𝑖. 755 

 756 

The only source of variation across particles is the intrinsic randomness in the arrival time, which 757 

is exponentially distributed with (migration) rate 𝜆9. If we are considering only particles where 𝑖 is 758 

present, the probability should be normalized between 0 and the duration of the experiment 𝑡, which 759 

leads to 760 

 761 
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𝜌9(𝑡L) =
𝜆P𝑒QRST

U

1 − 𝑒QRST	. 762 

 763 

One can obtain the probability of observing a MAG with log-abundance 𝑦9 at time 𝑡 simply by 764 

inverting the relationship 𝑦9 = 𝑟9(𝑡 − 𝑡9L)): 765 

 766 

𝑝9(𝑦) =
𝜆9
𝑟9

𝑒𝑥𝑝 X−𝜆9𝑡 + 𝜆9
𝑦
𝑟9
Z

1 − 𝑒QRST 	, 767 

 768 

and, therefore, the probability of the abundance (conditioned on being present) reads 769 

 770 

𝑝9(𝑥) =
𝜆9
𝑟9
𝑒𝑥𝑝(−𝜆9𝑡)
1 − 𝑒QRST 𝑥

RS
\S
Q]	. 771 

 772 

Note that this distribution is normalized between 0 and 𝑥9 = 𝑒\ST. We can therefore rewrite this 773 

expression as 774 

 775 

𝑝9(𝑥) =
𝜆9
𝑟9
𝑥9

RS
\S𝑥

RS
\S
Q]	. 776 

 777 

Both the arrival rate 𝜆9 and the growth rate 𝑚9 differ across MAGs. We set their values by drawing 778 

them from two independent lognormal distributions. In particular, each 𝜆9 for 𝑖 = 1, … ,𝑀 was drawn 779 

from a lognormal distribution with mean �̅� and log-variance 𝑠Ra. Similarly, each 𝑟9 was drawn from a 780 

lognormal with mean �̅� and variance 𝑠\a. 781 

 782 

Fig. S16 shows the distribution of collapsed MAG relative abundances and the distribution of total 783 

abundances obtained with this model. Model #1 always predicts a relative log-abundance 784 

distribution with negative skewness and a total log-abundance distribution with non-negative 785 

skewness (contrarily to what observed in the data; see Fig. 3b). 786 
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 787 

Model #2: Stochastic arrival and exponential growth with demographic stochasticity 788 

 789 

Model #2 assumes that MAGs arrive on particles with rate 𝜆9. The population growth that follows is 790 

determined by a birth-death process with constant per-capita birth and death rates (𝑏9 and 𝑑9, 791 

respectively). The (average) growth rate 𝑟9 equals 𝑏9 − 𝑑9. 792 

 793 

Similar to the procedure of model #1, we assumed that the values of migration, growth, and death 794 

rates of each MAG were initialized as lognormal random variables with means �̅�, �̅�, and �̅� and log-795 

variances 𝑠Ra, 𝑠\a, and 𝑠Pa. 796 

 797 

Fig. S17 shows that model #2 always predicts a total log-abundance distribution with positive 798 

skewness, therefore failing in reproducing the empirical shape of the total abundance distribution. 799 

 800 

Model #3: Stochastic arrival and exponential growth with environmental stochasticity 801 

 802 

Model #3, similarly to model #1, assumes that MAGs arrive stochastically to a particle with arrival 803 

rate 𝜆9 and then grow exponentially. When a MAG arrives on a particle, it starts growing 804 

exponentially. The growth rate of MAG 𝑖 is not fixed, equal to 𝑟9 across all particles, but is itself a 805 

random variable. In particular, the growth rates of MAG 𝑖 across particles are normally distributed 806 

with mean 𝑟9 and variance 𝜎9a proportional to the mean squared: 𝜎9a = 𝑐\a𝑟9a, where 𝑐\ is the 807 

coefficient of variation. 808 

 809 

As for model #1, the arrival rate 𝜆9 and the average growth rates 𝑟9 are lognormally distributed with 810 

means �̅� and �̅� and log-variances 𝑠Ra and 𝑠\a. 811 

 812 

Fig. S18 shows that model #3 always predicts a total log-abundance distribution with positive 813 

skewness, therefore failing in reproducing the empirical shape of the total abundance distribution. 814 
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 815 

Model #4: Exponential growth with environmental stochasticity conditioned on degrader 816 

presence 817 

 818 

In the previous models, the growth of all MAGs was only conditioned on arrival. This assumption 819 

inevitably led to total log-abundance distributions with positive skewness, contrarily to the empirical 820 

observation of negative skewness. 821 

 822 

Model #4 assumes that, for a particle to become viable for growth, the presence of a degrader MAG 823 

is required first. The arrival rate of a degrader is 𝜆P. All the cells that arrive to the particle after the 824 

first arrival of the degrader are able to grow. The time at which the population of MAG 𝑖 on a particle 825 

will start to grow will be 𝑡c9 = 𝑡L9 + 𝑡P, where 𝑡P is the time of arrival of the degrader (an exponential 826 

random variable with rate 𝜆P) and 𝑡L9  is the time between arrival of the degrader and the arrival of 827 

the MAG 𝑖 (an exponential random variable with rate 𝜆9). 828 

 829 

Starting at 𝑡c9 , MAG 𝑖 will start to grow exponentially with a random, normally distributed, growth 830 

rate with mean 𝑟9 and coefficient of variation 𝑐\. Similar to the previous models, the arrival rate 𝜆9 831 

and the average growth rates 𝑟9 are lognormally distributed with means �̅� and �̅� and log-variances 832 

𝑠Ra and 𝑠\a. 833 

 834 

Fig. S19 shows that the predictions of model #4 agrees with the empirical observations. The total 835 

log-abundance distribution has a negative skewness, while the distribution of MAG relative 836 

abundances has a positive skewness. The shape of the patterns is robust across different 837 

parameters values. Only when the variation across MAGs is comparable to the growth rate 838 

fluctuations across particles (𝑐\ ∼ 𝑠\ ∼ 1) does the total log-abundance distribution display a 839 

positive skewness. 840 

 841 
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 842 

Extended methods 843 

 844 

Sample collection and incubation with individual chitin particles 845 

 846 

Seawater sampling and treatment. Nearshore coastal ocean surface water samples were 847 

collected on July 15, 2017 from Canoe Beach, Nahant, MA, USA (42°25’11.5’’ N, 70°54’26.0’’ 848 

W). The seawater was immediately transported to Parsons Laboratory (MIT, Cambridge, MA, 849 

USA) for processing. In order to decrease the degree of dissimilarity between seawater aliquots 850 

used in incubations with chitin particles, large particulate matter was removed (using a 63µm 851 

filter), and the flow-through was concentrated via gentle centrifugation in 1L batches at 4000 × 852 

g for 5 minutes. The lower 100mL of each 1L batch was saved and pooled; aliquots of this 853 

water in 175µL volumes were either used for particle incubations or stored at -20°C for 854 

downstream DNA extraction and metagenomic sequencing. 855 

 856 

Seawater incubation with individual chitin particles. Artificial seawater (ASW), used for 857 

washing and storing chitin particles, was prepared by dissolving 40g/L sea salts (Sigma-858 

Aldrich, #S9883) in Milli-Q deionized water and filtering the solution through a 0.22-µm filter. 859 

Chitin magnetic particles (New England Biolabs, #E8036L) stored in 20% ethanol were washed 860 

three times (2mL particles resuspended in 50mL ASW) using a magnet to pull down the 861 

particles. Aliquots of washed chitin particles were further diluted in ASW in sterile petri dishes 862 

and individually selected beneath a dissecting microscope in a laminar flow hood. Single chitin 863 

particles were transferred in 3µL volumes of ASW into the wells of 96-well plates (Thermo 864 

Fisher, #AB0600L; UV-sterilized; free from DNase, RNase, and human DNA), with one chitin 865 

particle per well. The individual particles selected had a diameter of 85.0±24.0 µm, which was 866 

quantified from a set of 60 particles on an ImageXpress Micro Confocal (Molecular Devices). 867 

Plates containing individual particles were stored at 4°C until they were inoculated 868 

consecutively with 175µL of filtered, centrifuged seawater per well. The plates were sealed 869 
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(VWR, #89092-056) and rotated end-over-end at 7.5 revolutions/minute at room temperature. 870 

The particles in an entire plate were harvested at each time point (after 12, 22.75, 34.5, 46, 59, 871 

69, 82, 92, 103, 116.75, 113, 153.5, and 166.5 hours of incubation) by pipetting the contents 872 

of each well onto a sterile petri dish and inspecting the water under a dissecting microscope in 873 

a laminar flow hood. Each particle was transferred in 1µL volumes into 96-well plates (Thermo 874 

Fisher, #AB0600L) pre-filled with 100µL of TE buffer; plates with harvested particles were 875 

stored at -20°C until downstream processing. The seawater surrounding each harvested 876 

particle was also saved in 96-well plates (Thermo Fisher, #AB0600L) and stored at -20°C until 877 

downstream processing. 878 

 879 

DNA extraction and metagenomic sequencing. DNA extractions were performed for twelve 880 

175µL-volume aliquots of the initial, unincubated seawater, as well as for particles harvested after 881 

34.5, 59, 103, 116.75, 113, 153.5, and 166.5 hours of incubation. DNA was extracted from all 882 

samples with the Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter) using 883 

reagent volumes 0.5X relative to those specified in the manufacturer’s protocol, except for the 884 

elution buffer, of which only 30µL was used for each sample to avoid over-diluting low DNA yields. 885 

Metagenomic libraries were prepared with the Nextera XT DNA Library Prep Kit and index primers 886 

(Illumina) using the protocol developed by Rinke et al. (1) for low DNA input samples. While the 887 

results from the protocol in Rinke et al. were reproducible with as little as 100fg of input DNA, the 888 

authors recommend using a minimum of 1pg as input. Based on our qPCR measurements of DNA 889 

extracted from individual particle-attached communities (as described in the Methods section “Cell 890 

count estimation”), only one of our libraries (with 0.44pg input) was created with less than 1pg DNA. 891 

The modifications to the manufacturer’s library preparation protocol included (i) diluting the 892 

Amplicon Tagment Mix 1:10 in non-DEPC-treated nuclease-free water, and (ii) increasing the 893 

number of PCR amplification cycles of the tagmented DNA from 12 to 20 cycles. Amplified libraries 894 

were purified with 0.6X AMPure XP beads. Each library was quantified on an Agilent 4200 895 

TapeStation system with High Sensitivity D5000 ScreenTapes (Agilent Technologies) following the 896 

manufacturer’s protocol, and successfully amplified libraries were pooled by time point in equimolar 897 
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amounts. Sequencing was performed on an Illumina HiSeq 2500 machine (250bp paired-end 898 

reads) at the Genome Technology Core of the Whitehead Institute for Biomedical Research (MIT, 899 

Cambridge, MA, USA). See Table S5 for all sample metadata. 900 

 901 

Metagenomic analyses 902 

 903 

Read pre-processing. Raw sequencing reads were clipped (to remove adapter sequences) 904 

and trimmed for quality with Trimmomatic v0.36 (2) (parameters: LEADING:3, TRAILING:3, 905 

SLIDINGWINDOW:10:20, MINLEN:36). Reads mapping to the PhiX genome were filtered out 906 

with BBDuk v38.16 (3) (parameters: k=31, hdist=1) and those mapping to the human genome 907 

(masked by Brian Bushnell at the Joint Genome Institute to prevent false positives) were 908 

identified and removed using BBMap v38.16 (parameters: minid=0.95 maxindel=3 bwr=0.16 909 

bw=12 minhits=2 qtrim=rl trimq=10 untrim; reference genome: 910 

hg19_main_mask_ribo_animal_allplant_allfungus.fa.gz). 911 

 912 

Metagenome assembly, binning, and MAG taxonomic assignment. Default parameters 913 

were used for all tools unless otherwise specified. Trimmed, filtered reads were error-corrected 914 

using BayesHammer (4) (a component of the SPAdes v3.13.0 pipeline) in order to improve 915 

contig assembly. Reads within each time point were pooled and co-assembled using MEGAHIT 916 

v1.2.9 (5). Assembled contigs at least 1kb in length were binned using two complementary 917 

tools – MaxBin v2.2.7 (6) and CONCOCT v1.1.0 (7). To provide CONCOCT with coverage 918 

estimates, error-corrected reads were mapped to contigs using Bowtie 2 v2.3.4.1 (8) with the 919 

parameters and approach described in Leventhal et al. (9). Bins generated with MaxBin and 920 

CONCOCT were consolidated and filtered using DAS Tool v1.1.1 (10) and evaluated for 921 

completeness and contamination with CheckM v1.1.2 (11). The resulting 251 bins that were at 922 

least 50% complete and at most 10% contaminated were used as reference MAGs, with 923 

median completeness and contamination values of 93.7% and 3.9%, respectively, across this 924 

set of MAGs (Table S1). Taxonomic classifications from the Genome Taxonomy Database 925 
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(GTDB) (12) were assigned to MAGs using GTDB-Tk v1.1.1 (13). Highly similar MAGs obtained 926 

from separate co-assemblies were identified and clustered through a pipeline developed by Dr. 927 

Jakob Russel for performing whole-genome comparisons of each MAG against all others with 928 

BLAT v36x2 (14). Briefly, a similarity score was calculated for each MAG relative to another by 929 

dividing the combined length of its contigs at least 98% identical to those in the compared MAG 930 

by the combined length of all its contigs. A threshold for distinguishing high similarity scores 931 

from low ones was determined using Otsu’s method (15) with code derived from the R (16) 932 

package EBImage (17). 132 clusters of MAGs with mutually high similarity scores were 933 

identified, and all MAGs in each cluster had consistent GTDB-based taxonomic assignments. 934 

For one MAG cluster, one of the MAGs was classified as a different genus from the other 935 

MAGs; this MAG was separated from the cluster. We chose to consider clustered MAGs as a 936 

unit, rather than to dereplicate them, in order to retain potential strain-level microdiversity in our 937 

reference set. 938 

 939 

MAG ecological role assignments. For each MAG, protein-coding genes were predicted and 940 

translated using Prodigal v2.6.3 (18). Predicted protein sequences were compared to a custom 941 

database of profile hidden Markov models (HMMs) of proteins involved in growth on chitin using 942 

the hmmsearch function of HMMER v3.3 with default parameters (19). Publicly-available 943 

HMMs were downloaded from the Pfam v33.1 (20) or TIGRFAM v15.0 databases (21) (see 944 

Table S6 for accession numbers). Custom HMMs were made by identifying experimentally-945 

verified proteins of interest (22, 23), finding their homologs in the UniProtKB/Swiss-Prot 946 

v2020_06 database (24), creating a seed alignment using MAFFT v7 with default parameters 947 

(25, 26), and building the profile HMMs using the hmmbuild function of HMMER with default 948 

parameters (see Table S6 for details on each custom HMM). Protein-coding sequences were 949 

annotated based on the hmmsearch results if the protein length was at least 100 amino acids, 950 

the independent E-value was less than 1´10-9, and the domain score was greater than 30. Only 951 

the most significant annotation was used for each protein sequence. Gene copy numbers were 952 

calculated for each MAG by tallying the number of annotations made for each protein group 953 
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(Table S1). Ecological roles (as degraders, chitooligosaccharide exploiters, or metabolic 954 

byproduct scavengers) for MAGs were defined based on the gene content patterns observed 955 

for strains previously isolated from particle enrichments (27, 28), fully sequenced, and 956 

phenotyped according to their abilities to grow on colloidal chitin, chitobiose, and GlcNAc (29). 957 

MAGs were classified as degrader genomes if they encoded at least 1 chitinase and at least 1 958 

copy of any of the following genes: GlcNAc-specific methyl-accepting chemotaxis protein 959 

(MCP), GlcNAc-specific phosphotransferase system IIBC component (PTS), GlcNAc-specific 960 

TonB-dependent transporter (TBDT), N,N'-diacetylchitobiose phosphorylase, beta-N-961 

acetylhexosaminidase, or GlcNAc kinase. MAGs were classified as exploiter genomes if they 962 

encoded 0 chitinases and had at least one of the following characteristics: more than 1 copy of 963 

beta-N-acetylhexosaminidase or at least 1 copy of MCP, PTS, TBDT, or N,N'-964 

diacetylchitobiose phosphorylase. MAGs were classified as scavenger genomes if they 965 

encoded 0 chitinase, MCP, PTS, TBDT, and N,N'-diacetylchitobiose phosphorylase copies, 966 

and 1 or fewer copies of beta-N-acetylhexosaminidase. If MAGs clustered by similarity were 967 

assigned different ecological roles by these heuristics, then either (i) the role assigned to all 968 

MAGs defaulted to the role of the MAG with the lowest contamination and/or highest 969 

completeness (which occurred for 4 MAG clusters), or (ii) the MAG cluster was split into two 970 

subclusters (which occurred for 5 MAG clusters); these discrepancies are indicated in Table 971 

S1. Following this MAG cluster curation, there were a total of 138 MAG clusters. 972 

  973 

Read mapping to MAGs for relative abundance estimation. All trimmed, filtered reads were 974 

mapped competitively against the MAGs created from sequencing particle-attached 975 

communities; the initial, unincubated seawater; and the negative controls (see the Methods 976 

section “Mock communities and negative controls”). Samples with fewer than 100,000 trimmed, 977 

filtered reads were excluded from analyses. Read mapping was performed using Bowtie 2 978 

v2.3.4.1 (8) with the parameters and approach described in Leventhal et al. (9) and post-979 

processed using SAMtools v1.7 (30). Reads that best mapped (based on alignment scores) to 980 

MAGs obtained from the negative controls (which were contaminants from laboratory reagents) 981 
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and to MAGs obtained from particle sequences that were also likely environmental 982 

contaminants (indicated in Table S1; determined through a literature search of each strain’s 983 

taxonomy in studies of the marine environment) were removed from consideration when 984 

estimating community compositions. To avoid artifactually double-counting hits from paired 985 

reads, only the best hit of the forward read was considered for read pairs that survived trimming 986 

and quality filtering. Hits to completely bacteriophage-derived contigs (as opposed to 987 

prophages integrated into bacterial genome contigs) were also excluded from estimates of 988 

MAG relative abundances (see the Methods section “Bacteriophage analysis”). To minimize 989 

spurious detection, MAGs were considered to be “present” in a sample if they recruited at least 990 

0.05% of the reads in a sample; for MAGs that recruited reads below this threshold in a sample, 991 

their abundance was set to 0 for that sample. MAG relative abundances for MAGs above this 992 

threshold were calculated for each sample by (1) tallying the hits to all MAGs in each MAG 993 

cluster; (2) normalizing the tally by the average genome length of all MAGs in each MAG 994 

cluster; and (3) dividing the normalized tallies for each MAG cluster by their sum for each 995 

sample. Therefore, for MAGs clustered together based on similarity (see the Methods section 996 

“Metagenome assembly, binning, and MAG taxonomic assignment”), their relative abundances 997 

are represented in that of the entire MAG cluster to which they belong; this calculation 998 

circumvents the artificial underestimation of MAG relative abundances that would otherwise be 999 

obtained with a non-dereplicated reference set. The relative abundances of organisms 1000 

occupying the three ecological roles (degrader, exploiter, scavenger) on each particle were 1001 

calculated by summing the relative abundances of MAGs classified into each role. Based on 1002 

information gathered from relative abundance estimation, particles harvested at 113 hours 1003 

post-inoculation were excluded from analyses because of a clear batch effect at that time point 1004 

characterized by high abundances of MAG Serratia_liquefaciens93 (96.7% of particles on 1005 

which Serratia_liquefaciens93 was at least 10% abundant were from t=113h, which included 1006 

98.9% of particles from that time point; this MAG was also the most abundant MAG on 81.1% 1007 

of particles from t=113h and was not the most abundant MAG on any particles from other time 1008 

points; see Table S7). 1009 
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 1010 

Comparison of variability in seawater vs. particle-associated communities. Inter-sample 1011 

variability was estimated as the Aitchison distance between the community compositions of 1012 

pairs of samples (i.e. the Euclidian distance between center log-ratio-transformed MAG relative 1013 

abundance vectors). Aitchison distances were calculated between aliquots of the initial, 1014 

unincubated seawater and between late-stage particle communities separately, and the 1015 

distributions of distances between all pairs of samples were compared to each other. 1016 

 1017 

Definitions of jackpot MAGs and jackpot particles. A jackpot score was calculated for each 1018 

MAG cluster to quantitatively reflect the properties of rarity across most particles and 1019 

dominance on a few particles. Based on relative abundances across late-stage particles, each 1020 

MAG’s jackpot score was defined as: 1021 

 1022 

(𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑜𝑓	𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑠) ∗ (#	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠	𝑜𝑛	𝑤ℎ𝑖𝑐ℎ	𝑀𝐴𝐺	𝑖𝑠	𝑡ℎ𝑒	𝑚𝑜𝑠𝑡	𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡) ∗ (ℎ𝑖𝑔ℎ𝑒𝑠𝑡	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒	𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑)
(#	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠	𝑜𝑛	𝑤ℎ𝑖𝑐ℎ	𝑀𝐴𝐺	𝑖𝑠	𝑝𝑟𝑒𝑠𝑒𝑛𝑡)a

 1023 

 1024 

Therefore, MAGs with high scores strongly display the jackpot phenomenon, whereas MAGs 1025 

with low scores do not. The jackpot score for each particle was calculated as the weighted 1026 

average of MAG jackpot scores (i.e. the sum of the relative abundance of each MAG cluster 1027 

multiplied by its jackpot score). Each particle’s jackpot score was compared to its species 1028 

evenness (calculated as Pielou’s evenness, i.e. the Shannon diversity index divided by the 1029 

natural logarithm of species richness) with the expectation that particles that most strongly 1030 

display the jackpot phenomenon have low species evenness. Particles were defined as 1031 

“jackpot particles” if they have jackpot scores that exceed the threshold value above which log-1032 

transformed values of species evenness drop sharply (Fig. S5a); this value corresponds to the 1033 

60th percentile of jackpot particle scores. For comparing the binary categories of “jackpot 1034 

degraders” and “non-jackpot degraders” (Fig. S15a), “jackpot degraders” were those MAGs 1035 

that had jackpot scores greater than zero and that were present on less than 75% of late-stage 1036 

particles; this thresholding was done in order to exclude the MAG clusters Serratia13 and 1037 
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Fibrobacterales5 that had very low yet non-zero jackpot scores because of their high relative 1038 

abundances on many particles (see Tables S1 and S7). 1039 

 1040 

Calculation of the percent variance explained in MAG abundances on individual 1041 

particles by the MAG abundances theoretically obtained by sequencing particles in bulk. 1042 

To evaluate the extent to which community compositions at the single particle level diverged 1043 

from that of a “bulk” measurement theoretically obtained by sequencing all particles together, 1044 

we calculated “bulk” MAG abundances by (1) normalizing the mapped read counts to each 1045 

MAG cluster by the total number of read counts for each sample; (2) summing the counts for 1046 

each MAG cluster across samples; (3) normalizing the sum across samples by the average 1047 

genome length of all MAGs in each MAG cluster; and (4) dividing the length-normalized counts 1048 

for each MAG cluster by their sum. (These “bulk” MAG relative abundances are equivalent to 1049 

the mean MAG relative abundances calculated across all particles, including those particles 1050 

where MAGs are absent.) The percent variance in the abundance ranks of MAGs on single 1051 

particles explained by the abundance ranks for the theoretical bulk measurement was 1052 

calculated for each particle as the square of the Pearson correlation coefficient (between each 1053 

individual vs. the bulk abundance rank), multiplied by 100.  1054 

 1055 

Multivariate analysis. We inferred the number of conditional dependencies between MAGs 1056 

from the estimated inverse covariance matrix of center log-ratio-transformed MAG relative 1057 

abundances, repeating this process for 1000 randomizations of the data in which we permuted 1058 

particle labels for each MAG but retained their abundance distributions. The inverse covariance 1059 

matrices were estimated using a graphical lasso approach with the R package glasso (31) for 1060 

several values of the regularization parameter (ρ = 0.005, ρ = 0.001, ρ = 0.0005, and ρ = 1061 

0.0001). 1062 

 1063 

Read mapping to chitinases and calculating the chitinase-weighted means. To evaluate 1064 

whether the use of MAGs as reference genomes could have biased our estimate of the 1065 
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degrader population relative abundances in particle-attached communities, reads were also 1066 

mapped to a reference set of chitinase genes (regardless of binning). All assembled contigs 1067 

(binned and unbinned) were annotated for chitinase genes using the HMM-based approach 1068 

described in the Methods section “MAG ecological role assignments.” A custom DIAMOND 1069 

database of 3,370 translated chitinase genes was created using the makedb function of 1070 

DIAMOND v0.9.10.111 (32) with default parameters. Because of the high sequence diversity 1071 

of chitinase genes, we chose to make this custom database so that the chitinase sequences 1072 

used as references would be representative of those found in this experiment. Trimmed, 1073 

quality-filtered reads were mapped to this database using the blastx function of DIAMOND with 1074 

default parameters. To avoid artifactually double-counting hits from paired reads, only the best 1075 

hit of the forward read was considered for read pairs that survived trimming and quality filtering. 1076 

Only the most significant hit was counted for each read and only if the E-value was less than 1077 

or equal to 1´10-25. The number of such hits was tallied for each sample and divided by the 1078 

number of trimmed, quality-filtered reads used in the mapping step to yield the percent of reads 1079 

in each sample mapping to chitinase genes (Table S5). If the degrader population relative 1080 

abundance estimated by MAGs were a consistent approximation of the true degrader 1081 

population abundance, then the wide range in the number of chitinases encoded in each 1082 

degrader MAG (Table S1) would be reflected in the percent of reads in each community 1083 

mapping to chitinase genes. Therefore, the community-weighted mean (CWM) for chitinases 1084 

was calculated as another comparison to the percent of reads mapping to chitinases. The 1085 

chitinase CWM was calculated by multiplying the relative abundance of each degrader MAG 1086 

(or MAG cluster) by the number of chitinases encoded in it (or the mean number of chitinases 1087 

for a MAG cluster), and finally by summing these values. 1088 

 1089 

Bacteriophage analysis.  1090 

 1091 

Identifying phage-derived contigs. Binned contigs assembled from our metagenomic 1092 

dataset were first classified as phage-derived or bacteria-derived using tools designed to 1093 
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detect phage sequences among mixed metagenomes – namely, (i) VirSorter v1.0.3 (33) 1094 

via the CyVerse platform (www.cyverse.org; National Science Foundation Awards DBI-1095 

0735191, DBI-1265383, DBI-1743442) using its RefSeqABVir database and default 1096 

parameters; and (ii) VirFinder v1.1 (34) with default parameters. Contigs were classified as 1097 

phage-derived if they met one of the following standards as employed in Gregory et al. 1098 

(35): (i) they were classified by VirSorter as Category 1 or 2 (complete phage contig, higher 1099 

confidence); (ii) they were classified by VirFinder with a score ³ 0.9 and p-value < 0.05; or 1100 

(iii) they were classified both by VirSorter as Category 3 (complete phage contig, lower 1101 

confidence) and by VirFinder with a score ³ 0.7 and p-value < 0.05.  1102 

 1103 

Identifying productive vs. lysogenic phage-derived contigs. We used a read coverage-1104 

based approach to categorize phage-derived contigs as productive or lysogenic in particle-1105 

attached communities. Phages in a productive cycle in a particular sample would have a 1106 

higher coverage than the bacterial contigs of the MAG with which they were binned 1107 

because of the multiple virion copies produced per bacterial cell. In contrast, phages in a 1108 

lysogenic cycle would have coverage values comparable to those of the bacterial contigs 1109 

of the MAG with which they were binned. We reasoned that contigs classified as phage-1110 

derived, especially those belonging to the genomes of temperate phages, were likely to be 1111 

binned into the MAGs of their bacterial hosts because: i) phage k-mer signatures tend to 1112 

be more similar to those of their specific hosts than to those of random bacteria (34, 36, 1113 

37); ii) phages in a lysogenic cycle will have the same sequencing read coverage patterns 1114 

as their hosts across samples; and iii) accordingly, both of the binning algorithms we 1115 

employed clustered contigs based on their tetranucleotide frequencies and their coverage 1116 

levels across multiple samples. Because our approach relied on comparisons between co-1117 

binned phages and MAGs, we considered in our analyses only phage-classified contigs at 1118 

least 5kb in length, since the likelihood of mis-binning decreases with increasing contig 1119 

length.  1120 
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Based on read mapping to MAGs (see the Methods section “Read mapping to 1121 

MAGs for relative abundance estimation”), per-base coverage values for all binned contigs 1122 

were computed with the genomecov function of BEDTools v2.27.0 (38) and were used to 1123 

calculate contig-wide average coverage values. For each MAG and for each sample, a 1124 

phage-derived contig was considered to be productive if its coverage was greater than the 1125 

coverage of the 95th percentile bacteria-derived contig in the same MAG. A phage derived-1126 

contig was considered to be lysogenic in a sample if its coverage did not exceed the 1127 

coverage of the 95th percentile bacteria-derived contig in the same MAG. Through this 1128 

pipeline, we identified 263 phage contigs with coverage patterns consistent with productive 1129 

infections in a subset of samples and 256 phage contigs with coverage patterns consistent 1130 

with lysogenic infections in all samples (Table S2). 1131 

 1132 

Calculating virus-to-microbial cell ratios (VMRs). The VMR of an individual phage contig in 1133 

one sample is defined as the phage contig coverage divided by average coverage of the 1134 

MAG with which it is binned (which was calculated using only the bacteria-derived contigs). 1135 

Total VMRs – i.e. the total number of phage copies relative to the total number of bacterial 1136 

MAG copies in an entire sample – were calculated separately for productive and lysogenic 1137 

phage contigs. The total productive VMR for a sample was defined as: 1138 

 1139 

"#$
𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒	𝑝ℎ𝑎𝑔𝑒	𝑐𝑜𝑛𝑡𝑖𝑔𝑠	𝑖𝑛	𝑀𝐴𝐺9

𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑀𝐴𝐺9	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
:

@

9

1140 

× (𝑀𝐴𝐺9	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒)? 1141 

=
𝑡𝑜𝑡𝑎𝑙	#	𝑝ℎ𝑎𝑔𝑒	𝑐𝑜𝑝𝑖𝑒𝑠	(𝑑𝑢𝑒	𝑡𝑜	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠)

𝑡𝑜𝑡𝑎𝑙	#	𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙	𝑔𝑒𝑛𝑜𝑚𝑒	𝑐𝑜𝑝𝑖𝑒𝑠  1142 

 1143 

where n is the number of MAGs found in a sample. This calculation is equivalent to  1144 

 1145 
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∑ (𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒	𝑝ℎ𝑎𝑔𝑒	𝑐𝑜𝑛𝑡𝑖𝑔𝑠	𝑖𝑛	𝑀𝐴𝐺9)@
9

∑ (𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑀𝐴𝐺9	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒)@
9

 1146 

 1147 

where n is the number of MAGs found in a sample. Similarly, the total lysogenic VMR for 1148 

a sample was defined as 1149 

 1150 

"#$
𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑙𝑦𝑠𝑜𝑔𝑒𝑛𝑖𝑐	𝑝ℎ𝑎𝑔𝑒	𝑐𝑜𝑛𝑡𝑖𝑔𝑠	𝑖𝑛	𝑀𝐴𝐺9

𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑀𝐴𝐺9	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
:

@

9

1151 

× (𝑀𝐴𝐺9	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒)? 1152 

=
𝑡𝑜𝑡𝑎𝑙	#	𝑝ℎ𝑎𝑔𝑒	𝑐𝑜𝑝𝑖𝑒𝑠	(𝑑𝑢𝑒	𝑡𝑜	𝑙𝑦𝑠𝑜𝑔𝑒𝑛𝑖𝑐	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠)

𝑡𝑜𝑡𝑎𝑙	#	𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙	𝑔𝑒𝑛𝑜𝑚𝑒	𝑐𝑜𝑝𝑖𝑒𝑠  1153 

 1154 

where n is the number of MAGs found in a sample. VMRs for each ecological role (i.e. for 1155 

the subpopulation in a community that belongs to one of the three roles of degrader, 1156 

exploiter, or scavenger) were calculated using the same formulas as above while 1157 

considering only the MAGs of each role and their associated phages. When calculating 1158 

total VMRs, we used the average coverage value of all phage contigs in each MAG (rather 1159 

than the sum of the coverage values for all phage contigs in each MAG) to obtain a more 1160 

conservative estimate of phage copy number. For example, if two phage contigs belonged 1161 

to the same phage genome but did not overlap in sequence, they would appear to be two 1162 

separate phages; thus, using their sum would double the apparent phage copy number, 1163 

while using their average would provide a more accurate representation of their 1164 

abundance.  1165 

 1166 

Analysis controls. Given that read coverage from metagenomic data is often noisy, it is 1167 

conceivable that phage contigs identified as “productive” have high coverage relative to 1168 

their associated bacterial MAGs simply due to sequencing noise. We performed two 1169 

analyses to examine this possibility. Firstly, we considered that because productive phages 1170 
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are identified based on coverage, there is a chance that more productive phages would be 1171 

found in samples with more reads. (Ensuring that this is not the case is one of the controls 1172 

used in Kieft et al. (39), which also employs a coverage-based method for finding 1173 

productive phages in mixed metagenomes.) Therefore, we calculated the Spearman’s 1174 

correlation coefficient between the number of reads in a sample and the number of phage-1175 

derived contigs with coverage values above the 95th percentile for their MAG (as described 1176 

in the Methods section “Identifying productive vs. lysogenic phage-derived contigs”). We 1177 

calculated these correlations for samples within time points to avoid spurious correlations 1178 

created by systematic differences in the number of reads obtained across time points. The 1179 

phage contigs from the MAGs that showed a significant correlation (p < 0.05) were 1180 

excluded from analyses. Secondly, for each sample, we compared the average coverage 1181 

of all phage-derived contigs (³ 5kb) with coverage values above the 95th percentile for their 1182 

MAG with the average coverage of all bacteria-derived contigs (³ 5kb) with coverage 1183 

values above the 95th percentile for their MAG. If the high coverage phage contigs have 1184 

comparable average coverage to the bacterial contigs, that would indicate that the phage 1185 

contigs had high coverage only due to sequencing noise. The average bacterial coverage 1186 

is larger than the average phage coverage in only 2.0% (3/149) of late-stage particles (Fig. 1187 

S12). Therefore, for samples with high total productive VMRs, phage contigs with high 1188 

coverage values likely represent phages that were replicating more than their bacterial 1189 

hosts, rather than representing contigs with randomly higher coverage values. 1190 

 1191 

Mock communities and negative controls. In order to quantify the technical error associated with 1192 

creating metagenomic libraries from low DNA inputs, mock communities were simulated by 1193 

combining the DNA of two strains isolated from a previous chitin particle enrichment experiment 1194 

using seawater from the same location sampled for this project (27). The total genomic DNA of 1195 

Vibrio splendidus strain 1A01 (BioProject #PRJNA414740, Accession #PDUR00000000) and 1196 

Maribacter sp. 6B07 (BioProject #PRJNA414740, Accession #PDUT00000000) was extracted 1197 

using the MasterPure DNA Purification Kit (Epicentre), and double-stranded DNA content was 1198 
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quantified using the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen). The DNA of each strain 1199 

was mixed in equimolar amounts and serially diluted to either 50pg or 5pg total (to include a range 1200 

of expected DNA input concentrations from extractions of communities attached to single chitin 1201 

particles). Metagenomic libraries from three technical replicates of each concentration, as well as 1202 

from six negative controls (containing only nuclease-free water), were prepared using the same 1203 

protocol used for individual chitin particle-attached communities (as described in the Methods 1204 

section “DNA extraction and metagenomic sequencing”). The results from the mock community 1205 

sequencing are shown in Fig. S4. Of the six negative control libraries, only three amplified; the 1206 

MAGs recovered from these samples included Delftia acidivorans and a Brevundimonas sp., which 1207 

belong to taxonomic groups previously found as contaminants in laboratory reagents used in DNA 1208 

extractions and sequencing (40, 41). These MAGs were included as references for the 1209 

metagenomic analysis, and the reads best mapping to them (based on alignment scores) were 1210 

removed from consideration when estimating community compositions. 1211 

 1212 

Cell count estimation. Bacterial DNA extracted from individual particle-attached communities was 1213 

quantified through qPCR of the 16S rRNA gene using the Femto Bacterial DNA Quantification Kit 1214 

(Zymo Research), which has a lower limit of detection of 20fg. Two sets of standards and negative 1215 

controls were included in each qPCR run. The number of bacterial cells for each particle was 1216 

estimated from the absolute DNA amounts based on measurements indicating a mean of 2.5fg 1217 

DNA per bacterial cell in seawater samples (42). 1218 

 1219 

Metabolomics experiments and analyses. We performed untargeted metabolomics of the 1220 

seawater that surrounded each chitin particle (after removing the chitin particles at each time point) 1221 

and of the initial, unincubated seawater (t=0). All samples were first diluted 1:100 in nuclease-free 1222 

water (in two serial 1:10 dilutions). We used a binary LC pump (Agilent Technologies) and an MPS2 1223 

Autosampler (Gerstel) coupled to an Agilent 6520 time-of-flight mass spectrometer (Agilent 1224 

Technologies) operated in negative mode, at 2GHz, extended dynamic range, with an m/z 1225 

(mass/charge) range of 50-1000. The mobile phase consisted of isopropanol:water (60:40, v/v) pH 1226 
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9, with the addition of 5mM ammonium fluoride and a flow rate of 150 μl/min. Raw data were 1227 

processed and analyzed using preprocessing raw mass spectrometry data functions contained in 1228 

the bioinformatics toolbox of MATLAB (43, 44). We detected 5714 ions, of which 121 were 1229 

annotated against a curated library of metabolites that are present in marine microbes, based on 1230 

the BioCyc database (45). Certain ions were matched with multiple isomeric or isobaric compounds 1231 

(as noted in Table S3). Detectable metabolites were those with ion intensities that passed the 1232 

detection threshold above the inoculum [sample ion intensity > (mean ion intensity at t=0) + 1233 

(3*standard deviation of ion intensity at t=0)]. For metabolites that exceeded the limit of detection, 1234 

the intensities of each ion were normalized between 0 and 1, where 0 is the limit of detection and 1235 

1 is the highest intensity measured of a given ion. Weighted ion intensities for each timepoint were 1236 

calculated by taking the sum of all normalized intensities of ions in all samples for each timepoint.  1237 

 1238 

Sample collection and incubation with many chitin particles. Seawater was collected on the 1239 

day of the experiment from Canoe Beach, Nahant, MA, USA (42°25’11.5’’ N, 70°54’26.0’’ W), the 1240 

same source as seawater used elsewhere in this study. Chitin magnetic particles (New England 1241 

Biolabs, #E8036S) were collected on a 40µm cell strainer then passed through a 100µm cell 1242 

strainer to restrict the size range of the particles to 40-100µm (Corning). The size selected particles 1243 

were then resuspended in 0.2µm-filtered natural seawater to create three suspensions:  807±99 1244 

particles/mL (± indicates standard deviation, n = 3), 182±28 particles/mL (sd, n = 3), or 88±3 1245 

particles/mL (sd, n = 3). Unfiltered natural seawater, containing microbes, was left undiluted, or 1246 

diluted 1:10, or diluted 1:100 into 0.2µm-filtered natural seawater to create three different initial 1247 

densities of bacterioplankton. All combinations of particles and cells were combined by adding 5mL 1248 

particle mixture to 10mL cell mixture to create a matrix of 9 separate conditions. Particle/cell 1249 

mixtures were incubated in 15mL polystyrene tubes (Falcon) with end-over end rotation at a rate 1250 

of 8 revolutions/minute on a Stuart SB3 rotator at room temperature (21-25°C).  1251 

 1252 

Imaging and quantification of chitin particle colonization by natural seawater bacteria. For 1253 

the experiment incubating chitin particles individually in seawater (see the Methods section 1254 
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“Seawater incubation with individual chitin particles”), at each time point, the communities on a 1255 

subset of particles (that were not sequenced) were stained with the DNA stain SYTO9 (Invitrogen, 1256 

#S34854) at a final concentration of 500nM. STYO9 was added directly to the wells containing the 1257 

particles and seawater, which were subsequently incubated in the dark at room temperature for 15 1258 

minutes before the individual chitin particles were harvested (as described in the Method section 1259 

“Seawater incubation with individual chitin particles”) and mounted separately on microscope 1260 

slides. Particles were imaged with a Zeiss epifluorescence microscope at 100X magnification. For 1261 

the experiment incubating many particles together in seawater (see the Methods section “Sample 1262 

collection and incubation with many chitin particles”), after 24 hours of incubation, 200µl samples 1263 

of each condition were stained with SYTO9 at a final concentration of 5µM. The SYTO9-stained 1264 

samples were transferred to a black-walled Greiner Bio-One µClear 96-well plate. Samples were 1265 

imaged on an ImageXpress Micro Confocal (Molecular Devices) in widefield mode using a Nikon 1266 

10x Plan Apo lambda objective (NA 0.45) and FITC filter (ex 482/35, em 536/40, dichroic 506 nm) 1267 

with blue LED illumination from a Lumencore Light Engine. Nine fields of view capturing the entire 1268 

well were acquired to quantify all particles present in each well. For chitin particles incubated both 1269 

individually and in bulk, a custom analysis script was written in MATLAB vR2019a (The Mathworks) 1270 

to quantify the area of each chitin particle colonized by cells. The code defines chitin particle area, 1271 

and the area of each particle covered by cells using intensity-based thresholds. Code and original 1272 

data will be publicly available before publication at the following GitHub page: 1273 

https://github.com/jaschwartzman/seawater_colonize  1274 
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 1275 

Fig. S1. Taxonomic abundances averaged across particles do not represent the 1276 

compositions of communities on individual particles. (a) Extended version of Fig. 2. Relative 1277 

abundances of metagenome-assembled genomes (MAGs; n = 120) across late-stage particles. 1278 

Smaller black dots indicate the relative abundance of each MAG per particle (n = 149). Larger black 1279 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461956doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

52 
 

circles indicate the log10[mean relative abundance] across the particles on which the MAG was 1280 

found. Larger red circles indicate the log10[mean relative abundance] across all the particles (i.e. 1281 

the MAG abundances for a theoretical bulk measurement aggregating all particles). MAGs are 1282 

sorted from left to right by their prevalence across particles (i.e. the number of particles on which 1283 

they are detected). The bars above show the average number of chitinases encoded in each cluster 1284 

of highly similar MAGs (see Methods). The annotations below show each MAG’s taxonomic ID 1285 

(matching Table S1); predicted ecological role (heatmap: blue = degrader, green = exploiter, yellow 1286 

= scavenger); jackpot score (heatmap: white = low, black = high); and taxonomic order (E = 1287 

Enterobacterales, R = Rhodobacterales, P = Pseudomonadales, F = Flavobacteriales, C = 1288 

Cytophagales, O = Other). (b) Histogram of the percent variance explained in the abundance ranks 1289 

of MAGs on each late-stage particle by the abundance ranks for a theoretical bulk measurement 1290 

aggregating all particles (which is equivalent to the average abundance across all particles). If the 1291 

MAG abundance rank of a single particle’s community matched that of the theoretical average, the 1292 

percent variance explained would be 100% (right dashed line); however, the ensemble scale 1293 

explained only an average of 11.7% (left dashed line) of the variance in abundance ranks at the 1294 

single particle level.   1295 
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 1296 

Fig. S2. Distributions of MAG relative abundances on late-stage particles are approximately 1297 

lognormal and right-skewed (i.e. towards high frequencies). Distributions are shown as 1298 

Gaussian kernel density estimates for MAGs present on at least 10 late-stage particles. The area 1299 

under each curve equals one.   1300 
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 1301 
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Fig. S3. Taxonomic variability in the initial seawater does not significantly account for 1302 

variability observed across late-stage particles. (a) Distributions of the Aitchison distances 1303 

(Methods) calculated between all pairs of communities on late-stage particles (n = 149, red 1304 

histogram) and between all pairs of aliquots of unincubated, initial seawater (n = 12, blue 1305 

histogram). Dashed vertical lines represent the means of each distribution. Late-stage particles 1306 

were significantly more dissimilar from one another than initial seawater samples (Mann-Whitney 1307 

U test: p = 1.3´10-13). (b) The amount of inter-sample variability detected could depend on sample 1308 

size, and many more pairs of particles than pairs of seawater samples were assessed in (a). 1309 

Therefore, we calculated the Aitchison distances between random subsets of 12 late-stage 1310 

particles and compared those distributions to that of the seawater samples. Small points represent 1311 

inter-particle Aitchison distances calculated for 100 random subsets (each with its own point color), 1312 

and black dots indicate the mean value for each subset. The inter-particle distances for each subset 1313 

are plotted against the p-value from a Mann-Whitney U test comparing the particle and seawater 1314 

distributions. The dashed vertical line indicates the mean Aitchison distance between seawater 1315 

samples (the same value as in the blue histogram in (a)). For all particle subsets, inter-particle 1316 

distances were significantly higher than inter-seawater distances.  1317 
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 1318 

Fig. S4. Mock communities sequenced with same protocols as particle-attached 1319 

communities show relatively little deviation from expected strain abundances. See Methods 1320 

for details on the preparation of the mock communities, which contained equal proportions of 1321 

Marinobacter sp. 6B07 genomic DNA and Vibrio sp. 1A01 genomic DNA. Relative abundances 1322 

estimated from metagenomic libraries prepared using 50 pg of input DNA showed 5.2% error, 1323 

whereas libraries prepared with 5 pg of input DNA showed 14.9% error.   1324 
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 1325 

Fig. S5. Communities on jackpot particles are dominated by globally rare and locally 1326 

abundant strains. (a) Particles were defined as “jackpot particles” if they had high jackpot scores 1327 

(indicating high relative abundances of jackpot taxa; see Methods for details). Each dot represents 1328 

one late-stage particle (n = 149), and the red dashed line indicates the particle jackpot score 1329 

threshold above which log-transformed values of Pielou’s species evenness drop sharply. (b) The 1330 

effective species numbers (calculated from the Shannon diversity index) within each ecological 1331 

role. Each smaller dot represents a late-stage particle (n = 149), and dot color indicates whether 1332 

the particle was a jackpot particle (red) or a non-jackpot particle (black). Larger white dots represent 1333 
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the mean of each distribution. The diversity on jackpot particles was significantly lower than on non-1334 

jackpot particles for each of the roles (Mann-Whitney U test: degraders p = 1.6´10-2, exploiters p = 1335 

2.8´10-2, scavengers p = 1.1´10-2). (c) Community diversity (represented as effective species 1336 

number, calculated from the Shannon diversity index) was inversely correlated (Spearman’s ρ = -1337 

0.68, p < 2.2´10-16) with the Aitchison distance between the community composition observed on 1338 

each particle and the composition of the theoretical average particle (see larger red circles in Fig. 1339 

S1a). Each dot represents a late-stage particle (n = 149), and dot color indicates whether the 1340 

particle was a jackpot particle (red) or a non-jackpot particle (black; see Methods for definitions). 1341 

Jackpot particle communities were significantly less diverse (Mann-Whitney U test: p = 3.8´10-10) 1342 

and more divergent from the theoretical average particle (Mann-Whitney U test: p = 3.0´10-8) than 1343 

non-jackpot particles. (d) Jackpot taxa (left panel) were significantly more prevalent across late-1344 

stage particles (Mann-Whitney U test: p = 7.1´10-3) than non-jackpot taxa (right panel) that were 1345 

equally rare across aliquots of the initial, unincubated seawater (prevalence in seawater samples, 1346 

Mann-Whitney U test: p = 0.33; mean abundance in seawater samples, Mann-Whitney U test: p = 1347 

0.49). Each point represents a MAG that was detected on fewer than half of the seawater aliquots, 1348 

with the point color and shape indicating its predicted ecological role (blue circle = degrader, green 1349 

triangle = exploiter, yellow square = scavenger).   1350 
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 1351 

Fig. S6. Late-stage particles exhibit little specific taxonomic structure. For the observed data, 1352 

as well as for 1000 randomizations of the data, we inferred the number of conditional dependencies 1353 

between taxa from the estimated inverse covariance matrix of center log-ratio-transformed relative 1354 

abundances across late-stage particles. The inverse covariance matrices were calculated using a 1355 

graphical lasso approach with a regularization parameter of (a) ρ = 0.005, (b) ρ = 0.001, (c) ρ = 1356 

0.0005, or (d) ρ = 0.0001. Each plot shows the distribution of the number of conditional 1357 

dependencies (with strengths ≥ 0.2 or ≤ -0.2) between MAGs inferred for the randomizations of the 1358 

data. The red lines indicate the number of conditional dependencies (with strengths ≥ 0.2 or ≤ -0.2) 1359 

inferred from the observed data. The blue lines indicate thresholds beyond which values are 1360 

considered outliers relative to the distribution calculated for the randomized datasets (using the 1361 

interquartile range [IQR] method – left lines indicate the value of [Q1 – 1.5´IQR], and right lines 1362 

indicate the value of [Q3 + 1.5´IQR]). The choice of the regularization parameter in the analyses 1363 
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used to estimate the number conditional dependencies between taxa resulted in more strong 1364 

associations being inferred for the observed communities than the randomized ones only when a 1365 

trivially small number of associations were inferred (panel a). Therefore, in terms of the number of 1366 

strain-specific associations, the observed particles were either indistinguishable from, or less 1367 

structured than, random communities.   1368 
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 1369 
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Fig. S7. Highly variable taxa are often degrader strains encoding many chitinase genes. (a) 1370 

There was a significant positive correlation between the coefficients of variation of MAG relative 1371 

abundances across late-stage particles and the number of chitinase genes encoded in MAGs 1372 

(Spearman’s ρ = 0.44, p = 8.5´10-7; calculated for 120 MAGs across 149 particles). Each open dot 1373 

represents a MAG, with the color indicating its predicted ecological role (blue = degrader, green = 1374 

exploiter, yellow = scavenger). (b) Comparison of the number of chitinase genes encoded by each 1375 

MAG when considering contigs ≥ 10kb (which are binned more reliably than shorter contigs) vs. 1376 

considering contigs ≥ 1kb (the minimum length of binned contigs). There was a strong correlation 1377 

between chitinase copy numbers when considering contigs ≥ 10kb vs. contigs ≥ 1kb (Pearson’s r 1378 

= 0.70, p < 2.2´10-16), lending confidence to estimates of high chitinase copy numbers in certain 1379 

bins. Dot sizes indicate the number of MAGs at each coordinate.  1380 
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 1381 

Fig. S8. The proportion of predicted degraders on particles increases and becomes more 1382 

variable over time. The relative abundances of the predicted ecological roles (degrader = blue, 1383 

exploiter = green, scavenger = yellow) on particles harvested after varying incubation durations 1384 

were calculated by summing the relative abundances of MAGs classified into each role. Points 1385 

indicate mean values across particles at each time point, with shading representing ±1 standard 1386 

deviation. The number of particles considered at each time point were (in order from early to late) 1387 

88, 88, 80, 90, 76, and 73.  1388 
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 1389 

Fig. S9. The wide range of degrader population relative abundances estimated for late-stage 1390 

particles holds when genes are used as read mapping references rather than MAGs. 1391 

Conceivably, the use of MAGs as reference genomes could have biased our estimate of the 1392 

degrader population abundance; therefore, we also mapped reads to a reference set of chitinase 1393 

genes (Methods). (a) There was a strong correlation (Spearman’s ρ = 0.73, p < 2.2´10-16) between 1394 

the degrader population relative abundances estimated using MAGs and the percent of reads that 1395 

mapped to chitinase genes. Each dot represents one late-stage particle (n = 149). (b) If the 1396 

degrader population relative abundance estimated by MAGs were a consistent approximation of 1397 

the true degrader population abundance, then the wide range in the number of chitinases encoded 1398 

in each degrader MAG (Fig. S6, Table S1) would be reflected in the percent of reads in each 1399 

community mapping to chitinase genes. Therefore, we weighted the degrader population relative 1400 

abundances by the number of chitinases in each MAG to calculate the community-weighted mean 1401 

for chitinases of each late-stage particle (Methods). There was an even stronger correlation 1402 

(Spearman’s ρ = 0.92, p < 2.2´10-16) between the chitinase community-weighted mean estimated 1403 

using MAGs and the percent of reads that mapped to chitinase genes. Each dot represents one 1404 

late-stage particle (n = 149). The black line represents the linear regression line (R2 = 0.86, p < 1405 

2.2´10-16; shading indicates the 99% confidence interval). Therefore, reference MAGs captured a 1406 
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representative subsample of the degraders within particle-attached communities, and predictions 1407 

of chitinolytic potential were consistent between MAG- and gene-based approaches.   1408 
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 1409 

Fig. S10: The overall yield of late-stage particles is correlated with community composition. 1410 

There was a strong negative correlation between the proportion of scavengers and the number of 1411 

bacterial cells in late-stage communities, estimated through qPCR (yellow dots, n = 142; 1412 

Spearman’s ρ = -0.61, p = 4.1´10-16; log-log linear regression: R2 = 0.34, p = 2.5´10-14). There was 1413 

a less strong, though still highly significant, positive correlation between biomass and the proportion 1414 

of degraders (blue dots; Spearman’s ρ = 0.45, p = 1.6´10-8; log-log linear regression: R2 = 0.14, p 1415 

= 6.0´10-6), and there was no correlation with the exploiter population (green dots; Spearman’s ρ 1416 

= -0.11, p = 0.18; log-log linear regression: R2 = 0.03, p = 2.7´10-2).  1417 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461956doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

67 
 

 1418 

Fig. S11. The cell counts on single particles incubated in the same volume of seawater span 1419 

several orders of magnitude, matching the range estimated for single particles incubated 1420 

separately. All plots show the distributions of the proportion of a particle’s area occupied by cells 1421 
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(transformed on a log10 scale), estimated by visualizing particles stained with the DNA intercalating 1422 

dye SYTO 9. (a) Cell count distributions for communities on single particles incubated in seawater 1423 

together for 24 hours at various initial particle concentrations (top row: 807±99 particles/mL; middle 1424 

row: 182±28 particles/mL; bottom row: 88±3 particles/mL; , ± indicates 1 standard deviation for n = 1425 

3 replicates throughout) and at various initial cell concentrations (left column: undiluted natural 1426 

seawater; middle column: seawater inoculum diluted 1:10 into 0.2µm-filtered natural seawater; right 1427 

column: diluted 1:100). (b) Cell count distributions for communities on single particles incubated in 1428 

seawater separately and harvested after 154-167 hours (i.e. late-stage communities).  1429 
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 1430 

Fig. S12. Phage-derived contigs that are coverage outliers have much higher average read 1431 

coverage than bacteria-derived contigs that are coverage outliers. Given that read coverage 1432 

values from metagenomic data are often noisy, it is conceivable that productive phage contigs had 1433 

unusually high coverage simply due to sequencing noise. However, for contigs that were high 1434 

coverage outliers, the ratio for each particle (open dots) of the average coverage of phage contigs 1435 

to the average coverage of bacterial contigs was often much greater than 1 (the black horizontal 1436 

dashed line). Notably, these coverage ratios were overall lowest in the initial seawater inocula and 1437 

rose during the incubation period, coinciding with the timescale of increasing mean productive 1438 

VMRs (Fig. 4c). This indicates that phage contigs with high coverage values represented phages 1439 

that were replicating more than their bacterial hosts, rather than representing contigs with randomly 1440 

higher coverage values. Furthermore, there were strong positive relationships between this 1441 

coverage ratio and the total productive VMR at each time point (see each subplot for significance 1442 

values; the solid lines represent the log-log linear regression lines, and shading indicates the 95% 1443 

confidence intervals). Thus, as expected, the particles on which high outlier phage contig coverage 1444 

was indistinguishable from high outlier bacterial contig coverage were mostly those with low 1445 

productive VMRs.  1446 
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 1447 

Fig. S13. Normalized intensities of individual ions over time. The normalized intensities of ions 1448 

across particles harvested after varying incubation durations are shown for ions that were 1449 

significantly enriched (relative to the initial seawater) on at least 10 particles (see Methods). Gray 1450 

dots indicate measurements for individual particles, and red circles represent the mean normalized 1451 

intensities at each time point. Panel labels include the m/z ratio and predicted annotation for each 1452 

ion (see Methods).  1453 
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 1454 

Fig. S14. The degrader population contributes significantly to particle-level productive 1455 

VMRs. (a) Degrader MAGs (top panel, blue distribution) and exploiter MAGs (middle panel, green 1456 

distribution) had significantly higher productive VMRs across late-stage particles than scavenger 1457 

MAGs (bottom panel, yellow distribution) when phages were productive. Distributions depict the 1458 

non-zero VMRs for each group of MAGs (dashed lines represent the means of each distribution, 1459 

with degraders having a mean VMR of 76.8, exploiters 78.6, and scavengers 27.3; one-way 1460 
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ANOVA: F(998,2) = 47.4, p = 2.1´10-20; Tukey’s HSD test: degrader-exploiter p = 0.40; degrader-1461 

scavenger p < 1.0´10-7; exploiter-scavenger p = 1.0´10-7). When instances of VMRs equaling zero 1462 

are included in the distributions, degraders had a mean VMR of 5.9, exploiters 1.3, and scavengers 1463 

2.6 (one-way ANOVA: F(14049,2) = 42.0, p = 6.3´10-19; Tukey’s HSD test: degrader-exploiter p < 1464 

1.0´10-7; degrader-scavenger p < 1.0´10-7; exploiter-scavenger p = 3.5´10-2). This suggests that 1465 

degraders overall experienced the most phage activation. (b) Absolute bacterial cell counts on late-1466 

stage particles (n = 142), estimated through qPCR, vs. each particle’s productive VMR for the 1467 

MAGs in each ecological role. Cell counts were negatively correlated with productive VMRs most 1468 

strongly and significantly for degraders (top panel, blue dots; Spearman’s ρ = -0.53, p = 1.4´10-11) 1469 

and less so for exploiters (middle panel, green dots; Spearman’s ρ = -0.26, p = 1.8´10-3), and there 1470 

was no correlation between cell counts and productive VMRs for scavengers (bottom panel, yellow 1471 

dots; Spearman’s ρ = -0.13, p = 0.11). Dashed lines represent the log-log linear regression lines 1472 

between cell counts and productive VMR (degraders: R2 = 0.19, p = 4.0´10-8; exploiters: R2 = 0.10, 1473 

p = 1.6´10-4; scavengers: R2 = 8.7´10-3, p = 0.27; shading indicates the 95% confidence intervals). 1474 

The productive VMRs for each ecological role were also significantly different from each other, with 1475 

degraders having the highest mean VMR (one-way ANOVA: F(423,2) = 96.6, p = 2.9´10-35; Tukey’s 1476 

HSD test: degrader-exploiter p < 1.0´10-7; degrader-scavenger p = 1.7´10-3; exploiter-scavenger 1477 

p = < 1.0´10-7). This suggests that the effect of phage activation on particle yield was largely driven 1478 

by the degrader trophic level.   1479 
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 1480 

Fig. S15. The jackpot growth phenomenon is associated with less phage activation. (a) 1481 

Jackpot degrader MAGs (bottom panel, red distribution) had lower productive VMRs across late-1482 

stage particles than non-jackpot degraders (top panel, grey distribution). Distributions depict the 1483 

non-zero VMRs for each group of MAGs (dashed lines represent the means of each distribution, 1484 

with jackpot degraders having a mean VMR of 42.4 and non-jackpot degraders having a mean of 1485 

88.0; Mann-Whitney U test: p = 6.2´10-15). When instances of VMRs equaling zero are included in 1486 

the distributions, jackpot degraders still have a lower mean VMR (1.32 vs. 12.9; Mann-Whitney U 1487 

test: p = 1.3´10-49). (b) Jackpot particles had lower productive VMRs than non-jackpot particles. 1488 

Modified version of Fig. 4e in which jackpot particles (bottom panel, red dots) are shown separately 1489 

from non-jackpot particles (top panel, dark gray dots). Jackpot particles had significantly lower 1490 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461956doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

74 
 

productive VMRs than non-jackpot particles (dashed lines represent the means of each distribution; 1491 

Mann-Whitney U test: p = 4.3´10-8), even controlling for differences in biomass between these 1492 

groups of particles (ANCOVA: F(1,139) = 16.92, p = 4.1´10-4, partial η2 = 0.09). Both groups of 1493 

particles showed significant negative relationships between biomass (estimated through qPCR) 1494 

and productive VMR (jackpot particles: Spearman’s ρ = -0.56, p = 1.5´10-5; non-jackpot particles: 1495 

Spearman’s ρ = -0.32, p = 2.6´10-3). The solid lines represent the log-log linear regression lines 1496 

between cell counts and productive VMRs (red line for jackpot particles: R2 = 0.28, p = 3.9´10-5; 1497 

black line for non-jackpot particles: R2 = 0.08, p = 7.6´10-3; shading indicates the 95% confidence 1498 

intervals).  1499 
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 1500 

Fig. S16. Numerical simulations of mathematical model #1. The left panel shows the distribution 1501 

of rescaled relative abundances averaged over MAGs. For each MAG the logarithm of the relative 1502 

abundances across particles was rescaled by mean and variance, so that it had mean zero and 1503 

unit variance. Lines represent averages over MAGs. Colors refer to a particular parameterization. 1504 

The right plot shows the distribution of the total biomass across particles. In all the simulations we 1505 

set λg = 1 and r̅ = 1 (where the total time of the experiment was also set to be equal to 1). Different 1506 

values of sj and sk correspond to different colors.   1507 
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 1508 

Fig. S17. Numerical simulations of mathematical model #2. The left panel shows the distribution 1509 

of rescaled relative abundances averaged over MAGs. For each MAG the logarithm of the relative 1510 

abundances across particles was rescaled by mean and variance, so that it had mean zero and 1511 

unit variance. Lines represent averages over MAGs. Colors refer to a particular parameterization. 1512 

The right plot shows the distribution of the total biomass across particles. In all the simulations we 1513 

set λg = 1 and r̅ = 1 (where the total time of the experiment was also set to be equal to 1). Different 1514 

values of sj and sk correspond to different colors.   1515 
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 1516 

Fig. S18. Numerical simulations of mathematical model #3. Numerical simulations of model #3. 1517 

The panels show the same distributions as in Fig. S16. In all the simulations we set λg = 1 and r̅ = 1 1518 

(where the total time of the experiment was also set to be equal to 1). Different values of sj, sk and 1519 

cj correspond to different colors.   1520 
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 1521 

Fig. S19. Numerical simulations of mathematical model #4. The panels show the same 1522 

distributions as in Fig. S16. The right plot shows the distribution of the total biomass across 1523 

particles. In all the simulations we set λm = 1, λg = 1, and r̅ = 1 (where the total time of the 1524 

experiment was also set to be equal to 1). Different values of sj, sk and cj correspond to different 1525 

colors.  1526 
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Table S1 (separate file). Metadata accompanying metagenome-assembled genomes (MAGs) 1527 
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