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Although much is known about how single neurons in the hippocam-
pus represent an animal’s position, how cell-cell interactions con-
tribute to spatial coding remains poorly understood. Using a novel
statistical estimator and theoretical modeling, both developed in the
framework of maximum entropy models, we reveal highly structured
cell-to-cell interactions whose statistics depend on familiar vs. novel
environment. In both conditions the circuit interactions optimize the
encoding of spatial information, but for regimes that differ in the
signal-to-noise ratio of their spatial inputs. Moreover, the topology
of the interactions facilitates linear decodability, making the informa-
tion easy to read out by downstream circuits. These findings suggest
that the efficient coding hypothesis is not applicable only to individ-
ual neuron properties in the sensory periphery, but also to neural
interactions in the central brain.
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The dual role of the hippocampal formation in memory1

(1, 2) and spatial navigation (3, 4) is reflected in two distinct2

views on hippocampal coding: the place field view (5, 6) that3

reduces the encoding of spatial information to tuning proper-4

ties of individual neurons, and the ensemble view (7, 8) that5

focuses on subsets of units that are co-activated together as6

the substrate for memory (9). Recent results blur the line7

between the single cell and the population perspective (10),8

revealing that properties of individual neurons only partially9

explain the circuit’s contribution to spatial encoding. Interac-10

tions between neurons shape collective hippocampal activity11

(11) and contribute to the spatial representation. Disrupting12

correlations between neurons leads to decreased decoding ac-13

curacy, in particular in CA1 (10). It remains unclear how14

experience shapes the organization of cell-to-cell interactions15

and what effects such changes may have on the encoding of16

spatial information in CA1 populations.17

Experience affects the properties of single cells in many18

ways. While reliable position-dependent spiking is detectable19

after a few minutes during the very first exposure to a novel20

environment (12, 13), the responses to a familiar environment21

show several systematic differences, including a reduction in22

overall firing, sharpening of tuning functions and sparsifica-23

tion of responses (14). In parallel, inhibition is weak in novel24

environments, transiently opening the gate for circuit reorga-25

nization via plasticity (15), but it subsequently increases with26

experience (15–17). From the perspective of the local circuit,27

the main afferents to CA1 (MEC and CA3) are initially noisier28

(18, 19) and have weaker spatial tuning, which improves with29

familiarity (13, 20, 21). Since CA1 needs both inputs for de-30

tailed spatial representation (22, 23), these results suggest that31

the CA1 circuit is potentially in a different dynamic regime in32

novel versus familiar environments, with distinct local circuit33

interactions and population coding properties.34

Correlations among pairs of hippocampal neurons arise35

as a result of two effects: their spatial tuning overlap (i.e. 36

signal correlations), and internal circuit dynamics (i.e. noise 37

correlations). Since they reflect local circuit interactions, noise 38

correlations should depend on changes in input statistics, and 39

be reorganized by experience. From a neural coding perspec- 40

tive, the structure of neural correlations can radically affect 41

the amount of information that a population carries about 42

stimuli (here, the animal’s position) and the complexity of 43

the readout (24, 25). While noise correlations are generally 44

considered to be an obstacle to optimal information coding 45

and transfer, especially in sensory areas (26, 27), there are 46

scenarios where they can improve the quality of the overall 47

population output (28–31), which might be relevant for the 48

hippocampus. 49

Unlike sensory areas, where stimulus repeats make the esti- 50

mation of noise correlations relatively straightforward, measur- 51

ing circuit interactions and their contribution to spatial coding 52

in the hippocampus is fraught with technical difficulties. In 53

a two dimensional environment, the lack of stimulus repeats 54

renders traditional approaches for estimating noise correla- 55

tions inapplicable. Moreover, well documented circuit level 56

oscillations (32, 33) act as global sources of co-modulation 57

that obscure the fine structure of pairwise neural co-variability. 58

The key challenge is to partition total neural covariability into 59

an explainable component, driven by position and oscillations, 60

and unexplained, or ‘excess’ correlations, which capture local 61

interactions. 62

Here we take advantage of the maximum entropy frame- 63

work to develop a new statistical test for detecting excess 64

correlations without stimulus repeats, and explore their sig- 65

nificance for the encoding of spatial information in CA1. Our 66

method allows us to robustly detect network interactions by 67

comparing hippocampal responses against a maximum entropy 68

null model (34) that optimally captures the cells’ place prefer- 69

ence and population synchrony (35). When applied to CA1 70

tetrode recordings from rats during open field exploration in 71

familiar and novel environments, our analysis detected struc- 72

tured excess correlations preferentially between principal cells 73

with similar place selectivity and arranged into networks with 74

high clustering coefficients. These highly structured excess 75

correlations optimize the encoding of spatial information and 76

facilitate its downstream readout in both the familiar and 77

novel environment, with differences reflecting the different 78

signal-to-noise ratio of spatial inputs in both environments. 79

Taken together, our results suggest that CA1 local circuitry 80

readjusts to changes in its inputs so as to improve population- 81
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level stimulus representation, in line with efficient coding82

predictions (29).83

Results84

Detecting interacting cells. To investigate functional connec-85

tivity between CA1 neurons and its role in spatial information86

coding, we devised a procedure to infer cell-cell interactions87

from simultaneous tetrode recordings of hundreds of isolated88

units in dorsal hippocampus of behaving rats.89

Our approach starts by constructing a null model for popu-90

lation responses that exactly accounts for the measured spatial91

selectivity of each recorded neuron as well as for the moment-92

to-moment measured global neural syncrhony, but is otherwise93

as unstructured as possible (Fig. 1A). This null model is for-94

mally a maximum entropy model (see Methods) from which95

surrogate neural rasters can be sampled (34). For every cell96

pair, the model predicts the expected distribution of pairwise97

correlations against which the measured total correlation for98

that pair can be tested for significance; we report as “excess99

correlation” w the (normalized) amount of total correlation100

that is not not explained by the null model. We declare cell101

pairs with significant excess correlation to be “interacting,”102

likely due to specific recurrent neural circuitry. Because our103

approach explicitly discounts for correlations arising from over-104

lapping place fields and global modulation (e.g, due to locking105

to the underlying brain oscillations or influence of behavioral106

covariates such as running velocity), it differs from previous107

attempts to use correlations to probe the intrinsic network108

mechanisms (36).109

We validated our detection method by constructing a syn-110

thetic dataset of spiking CA1 neurons whose responses were111

modulated by the position of an artificial agent and by an112

assumed network of interactions (see Methods). We ensured113

that the synthetic data matched the synchrony and the highly114

irregular occupancy observed in a real 20-minute exploration115

session. Interactions identified by our method strongly overlap116

with the ground truth, as measured by the area under the117

receiver operating characteristic (Fig. 1B). The inferred excess118

correlations were well aligned with the ground truth (Fig. S1A).119

We did not find any tendency of cells that are more (or less) sim-120

ilarly tuned to show higher (or lower) inferred wijs (Fig. S1B).121

We next analyzed CA1 tetrode recordings of six rats explor-122

ing familiar and novel 2D environments separated by a short123

period of rest (Fig. 1C) (37, 38). Putative units were filtered124

by using several clustering quality measures (39–41) to ensure125

that they were well isolated (Fig. 1D, see Methods). To avoid126

confounds due to changes in firing rate, we retained only cells127

active in both environments (> 0.25 spike/sec) (14). Consider-128

ing only pairs of cells recorded on different tetrodes, our final129

dataset includes a total of 9511 excitatory-excitatory (EE),130

7848 excitatory-inhibitory (EI), and 1612 inhibitory-inhibitory131

(II) pairs. We detected both positive and negative excess132

correlations among cell pairs (Fig. 1E,F). Interestingly, cell133

pairs with negative excess correlation can have positive total134

correlation (Fig. 1F), corroborating the idea that the network135

circuitry can strongly affect coordinated spiking activity in136

the hippocampus.137

Interaction networks in familiar and novel environments.138

What is the structure of the inferred interaction network?139

We set the threshold to declare a cell pair as interacting at140

|w| > 4.5 (corresponding to a p-value cut of p = 0.05 prior to 141

Bonferroni correction for multiple comparisons; see Methods). 142

We first report a generally sparse interaction network in the 143

excitatory-excitatory (EE) subnetwork, with ∼ 5% of analyzed 144

pairs showing significant interaction; this coincidentally implies 145

that our null model accounts for most of the observed corre- 146

lation structure. The fraction of interactions is larger among 147

excitatory-inhibitory (EI) cell pairs, where, as expected, nega- 148

tive interactions dominate; the fraction is highest at ∼ 30% 149

among positive interactions in the inhibitory-inhibitory (II) 150

subnetwork (Fig. 2A). 151

We next focused on interaction changes induced by a switch 152

from familiar to novel environment (Fig. 2A). We observed 153

a significant increase in EE interactions, possibly due to de- 154

creased inhibition during novelty (15, 17), which enhances 155

learning and promotes plasticity (42–44). We indeed found 156

putative inhibitory cells to be less synchronous and slightly 157

less active in novel environments (Fig. S2B,D), in line with 158

previous findings (16), while excitatory neurons were more 159

synchronous but did not differ in terms of their average fir- 160

ing rates (Fig. S2A,C). Circuit modifications during spatial 161

learning are known to originate in altered spike transmission 162

among connected excitatory and inhibitory neurons (45, 46). 163

Consistent with this, we found an increase in positive EI inter- 164

actions, while their negative counterpart remained unchanged. 165

This increase could not be attributed to increased reliability 166

of monosynaptic EI connections (Fig. S3), especially since cell 167

pairs on the same tetrode were excluded (47). We did not 168

observe significant changes in the number of II interactions. 169

How conserved are individual network interactions across 170

consecutive environments? The largest overlap in detected 171

interactions was found in the II subnetwork, where 77.5% of 172

interactions were preserved, preferentially among cell pairs 173

with similar theta sensitivity (Fig. S4D; (48)). EI interac- 174

tions, especially inhibitory, also showed substantial overlap 175

(31.1%); the correlation with theta selectivity was small but 176

significant (Fig. S4D). The overlap was weakest (16.8%) in 177

the EE subnetwork; no correlation with theta selectivity was 178

observed (Fig. S4D). 179

All reported overlaps were statistically significant under 180

a permutation test (1000 random shuffles of cell labels; p < 181

10−3 for all subnetworks). Significance was confirmed by 182

comparing the Jaccard similarity of the adjacency matrices of 183

familiar and novel subnetworks against the null distributions 184

constructed from Erdos-Renyi graphs with matched numbers 185

of vertices and edges (1000 ER graphs; p < 10−3 for II and EI 186

subnetworks, p = 0.009 for EE). 187

The similarity of interaction networks across the two en- 188

vironments extends beyond the binary presence / absence of 189

significant interactions. Figure 2B compares the strength of 190

excess correlations, w, in familiar vs novel environment for EE, 191

EI, and II cell pairs. For all subnetworks, w are significantly 192

correlated across the two environments, with the reported 193

correlation strength related to the network overlap (Fig. 2A). 194

Taken together, these findings corroborate the idea that hip- 195

pocampal remapping across environments is not random (49), 196

also at the level of cell-cell interactions. 197

Because spatial information is encoded predominantly by 198

pyramidal cells (50, 51), we analyzed the EE subnetwork in 199

detail (Fig. 2C). Our key statistical observation is shown in 200

Fig. 2D: interaction probability increases nonlinearly with 201
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Figure 1. Detecting network interactions among hippocampal CA1 cells. (A) Method schematic. A null model for population responses takes into
account the inferred place field tuning of each cell and the moment-to-moment global synchrony, but is otherwise maximally unstructured. For each cell pair, this model predicts
a null distribution for (total) pairwise correlation (gray distribution), which is compared to the correlation estimate from data (dashed red line). The normalized discrepancy
between the data correlation cij and the null model expectation µij for a pair of neurons (i, j) is referred to as “excess correlation”, wij , and serves as a proxy for direct
cell-cell interaction. (B) Method validation on synthetic data. Detection accuracy is assessed using simulated data with known interactions (left), which matches real data with
respect to spatial occupancy (top, middle) and observed synchrony indices (bottom, middle), for an example 20-minute exploration session. Receiver-operator characteristic
(ROC) shows the probability of correctly detecting positive (green) and negative (red) interactions for different detection thresholds (right). (C) Experimental paradigm. Animals
explore a familiar environment, then rest in a sleep box, after which they explore a novel environment (20–40 minutes for each condition). (D) Neural recordings. Left: neural
activity was recorded using tetrodes implanted in the dorsal CA1 area of the hippocampus. Middle: distribution of ISI violation scores after spike sorting for the data included in
the analysis. Right: same for the Isolation Distance measure. (E,F) Example pair of pyramidal cells with significant positive (E) and negative (F) excess correlation w (gray
histogram – distribution of correlation coefficients derived from the null model; red dashed line – measured raw pairwise correlation).
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Figure 2. Network interactions in familiar and novel environments. (A) Summary of cell-cell interaction results for different cell types (triangle – pyramidal
cell, circle – putative interneuron), positive (green) and negative (red) excess correlations, for both the familiar (top row, blue) and the novel (bottom row, orange) environment
(stars – significant difference under binomial test at p < 0.001). Shaded regions mark the fraction of interactions detected in the familiar environment that remain in the novel
environment. (B) Paired comparison (colormap – pair density) between excess correlations wij detected in familiar vs. novel environment. (C) Example of an estimated
excitatory subnetwork. Circles show the place field selectivity of each neuron, with edges showing significant cell-cell interactions (green – positive; red – negative excess
correlations); line thickness corresponds to interaction strength. (D) Left: interaction probability in the excitatory subnetwork increases with place field overlap (“tuning
similarity”) for positive interactions (blue – familiar environment; orange – novel environment; shaded area – 99th percentile confidence interval for the mean). Right: analogous
plot for negative interactions. (E) Left: distribution of log node-degree of E cells normalized by the total number of E cells in each session, for the novel environment. Inset:
quantile-quantile plot comparing this distribution to the normal expectation. Right: excitatory subnetwork has a significantly higher clustering coefficient (orange line – data)
compared to the expected distribution for an Erdos-Renyi (ER) network with a matched connection density. (F) Same as (E), but for the familiar environment.
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place field overlap for positive interactions, and is roughly202

constant for negative interactions. In the novel environment,203

the excitatory interaction probability increases ∼ 3-fold over204

the observed range of place field overlap. In the familiar205

environment, the modulation with place field overlap is less206

pronounced, possibly indicating a shift towards a more decor-207

related representation of space (14).208

We further characterized the topology of familiar and novel209

excitatory networks. The node degree appears to be log-210

normally distributed in both environments, with clustering211

coefficients that are significantly higher than expected from212

matched Erdos-Renyi graphs (Fig. 2E,F). This effect was213

more pronounced during novelty (Fig. S5A), in line with re-214

cent reports (36). Accordingly, interacting excitatory triplets215

were over-represented, more strongly so in the novel envi-216

ronment (Fig. S5C). Finally, we found a linear relationship217

between the log-number of nodes and the shortest path length218

(Fig. S5B), which is a strong fingerprint of small-world not-219

works (52).220

Effects of network interactions on spatial coding. To explore221

how the network structure affects spatial information encoding222

at the population level, we constructed a statistical model of in-223

teracting excitatory cells responding to spatial inputs (Fig. 3A).224

Our model, a version of pairwise-coupled, stimulus-driven max-225

imum entropy distribution over binary spiking units (see Meth-226

ods, (53)) allows us to vary cell-cell excess correlations (to227

study the effect of network topology and interaction strength)228

as well as the strength of the spatial inputs (to study the229

effect of novel vs familiar environment), while maintaining a230

fixed average firing rate in the population. For tractability, we231

simulated populations of 50 place cells. Our model is thus not232

an exact fit to data or at-scale model of the real hippocampal233

population; rather, we are looking for qualitative yet clear234

signatures of spatial coding at the population level that could235

be compared between the data and the model.236

Using this setup, we contrasted spatial coding in two net-237

works which were identical in every respect except for their238

excess correlations pattern. Interactions in the “structured”239

network followed the relationship between place field overlap240

and excess correlation w observed in real data; interactions in241

the “random” network were drawn from the same data-derived242

distribution for w, but did not follow the relationship with243

place field overlap (Fig. 3A). For each of the two choices, we244

further simulated the effects of familiar vs. novel environment245

by adjusting the strength of the feed-forward spatial input:246

in our model, higher input strength corresponds to higher247

signal-to-noise ratio for the spatial drive, which is why we refer248

to this parameter as “input quality”. We adjusted the input249

quality to best resemble various marginal statistics (spatial250

information, place field sparsity, peak-over-mean firing values;251

see Methods and Fig. S6) in familiar and novel environments252

measured on data.253

We quantified the coding performance of our networks by254

estimating the mutual information between population activity255

and location and by estimating the average decoding error.256

As expected, higher input quality in the familiar environment257

leads to overall higher information values (Fig. 3B) and lower258

decoder error (Fig. S7B). Less trivial are the effects of network259

connectivity: in both environments, structured (data-like)260

interactions significantly outperform random ones, with larger261

improvements seen in the novel environment. This suggests262

that network interactions among hippocampal cells adjust to 263

maintain a high-fidelity spatial representation even when they 264

receive lower quality, noisy inputs. 265

Do the structured interactions better predict other 266

population-level aspects of the real hippocampal code relative 267

to random ones? First, we assessed the importance of pairwise 268

(co-firing) statistics for the decoding performance, highlighted 269

by previous work (10). For the random network, the decoding 270

performance improvement with co-firing statistics relative to 271

population-vector decoding is small and comparable in novel vs 272

familiar environment. In contrast, for the structured network 273

and data, the improvement is significantly larger in the novel 274

environment (Fig. 3C); the improvement reaches three-fold 275

in novel relative to the familiar environment on real data, 276

perhaps due to the larger population size. 277

Second, we assessed the effective dimensionality of the pop- 278

ulation responses to random pairs of stimuli, by measuring the 279

fraction of variance explained by the first principal component 280

of the relevant activity patterns (Fig. 3D). For the random 281

network in the novel environment, this fraction is two-fold 282

lower than in the familiar environment. In contrast, for the 283

structured network and data, the fraction is about 0.1 regard- 284

less of the environment. Stronger and structured interactions 285

appear to organize neural responses in the novel environment 286

so that the code maintains a collective correlated response 287

even when the input drive is weak. 288

Third, we assessed the linear separability of spatial positions 289

based on neural population responses, a task putatively car- 290

ried out by downstream brain areas. For the random network, 291

the performance of a linear classifier trained to discriminate 292

random positions is significantly worse in the novel environ- 293

ment. In contrast, the performance is restored to a high value 294

(∼ 0.9) irrespective of the environment by data-like interac- 295

tions in the structured model, matching observations on real 296

data (see Fig. S8 for separability of positions as a function of 297

their mutual distance). 298

Taken together, our results suggest an important coding 299

role for the interaction patterns inferred in Fig. 2D and the 300

corresponding “structured” networks explored in Fig. 3. In 301

comparison to the random network, the data-like, structured 302

network (i) encodes more information about position even 303

when the input is of low quality; (ii) this information can 304

be retrieved by utilizing co-firing statistics of multiple cells; 305

(iii) selected collective statistics of place cell activity remain 306

constant under change of environment. Consistent conclusions 307

hold for the comparison between the data-like, structured 308

network and an uncoupled population (Fig. S7). 309

CA1 interactions match predictions of an optimal coding 310

model. While Figure 3 suggests that interactions between cells 311

self-organize to improve spatial information coding relative to 312

a random or an unconnected (Fig. S7) network, it is not clear 313

whether the observed organization is in any sense optimal. 314

To address this question, we numerically optimized cell-cell 315

interactions among a population of place cells, so as to maxi- 316

mize the mutual information between the population activity 317

and spatial position (Fig. 4A). In essence, this amounts to 318

finding “efficient coding” solutions for network structure given 319

inputs to individual cells that are correlated due to place field 320

overlaps (29). As before, an important control parameter is 321

the overall magnitude (quality) of the input drive, h, which 322

we now vary parametrically. Resource constraints were sim- 323
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Figure 3. Effects of network interactions on spatial encoding. (A)
A schematic of the circuit model with variable excess correlations (see Methods). Two
connectivities are compared: “structured” (mimicking the inferred excess correlation
vs tuning similarity relationship) vs. “random”. (B) Estimated spatial information (MI;
error bar – 99-th percentile CI for the mean) using structured and random interactions,
in the novel-like and familiar-like scenario (see text). Structured interactions signifi-
cantly increase the spatial information (p < 0.001 (***) or p < 0.01 (**) under a
non-parametric Mann–Whitney U-test). (C) Improvement in decoding performance
by taking into account co-variability of cells (“COV” decoder) relative to a simple
population vector (“PV”) decoder, evaluated on 4 · 104 samples). The improvement
is significantly higher in the novel environment on structured network and on real
data, but not on the random network (error bars and significance tests as in B). (D)
Fraction of variance explained by the first principal component of population vectors
for 103 random pairs of locations in the maze. The fraction is unchanged between
the novel and familiar environments on structured network and on real data, but
differs significantly on the random network (error bars and significance tests as in B).
(E) Linear separability measured as SVM classification accuracy of random pairs
of stimuli (trained on 1000 pairs of same vs. different positions). The separability is
unchanged between the novel and familiar environments on structured network and
on real data, but differs significantly on the random network.

ulated by constraining the optimization to keep the global 324

firing rate constant and the possible couplings bounded in 325

|Wij | ≤ wmax = 1 (see Methods). 326

As the input quality increases, the information gain due 327

to optimal interactions decreases, indicating that optimiza- 328

tion benefits novel environments (with noisy spatial inputs) 329

more than familiar environments (with reliable spatial in- 330

puts) (Fig. 4B). We further find that an overlap in tuning 331

similarity between two cells correlates with optimal pairwise in- 332

teraction between them when input quality is low, but this cor- 333

relation grows weaker with increasing input quality (Fig. 4C), 334

consistent with theoretical expectation (29). 335

Does optimization predict a clear relationship between the 336

tuning similarity and interaction strength for pairs of cells? 337

Figure 4D shows two such relationships, for high and low 338

input quality, predicted ab initio by maximizing spatial infor- 339

mation. The optimal relationships closely resemble two analo- 340

gous curves, for the familiar and novel environment, inferred 341

from data (Fig. 4E). A similar resemblance is not observed 342

if one maximizes spatial information carried by individual 343

cells (Fig. S9), highlighting the importance of information 344

coding at the population, not individual-cell, level. 345

As an alternative comparison to experiment we also studied 346

the proportion of optimized couplings that reached maximal 347

allowable strength (Fig. 4F; Fig. S10). In the data, cells are 348

declared as interacting when their excess correlation exceeds a 349

threshold, and so Fig. 2D represents a direct counterpart to our 350

theoretical prediction. We observe a clear qualitative match 351

that includes the decrease in proportion of strong couplings 352

for familiar environments (Fig. S10). We further observe that 353

the proportion of optimal couplings reaching the constraint 354

wmax scales nonlinearly with the tuning similarity, as in the 355

data; the shape of the nonlinearity depends on the imposed 356

wmax (Fig. S11). 357

Even though our simulations use a coarse-grained and down- 358

scaled model of a real neural population (precluding exact 359

comparisons), we observe an excellent qualitative match be- 360

tween theoretical predictions and the data. Taken together, 361

this opens up an intriguing possibility that network interac- 362

tions in the hippocampus dynamically adapt to new environ- 363

ments so as to maximize the fidelity of population-level spatial 364

representation. 365

Central role for the nonlinear dependence of connectivity on 366

tuning. So far, our analysis of data as well as of optimized net- 367

works has identified a consistent pattern: the nonlinear depen- 368

dence of interaction probability on tuning similarity (Fig. 2D; 369

4F). Figure 3 further showed that the pattern is necessary, 370

since coding benefits were absent in randomized networks. The 371

key remaining question is whether the observed connectivity 372

pattern is not only necessary, but also sufficient to convey 373

spatial coding benefits and generate networks of a particular 374

topology. 375

To address this question, we generated model networks of 376

50 place cells, as before, but limited their connection strengths 377

to three possible values, {−J, 0, +J}, where J ∈ [0, 1] could be 378

varied parametrically. We now used the interaction pattern of 379

Fig. 2D as an actual connectivity rule: we selected 6% of pairs 380

(as in data) to have a positive connection +J and connected 381

them according to their tuning similarity as in data (Fig. 5A, 382

“data-like”). To assess the role of the nonlinearity, we com- 383

pared this with networks where the connection probability was 384
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Figure 4. Predicted optimal network interac-
tions. (A) A schematic of the circuit model. Individual
neurons, which receive spatially tuned inputs (with overall
strength controlled by parameter h), are pairwise connected
with interactions W; interactions are numerically optimized
to maximize the mutual information between spatial posi-
tion and population responses while constraining population
mean firing rates and |Wij | ≤ wmax (here, wmax = 1).
(B) Average ratio between mutual information (MI) in op-
timized vs non-interacting (W = 0) networks. Dashed
vertical lines denote two chosen input quality levels, together
with firing rate map of an example cell (“low quality” h = 2,
orange, resembling novel environment; “high quality” h = 4,
blue, resembling familiar environment). In all simulation plots
we show averages over 1000 replicate optimizations with
random initial assignments of place fields (see Methods);
shaded area – 95th percentile CI for the mean. (C) Aver-
age alignment (Spearman’s correlation) between pairwise
input similarity and optimalWij as a function of input quality.
(D) Average magnitude of optimal Wij as a function of
tuning similarity for the two environments. (E) Same as E,
computed using the excitatory-excitatory excess correlations
wij estimated from data. Note the vertical scale difference
between (D) and (E): excess correlationswij are a statistical
proxy for the true interactionsW ; the two are expected to be
correlated but not identical (cf. Fig. S1A). (F) Proportion of
optimalWij = wmax = 1 as a function of tuning similarity.

linear in tuning similarity (“linear”) or where it was constant385

(“random”). In each of the three cases, a randomly chosen386

3% of the place cell pairs (as in data) were connected with a387

negative strength, −J . As before, we fixed the average firing388

rate, and considered two levels of input quality, mimicking the389

familiar and novel environments (see Methods). This setup390

removed all structure (specifically, by making all connections391

have the same magnitude) except for that generated by the392

connectivity rule, allowing us to test for sufficiency.393

First, we find that the data-like connectivity rule consis-394

tently improves mutual information between the population395

responses and position for increasing J , especially for novel-396

like input quality (Fig. 5B). This improvement is larger for the397

nonlinear, data-like connectivity than for the linear one. Fig-398

ure S13 further suggests that connectivity alone accounts for399

a large fraction of mutual information gain, without the need400

for the fine-tuning of the interaction strengths. The data-like401

connectivity rule also improves the performance of a simple402

population vector decoder relative to random connectivity, in403

stark contrast to the linear dependence, which performs worse404

than the random one (Fig. 5E).405

Finally, we asked whether different connectivity rules leave406

a strong signature on the network topology (Fig. 5D). To407

this end, we randomly generated 1000 networks according408

to the three different rules (Fig. 5A). The average clustering409

coefficient was substantially higher in networks created using410

the data-like rule (Fig. 5E) compared to both the random411

and linear connectivity rules, without significantly affecting412

the distribution of incident edges (Fig. S12A) or the average413

shortest path length (Fig. 5F). Additional analysis on the414

clique-complexes of the connectivity graphs revealed that the415

1D Betti numbers are significantly smaller for the synthetic416

networks generated using the data-like rule, and comparable417

with the data-derived networks (Fig. S12C). These analyses418

are consistent with the overexpression of triangles (Fig. S5)419

and high clustering coefficients (Fig. 2E) observed in the data-420

derived network. Taken together, the nonlinear, data-like421

connectivity rule appears sufficient to generate small-world422

topologies matching data across a broad panel of network 423

metrics. 424

Discussion 425

Statistical challenges limit our understanding of how experi- 426

ence shapes interactions and, consequently, information coding 427

in a local neural circuit during animal-driven behavior. While 428

the idea of analyzing pairwise correlations as a window into 429

network interactions is not new (54–56), the statistical prob- 430

lem of separating local network interactions from other factors 431

that drive neural correlations has remained unsolved. Previous 432

approaches based on stimulus-averaged correlations (57), shuf- 433

fles (58) or GLM model fits (59) each suffer from statistical 434

limitations (in terms of sample efficiency, strong stationarity 435

or other model assumptions) which limit their general applica- 436

bility. For this reason, most analyses of hippocampal collective 437

behavior rely on total correlations (36, 60). Unfortunately, 438

these conflate changes in coding and changes in behavior: even 439

if the representation does not change at all, a change in the 440

animal’s behavior (e.g. with experience) would be sufficient to 441

change collective interactions defined based on total correla- 442

tions. Furthermore, well documented theta oscillations, which 443

arise from an interplay between medial septum inputs and 444

hippocampal subcircuits (32), as well as the animal’s speed, 445

which is known to substantially influence global hippocampal 446

activity (61, 62), can increase global synchrony and introduce 447

spurious correlations. It is only by factoring out all these 448

known sources of covariability, compactly captured by spike 449

synchrony (35), that the fine structure of pairwise cell inter- 450

actions can be revealed. To reliably detect such interactions, 451

we developed a novel statistical test rooted in the maximum 452

entropy framework (34). 453

When applying our detection method to tetrode recordings 454

of hundreds of isolated units in dorsal hippocampus of freely 455

behaving rats (37, 38), we found stark differences between 456

familiar and novel environments, especially in the EE subnet- 457

work. In particular, we found increased interactions among 458
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Figure 5. Data-like interaction pattern is sufficient to gen-
erate small-world networks with improved spatial cod-
ing properties. (A) Connectivity rules for positive connections in a
simulated place cell network with 50 units. (B) Mutual information (MI)
increase for data-like (solid) and linear (dashed) connectivity rule relative
to the random connectivity, for familiar-like (blue) and novel-like (orange)
quality input. Shaded areas show the 95th percentile confidence interval
for the mean. (C) Average decoding error increase for data-like (solid)
and linear (dashed) connectivity rule relative to random connectivity. (D)
Example network topologies obtained by using different connectivity rules
from (A). Nearby nodes have high tuning similarity. (E) Average clustering
coefficient for the three connectivity rules from A (error bars – standard
error; significance – 1-way ANOVA test, p < 0.001 for ***, or n.s. for
p > 0.05). (F) Average shortest path length for the three connectivity
rules from A (statistics as in E).

putative pyramidal neurons in novel environments. Further-459

more, we detected increased interactions between excitatory460

and inhibitory cells in novel environments. This effect was not461

explained by higher reliability of direct excitatory-inhibitory462

connections (47). It has long been known that inhibition is463

generally weaker in a novel vs. a familiar environment (15–464

17), which has been interpreted as a potential mechanism for465

enhancing learning by promoting synaptic plasticity in excita-466

tory neurons (15, 43). Nonetheless, given that the null models467

capture both single cell average activity and population syn-468

chrony for each environment separately, it is unlikely that this469

observation can directly account for our results. Instead, our470

observations in the novel environment are likely to derive from471

an increased excitability at the dendritic level of pyramidal472

cells, an effect that has been observed experimentally (63)473

and has theoretically been shown as necessary for place field474

formation and stabilization (19).475

Our key statistical observation could be distilled into one476

simple principle: a monotonic nonlinear dependence of the477

interaction probability on place field overlap for positive in-478

teractions among excitatory cells. This effect was observed479

across experience, but was more prominent during novelty. We480

analysed the neural coding implications of the inferred inter-481

action structure using stimulus-dependent pairwise maximum482

entropy models (53). We found that data-like interactions483

offered improvements in spatial information content and de-484

coding. Coding advantages were higher during novelty: this485

observation argues for a mechanism employed by CA1 net-486

works to cope with worse quality input from CA3 (13) and487

MEC (20, 21) during novelty. We also found that data-like488

interactions improved stimulus discriminability, corroborating489

previous findings (30). Moreover, our results explain why490

disrupting correlations between hippocampal neurons leads to491

decreased decoding accuracy (10).492

Efficient coding in the place cell network yields optimal493

solutions in which similarly tuned neurons have a higher prob-494

ability of interacting positively. This is especially prominent495

for lower-quality inputs in the novel environment, where the496

predicted relation between interaction probability and tuning497

similarity is clearly nonlinear, as observed in data. Simulated498

networks where this observed relationship is elevated to an499

actual connectivity rule show that, (i), the observed relation-500

ship is sufficient to improve population spatial coding, and 501

(ii), the resulting network topology shows clear small-world 502

fingerprints (52, 64). While our results point towards small- 503

worldness as one consequence of the particular connectivity 504

rule that may be employed in the hippocampus (65), they do 505

not provide any evidence that small-world networks have in- 506

trinsic coding benefits per se (66, 67). Further work is needed 507

to clarify the relationship between coding and small-worldness 508

and to experimentally probe whether small-world architecture 509

is common in networks that need to process noisy inputs. 510

Even though inferred pairwise interactions do not neces- 511

sarily reflect underlying synaptic connectivity directly (68), 512

together with the neuron tuning function they offer an ac- 513

curate statistical description of a neural population out- 514

put (11, 69, 70). Moreover, pairwise interactions can be studied 515

using well established tools from information theory, which 516

critically rely on the differentiation between stimulus selectiv- 517

ity overlap and network interactions to assess the amount of 518

information that a population carries about a stimulus (29). 519

We derived and tested the efficient coding hypothesis for a 520

network of interacting place cells, by maximizing the mutual 521

information between the animal’s location (the stimulus) and 522

the population response, while holding individual cell tuning 523

and overall firing rate fixed. We found that network interac- 524

tions adapt to different levels of input quality by employing 525

different interaction vs. tuning similarity strategies. In par- 526

ticular, for low input quality (i.e., at low signal-to-noise ratio 527

mimicking the novel environment) optimal network interac- 528

tions are strongly aligned with the tuning similarity of the 529

interacting cells. When input quality is higher (i.e., at higher 530

signal-to-noise ratio mimicking the familiar environment), this 531

relation weakens yet remains detectable. These optimality 532

predictions closely resemble the data, suggesting that the CA1 533

circuit is close to an optimal operating regime across experi- 534

ence. As far as we know, this study is the first empirical test of 535

the efficient coding hypothesis applied to network interactions, 536

as proposed by previous theoretical work (29). 537

Theory predicts the inversion of the relative contribution 538

of optimal interaction and tuning at very high signal-to-noise 539

ratios (29). This causes the neural population to decorrelate 540

its inputs, a regime that is characteristic for coding in the 541

sensory periphery. While our numerical simulations reproduce 542
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this decorrelation regime of efficient coding at very high signal-543

to-noise ratio inputs, our inferences and data analyses suggest544

that it is not relevant for the hippocampal place code. This is545

likely because the overall noise levels are higher in the spatial546

navigation circuits compared to the sensory periphery, and547

partially because of the intrinsic differences in the statistics of548

the signal to be encoded (position vs. natural images). Further549

work is needed to quantitatively relate the experimentally550

measured noise in CA1 inputs and responses to the effective551

“input quality” parameter that enters our predictions.552

Are there previous reports where efficient coding predictions553

do not lead to decorrelation? A classic analysis in the retina554

correctly predicted that the receptive fields should lose their555

surrounds and switch to spatial averaging at low light (71). A556

detailed study of retinal mosaics suggested that even during557

day vision receptive field centers of ganglion cells should (and558

do) overlap, increasingly so as the noise increases, leading559

to a residual redundancy in the population code (72, 73), as560

reported (74). These findings support a more nuanced view561

of retinal coding (75) than the initial redundancy reduction562

hypothesis (76), precisely because they take into account the563

consequences of noise in the input and circuit processing (77–564

79). A recent study in fly vision focused on an interaction565

between two identified neurons, to find that its magnitude566

increased as the visual input became more and more noisy,567

as theoretically predicted by information maximization (80).568

Psychophysics of texture sensitivity that arises downstream of569

the primary visual cortex further suggested that the relevant570

neural mechanisms operate according to the efficient coding571

hypothesis, yet in the input-noise-dominated regime where572

decorrelation is not optimal (81). In light of these examples573

and our results, efficient coding—understood more broadly574

as information maximization (82) rather than solely in its575

noiseless decorrelating limit—should be revisited as a viable576

candidate theory for representations in the central brain. More577

generally, our approach enables a synergistic interplay between578

statistical analysis, information theory, graph theory and tra-579

ditional neural coding, and opens new ways for investigating580

neural coding during complex/naturalistic behavior in other581

systems.582

Materials and Methods583

584

A. Experimental procedures.585

Datasets and Subjects. We analyzed data from two previously pub-586

lished datasets (37, 38). All procedures involving experimental587

animals were carried out in accordance with Austrian animal law588

(Austrian federal law for experiments with live animals) under a589

project license approved by the Austrian Federal Science Ministry.590

Four adult male Long-Evans rats (Janvier, St-Isle, France) were591

used for the experiments in (38). We used two wildtype littermate592

control animals, generated by breeding two DISC1 heterozygous593

Sprague Dawley rats from (37). Rats were housed individually in594

standard rodent cages(56X40X26 cm) in a temperature and humid-595

ity controlled animal room. All rats were maintained on a 12 hr596

light/dark cycle and all testing performed during the light phase.597

Food and water were available ad libitum prior to the recording598

procedures and bodyweight at the time of surgery was 300-375 g.599

Surgery. The first 4 animals (38) were implanted with microdrives600

housing 32 (2x16) independently movable tetrodes targeting the601

dorsal CA1 region of the hippocampus bilaterally. Each tetrode was602

fabricated out of four 10 um tungsten wires (H-Formvar insulation603

with Butyral bond coat California Fine Wire Company, Grover604

Beach, CA) that were twisted and then heated to bind them into 605

a single bundle. The tips of the tetrodes were then gold-plated to 606

reduce the impedance to 200-400 kU. During surgery, the animal 607

was under deep anesthesia using isoflurane (0.5%–3% MAC), oxygen 608

(1-2l/min), and an initial injection of buprenorphine (0.1mg/kg). 609

Two rectangular craniotomies were drilled at relative to bregma 610

(centered at AP =-3.2; ML = ±1.6), the dura mater removed and 611

the electrode bundles implanted into the superficial layers of the 612

neocortex, after which both the exposed cortex and the electrode 613

shanks were sealed with paraffin wax. Five to six anchoring screws 614

were fixed on to the skull and two ground screws (M1.4) were 615

positioned above the cerebellum. After removal of the dura, the 616

tetrodes were initially implanted at a depth of 1-1.5 mm relative to 617

the brain surface. Finally, the micro-drive was anchored to the skull 618

and screws with dental cement (Refobacin Bone Cement R, Biomet, 619

IN, USA). Two hours before the end of the surgery the animal was 620

given the analgesic Metacam (5mg/kg). After a one-week recovery 621

period, tetrodes were gradually moved into the dorsal CA1 cell layer 622

(stratum pyramidale). 623

The last two animals (37) were implanted with microdrives 624

housing 16 independently movable tetrodes targeting the right 625

dorsal CA1 region of the hippocampus. Each tetrode was fabricated 626

out of four 12 um tungsten wires (California Fine Wire Company, 627

Grover Beach, CA) that were twisted and then heated to bind into 628

a single bundle. The tips of the tetrodes were gold-plated to reduce 629

the impedance to 300-450 kΩ. During surgery, the animal was under 630

deep anesthesia using isoflurane (0.5-3%), oxygen (1-2 L/min), and 631

an initial injection of buprenorphine (0.1 mg/kg). A rectangular 632

craniotomy was drilled at -3.4 to -5 mm AP and -1.6 to -3.6 mm 633

ML relative to bregma. Five to six anchoring screws were fixed 634

onto the skull and two ground screws were positioned above the 635

cerebellum. After removal of the dura, the tetrodes were initially 636

implanted at a depth of 1-1.5 mm relative to the brain surface. 637

Finally, the microdrive was anchored to the skull and screws with 638

dental cement. Two hours before the end of surgery the analgesic 639

Metacam (5 mg/kg) was given. After a one-week recovery period, 640

tetrodes were gradually moved into the dorsal CA1 cell layer. 641

After completion of the experiments, the rats were deeply anes- 642

thetized and perfused through the heart with 0.9% saline solution 643

followed by a 4% buffered formalin phosphate solution for the his- 644

tological verification of the electrode tracks. 645

Behavioral procedures. Each animal was handled and familiarized 646

with the recording room and with the general procedures of data 647

acquisition. For the first 4 animals (38), four to five days before 648

the start of recording, animals were familiarized at least 30 min 649

with a circular open-field environment (diameter = 120 cm). On 650

the recording day, the animal underwent a behavioral protocol in 651

the following order: exploration of the familiar circular open-field 652

environment (40 mins), sleep/rest in rest box (diameter =26cm, 653

50 mins). Directly after this rest session the animals also explored 654

a novel environment for an additional 40 min and rested after for 655

50 mins. The novel environment recordings were performed in the 656

same recording room but in an enclosure of a different geometric 657

shape but similar size (e.g., a square environment of 100cm width). 658

The wall of both the familiar and novel environment enclosures was 659

30cm in height, which limited the ability of the animal to access 660

distal room cues. In addition, in two animals a 50 mins sleep/rest 661

session was performed before the familiar exploration. 662

For the last 2 animals (37), two to three days before the start 663

of recording, animals were familiarized with a circular open-field 664

environment (diameter = 80 cm). On the recording day, the animal 665

underwent a behavioral protocol in the following order: 10 min rest- 666

ing in a bin located next to the open-field environment, exploration 667

of the familiar open-field environment (20 min), sleep/rest in the 668

familiar open-field environment (20 min), exploration of a novel 669

open-field environment (20 min), sleep/rest in the novel open-field 670

environment (20 min). Whilst the familiar environment was kept 671

constant, the novel environment differed on every recording day. 672

The novel open-field arenas differed in their floor and wall linings, 673

and shapes. The recordings for the familiar and novel conditions 674

were performed in the same recording room. 675

During open-field exploration sessions, food pellets (MLab rodent 676

tablet 12mg, TestDiet) were scattered on the floor to encourage 677

foraging and therefore good coverage of the environment. 678
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Data Acquisition. A headstage with 64 or 128 channels (4 X 32 or 2679

X 32 channels, Axona Ltd, St. Albans, UK) was used to preamplify680

the extracellular electric signals from the tetrodes.681

Wide-band (0.4 Hz–5 kHz) recordings were taken and the ampli-682

fied local field potential and multiple-unit activity were continuously683

digitized at 24 kHz using a 128-channel (resp. 64-channels) data684

acquisition system (Axona Ltd St. Albans, UK). A small array685

of three light-emitting diode clusters mounted on the preamplifier686

headstage was used to track the location of the animal via an over-687

head video camera. The animal’s location was constantly monitored688

throughout the daily experiment. The data were analyzed offline.689

B. Data Processing.690

Spike sorting. The spike detection and sorting procedures were per-691

formed as previously described (83). Action potentials were ex-692

tracted by first computing power in the 800-9000 Hz range within a693

sliding window (12.8 ms). Action potentials with a power >5 SD694

from the baseline mean were selected and spike features were then695

extracted by using principal components analyses. The detected696

action potentials were segregated into putative multiple single units697

by using automatic clustering software (http://klustakwik. source-698

forge.net/). These clusters were manually refined by a graphical699

cluster cutting program. Only units with clear refractory periods in700

their autocorrelation and well-defined cluster boundaries were used701

for further analysis. We further confirmed the quality of cluster702

separation by calculating the Mahalanobis distance between each703

pair of clusters (39). Afterwards, we also applied several other704

clustering quality measures and selected only cells which passed705

stringent measures. In particular we implemented: isolation distance706

and l-ratio (40), ISI violations (41) and contamination rate. We707

employed the code available on Github: https://github.com/cortex-708

lab/sortingQuality. The criteria for the cells to be considered for709

analysis were the following:710

• Isolation distance > 10−th percentile711

• ISI violations < 0.5712

• contamination rate < 90−th percentile713

Periods of waking spatial exploration, immobility, and sleep were714

clustered together and the stability of the isolated clusters was ex-715

amined by visual inspection of the extracted features of the clusters716

over time. Putative pyramidal cells and putative interneurons in the717

CA1 region were discriminated by their autocorrelations, firing rate,718

and waveforms, as previously described (Csicsvari et al., 1999a).719

Data inclusion criteria. We set a minimum firing rate of > 0.25 Hz720

on average, across both familiar and novel environments. The721

final dataset consisted of 294 putative excitatory and 128 putative722

inhibitory cells across 6 animals. Considering only pairs of units723

recorded on different tetrodes, the dataset includes a total of 9511724

excitatory-excitatory (EE) pairs, 7848 excitatory-inhibitory (EI)725

and 1612 inhibitory-inhibitory (II) pairs.726

Spiking data was binned in 25.6 ms time windows, reflecting the727

sampling rate for positional information. We excluded bins where:728

• the animal was static (speed < 3cm/s)729

• sharp-wave ripple oscillatory activity was high, i.e. periods730

with power in the band 150 ∼ 250 Hz in the top 5th percentile731

(83, 84)732

• theta oscillatory activity was particularly low, with power in733

the band 5 ∼ 15 Hz in the lowest 5th percentile; it is known734

that hippocampal theta oscillations support encoding of an735

animal’s position during spatial navigation and reduces overall736

synchrony of population (85, 86).737

Theta phase detection and data binning in theta cycles. MN: we are738

not talking about this in the paper. Exclude?739

C. Null model of population responses and detection of excess cor-740

relations.741

Maximum entropy null model. We construct a null model for popula- 742

tion responses that takes into account the position of the animal, 743

s and the population synchrony, k =
∑

i
xi, but is otherwise max- 744

imally variable. We use this model to generate a large ensemble 745

of surrogate datasets, that match the data with respect to tuning 746

but without additional noise correlations. Using these surrogates 747

allow us to estimate an empirical distribution of (total) pairwise 748

correlations under the null model, which we then compare to data. 749

Under the assumption that spike counts have mean λ(s, k) with 750

Poisson noise, the distribution of the joint neural responses under 751

the null model factorizes as: 752

pind(x
∣∣s,K) =

∏
Poisson(xi|λi(s, k)). [1] 753

One important caveat is that the population synchrony depends on 754

the neural responses themselves, which introduces the additional con- 755

straint that k =
∑

i
xi for each of these surrogate draws, something 756

that we enforce by rejection sampling (87). The only remaining step 757

is to estimate the tuning function of each cell, λi(s, k), which we 758

achieve using a nonparametric approach based on Gaussian Process 759

(88) priors. 760

Tuning function estimation. Here we briefly describe the key steps 761

of the approach, and refer the reader to (89) for further details. 762

The data is given as T input pairs, D = {xi, yi}i=1,2,...,T , where xi 763

denotes the input variables, defined on a 3−dimensional lattice for 764

the 2d−position of the animal in the environment and population 765

synchrony, defined as k = 1
T

∑T

n=1 x
(n)
i ; and yi denotes spike 766

counts in the corresponding time bin (dt = 25.6ms). 767

Neural activity is modeled as an inhomogeneous Poisson process 768

with firing rate dependent on input variables, λ(xi). We use a 769

Gaussian Process (GP) prior to specify the assumption that the 770

neuron’s tuning is a smooth function of the inputs, with an expo- 771

nential link function, f = log λ, f ∼ GP(µ, k), with mean function 772

µ(·) and covariance function k(·, ·). In particular, we use a product 773

of squared exponential (SE) kernels for the covariance function: 774

k(x,x′) =
3∏
d=1

kd(xd, x′d) =
3∏
d=1

ρd exp(xd − x′d)/2σ2
d, [2] 775

This allows the prior covariance matrix to be decomposed as a 776

Kronecker product K = K1⊗K2⊗K3, dramatically increasing the 777

efficiency of the fitting procedure (90). 778

The parameters θ = {µ, ρ, σ} are fitted from data by max- 779

imizing the marginal likelihood of the data given parameters. 780

Given estimated parameters, θ̂, we infer the predictive distribu- 781

tion p(f∗|D,x∗, θ̂) for a set of input values x∗ (defined below). This 782

distribution can be computed by marginalizing over f : 783

p(f∗|D,x∗, θ̂) =
∫

p(f∗|D,x∗, θ̂, f)p(f |D, θ̂)df [3] 784

This distribution is intractable, but can be approximated by 785

using a Laplace approximation for p(f |D, θ̂) so that ultimately 786

p(f∗|D,x∗, θ̂) ≈ N (µf∗ , σf∗ ). Finally, thanks to the exponential 787

link function, the inferred firing rate of an individual input point 788

λ(x∗) = exp(f∗) is log-normally distributed, whose mean and vari- 789

ance can be easily computed as: 790

E(λ(x∗)) = exp(µf∗ + σ2
f∗
/2) [4] 791

and 792

Var(λ(x∗)) = exp(σ2
f∗
− 1) exp(2µf∗ + σ2

f∗
) [5] 793

We chose input points x∗ = (s, k) that corresponded to the binned 794

2D location s of the animal (5cm bins) and binned population 795

synchrony k (10 equally weighted bins, each containing 10% of 796

the data, i.e. the bin edges correspond to the (0th, 10th . . . , 100th) 797

percentiles). 798

Generating surrogate data. At each moment in time, given the posi- 799

tion s and population synchrony k, the GP tuning estimate provides 800

a distribution over possible firing rates for cell i, λi(s, k), as a log 801

normal distribution, log λi ∼ N (µf∗ , σf∗ ). This captures uncer- 802

tainty about the tuning of the cell, given the data. We generate 803

surrogate spike counts in two steps. First, we sample the mean 804
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firing from this p(λi|s,K) distribution. Second, for each λi sample,805

we draw the corresponding spike count from Poisson(λi). Applying806

this procedure for all cells and all time points generates a surrogate807

dataset from the unconstrained null model. We enforce the con-808

straint
∑

i
xi = k by discarding and redrawing samples that do not809

satisfy it. In rare cases (less than 2% of data), it was not possible to810

replicate the desired k statistic, i.e. achieving the desires k required811

more than 500 re-samplings. Such time bins were excluded from812

subsequent analysis (both for for real data and all surrogates). We813

generate a total of 1000 surrogate datasets.814

Inference of excess correlations. We use the pairwise correlations815

between neural responses as the test statistic and compare it to816

the distribution of pairwise correlations expected under the null817

model that assumes that the firing rate of cells is only driven by818

the stimulus and the synchrony of the population, without further819

pairwise interactions.820

Given the Pearson correlation coefficient between the activities821

of cells i and j computed on real data, cij , and cγij the same quantity822

computed on a surrogate dataset {xγ1:t} for γ = 1, 2, . . . 1000. We823

define the quantity we refer to as “excess correlations” as:824

wij =
cij− < cγij >

σ(cγij)
[6]825

where < · > denotes the sample average and σ the sample standard826

deviation of cγij . Assuming that the cγij distribution is normal, this827

quantity is closely related to confidence bounds, and p-values (via828

the error function). An excess correlation is deemed significant if829

|wij | > 4.5, which corresponds to a p-value threshold of p = 0.05830

with a Bonferroni correction for the 7500 multiple comparisons.831

Validation. To validate our method, we construct an artificial dataset832

with know interactions, by sampling from a coupled stimulus de-833

pendent MaxEnt model. We consider N = 50 neurons and binary834

activations x = (x1, . . . xN )T for any given time window. The dis-835

tribution of responses x given a location-stimulus s and synchrony836

level k is837

p(x|s, k) ∝ exp

(∑
i

fi(s)xi +
∑
i>j

Wijxixj −
∑
i

(xi − k/N)

)
[7]838

where s ∈ {s1, . . . , sK} is a spatial position chosen from a set839

of discrete locations uniformly spaced in the environment, and840

the feedforward input to each cell, fi = fi(s), is as described in841

methods subsection (D). We try to match the general statistics of842

the data as closely as possible. In particular, we match the true843

time-dependent occupancy, st, observed in a 20 minutes exploration844

session, and the corresponding time-dependent synchrony observed845

in the same session, kt, by sampling one population activity vector846

(after adequate burn-in time) at each time point x(t) ∼ P (x|st, kt)847

using Gibbs sampling (91).848

Given this artificial dataset, we analyze it with the same pro-849

cessing pipeline that we use for the neural recordings and compare850

the estimated interactions wij with the ground truth couplings Wij ,851

which are randomly and independently drawn from N (0, 1). Fur-852

thermore, we generate data with the same constraints but without853

any interactions. We asses the ability of our statistical test to detect854

true interactions using the receiver operating characteristic (ROC),855

and estimate false positive rates for our statistical test.856

D. Hippocampal population responses with adjustable network857

structure.858

Stimulus dependent MaxEnt model. In order to explore the effects859

of the noise correlation structure on the coding properties of the860

hippocampal system, we employed a statistical model of the col-861

lective behavior of a population of place cells that allowed us to862

vary the couplings among cells while keeping fixed the output firing863

rate. A similar, stimulus dependent maxent model was introduced864

in (53), and more recently was used in (11) to prove that correlation865

patterns in CA1 hippocampus are not due to place encoding only,866

but also to internal structure and pairwise interactions. Our model867

includes spatially-selective inputs with adjustable strength, h, and868

noise correlations modelled as a matrix W describing the strength of 869

interaction between cell pairs. Additionally, we constrained average 870

population firing rates to be the same for each possible choice of h 871

and W, as a way of implementing metabolic resource constraints. 872

More specifically, consider N neurons with binary activations 873

x = (x1, . . . xN )T. The distribution of responses x given a location- 874

stimulus s we considered is 875

p(x|s) ∝ exp

(
h
∑
i

fi(s)xi +
∑
i>j

Wijxixj − h0
∑
i

xi

)
[8] 876

where s ∈ {s1, . . . , sK} is a spatial position chosen from a set of 877

discrete locations uniformly spaced in the environment (the unit 878

square, [0, 1]× [0, 1]). The feedforward input to each cell, fi = fi(s), 879

is modelled as a 2−D Gaussian bump with continuous boundary 880

conditions, mean randomly drawn from a uniform on [0, 1]× [0, 1] 881

and fixed covariance 0.1I. The parameter h0 allows us to fix the 882

average population firing rate to 20% of the population size, and 883

is found by grid optimization. Once the input tuning fi is fixed 884

for each cell, we select the connections Wij for each cell pair by 885

sampling from the data-inferred excess correlations of cell pairs with 886

similar tuning similarity, and then scaling according to the results 887

found during method validation (Fig S 1). We did so separately for 888

familiar and for novel environments. Finally, we fix the appropriate 889

parameter h, separately for familiar-like and novel-like connections, 890

by matching single neurons marginal statistics. We utilized three 891

measures: single cell spatial information, sparsity and gain, which 892

are described in detail in Methods subsection (E). 893

Optimization of connections for fixed input and fixed firing rate. 894

Given h,{fi(·)}, we optimize the connections W so as to maximize 895

the mutual information between population activity and spatial po- 896

sition, MI(x; s) =
∑

x,s p(x|s)p(s) log p(x|s)
p(x) , via Sequential Least 897

SQuares Programming (SLSQP) (92). We further constrain the 898

population average firing to 20% of the nural population, and each 899

Wij is restricted to lay in [−1, 1]. Both reflect biological resource 900

constraints on the optimal solution. 901

Most simulations use N = 10 neurons, which allows the mutual 902

information to be computed in closed form (by enumerating all 903

possible patterns). Reported estimates are obtained by averaging 904

across 1000 randomly initialized networks (different fi(·) centers, 905

and initial conditions for the optimization). To ensure that our 906

results generalize to large networks, we also performed limited 907

numerical simulations for N = 20 (only for h = 2 and h = 4, 908

averaging over 10 networks. 909

Optimal coding for large networks. The exact computation of the 910

mutual information MI(x; s) is very resource intensive and only 911

applicable to small networks (N ≤ 20). To investigate the effects 912

of noise correlations at larger scales we need to rely on efficient 913

approximations. The mutual information between population binary 914

responses x and location-stimulus s can be written as 915

MI(x; s) =
∑
x,s

p(s|x)p(x) log p(s|x)−
∑
x,s

p(s|x)p(x) log p(s)

= H(s)−H(s|x),
[9] 916

where H denotes (conditional) entropy. Assuming that p(s) is a 917

uniform distribution over stimuli, we have H(s) = 2 logB, where B 918

is the number of bins used to discretize each dimension of the 2−dim 919

environment. We generally use B = 16. The challenge is to compute 920

H(s|x). For a given x, denote with ĥ(x) := −
∑

s
p(s|x) log p(s|x). 921

Then we have: 922

H(s|x) = −
∑
x,s

p(s|x)p(x) log p(s|x)

=
∑

x

p(x)ĥ(x)

=
∑
s

p(s)
∑

x

p(x|s)ĥ(x)

[10] 923

We used the last expression and estimated H(s|x) by drawing 106 924

samples from p(x|s) for each stimulus s using Gibbs sampling (91). 925
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We reported the estimated average across stimuli and confidence926

intervals in the figures. The quantity ĥ(x) = −
∑

s
p(s|x) log p(s|x)927

is the entropy of the posterior distribution on stimuli given a certain928

binary vector. The main obstacle to computing ĥ is that, for929

each stimulus s, we need to know the proportionality constant930

Zs =
∑

x p(x|s) (i.e. the partition function), that makes the931

probability (8) sum up to 1. We computed Zs exhaustively for932

N ≤ 20 by enumerating all the possible binary vectors. For N ≥ 20933

we estimated it using a simple Monte Carlo method by randomly934

drawing 109 independent N−dim binary samples for each stimulus,935

and then regularizing by applying a mild 2D gaussian smoothing936

(σ = 0.5 bins) on the log-transformed Zs among neighboring stimuli.937

“Topology” model simulations. We aimed at characterizing the in-938

fluence of higher order structure on the coding of the network. We939

used the same model as in eq. [8] with 50 place cells, but allowed940

connections to be either −J , 0 or +J , where J ∈ [0, 1] is the con-941

nection strength. We employed three different strategies to select942

the units to connect, as described in the main text, based on their943

tuning similarity. We kept fixed the number of positive (+J) and944

negative (−J) couplings to 6% and 3% respectively. For each choice945

of tuning, connectivity rule and strength J we used the parame-946

ter h0 to enforce the population average firing to be 20% of the947

population size.948

E. Analysis of experimental data.949

Single cell tuning characterization. To describe the tuning properties950

of single cells we employed several measures:951

• gain: peak firing rate over mean, estimated from the tuning952

function of a cell,953

• sparsity: < λx >2
x / < λ2

x >x, where λx denotes the average954

firing at location x, is a measure of how compact the firing955

field is relative to the recording apparatus (93),956

• spatial information: < λx
λ

log λx
λ

>x, where λ =< λx >x,957

is the leading term of the MI between average spiking and958

discretized occupancy for small time windows (50, 94).959

Decoding of spatial position from data. We subdivided the environ-960

ment in equally spaced 2−dimensional bins with bin side length of961

20 cm. This choice was due to the fact that, to properly estimate962

the average co-activation of cells one needs many samples and a finer963

subdivision of the environment made this task extremely difficult.964

We randomly subdivided the data in two parts, 75% for training and965

25% for decoding. With the training data we estimated, for each bin966

separately, the average activation and the covariance of the neurons967

activity. With the remaining 25% of the data, we computed for each968

non-overlapping 10 consecutive 25.6 ms time bins the activation969

(denoted by population vector or PV) and the covariance (COV).970

We then simply compared them to all the expected PV and COV971

measured over the training set in different bins and picked the most972

similar one in terms of Pearson correlation.973

PCA, linear separability of pairs of stimuli. We wanted to investigate974

the linear separability of population responses to different locations.975

We randomly selected 500 times two distinct locations in the en-976

vironment and selected all the 250ms population responses in a977

10 cm surrounding of the two positions. We then found the best978

hyperplane that separated the two sets of responses by using a979

soft-margin linear SVM with hinge loss, and reported the training980

error. We also computed the principal components of the popula-981

tion responses to both locations together, and reported the variance982

explained by the first PC.983

F. Network analysis.984

Graph theoretical measures. All the measures were carried out using985

the library NetworkX (release 2.4) in Python 3.7. We considered986

unweighted and non directed graphs where each cell was a vertex and987

an edge connected each cell pair that had a significant interaction988

(|wij | > 4.5). A graph G = (V,E) formally consists of a set of989

vertices V and a set of edges E between them. An edge eij connects990

vertex vi with vertex vj . The neighbourhood for a vertex vi is991

defined as its immediately connected neighbours: Ni = {vj : eij ∈992

E ∨ eji ∈ E} and its size will be denoted by ki = |Ni|.993

We measured: 994

1. Clustering coefficient: this measure represents the average 995

clustering coefficient of each node, which is defined as the 996

fraction of existing over possible triangles that include that 997

node as a vertex. Formally, the local clustering coefficient ci 998

for a vertex vi is given by the proportion of links between the 999

vertices within its neighbourhood divided by the number of 1000

links that could possibly exist between them, hence measuring 1001

how close its neighbourhood is to forming a clique. If a vertex 1002

vi has ki neighbours, ki(ki−1)
2 edges could exist among the 1003

vertices within the neighbourhood. Thus, the local clustering 1004

coefficient for vertex vi can be defined as 1005

ci =
2|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
1006

and the average clustering coefficient as 1007

cG = 1
n

∑
vi∈V

ci 1008

2. Average shortest path length: this measure can be com- 1009

puted only if the graph is connected. If not, we computed this 1010

measure on the largest connected subgraph. 1011

aG =
∑
u,v∈V

d(u, v)
n(n− 1)

1012

where u, v are distinct vertices, d(u, v) is the shortest path 1013

length between u, v and n is the size of the graph G. 1014

Triangles analyses. We tested for the over-expression of particular 1015

interaction patterns by counting the number of triangles (i.e 3 all- 1016

to-all interacting cells) composed by 3 inhibitory cells, 2 inhibitory 1017

and 1 excitatory, 1 inhibitory and 2 excitatory or 3 excitatory cells. 1018

We tested these counts against the counts from the same networks 1019

with shuffled edges. We employed an edge-shuffling procedure that 1020

preserved both the total number of edges and the number of incident 1021

edges per node, separately for the EE, EI and II subnetworks (i.e. 1022

an edge connecting two excitatory cells could be exchanged only 1023

with another edge connecting two excitatory edges etc). To do 1024

this, we randomly selected two edges of each subnetwork, say AB 1025

and CD. If A 6= C 6= D and B 6= C 6= D we removed the two 1026

edges and inserted the “swapped” ones, AC and BD. We repeated 1027

this procedure 100 times for each subnetwork to yield one shuffled 1028

network. We repeated this procedure 1000 times, which gave us a 1029

null distribution to test the original counts against. In Supp. Fig. 1030

5 we reported the counts of each pattern, separately for familiar 1031

and novel environments, normalized against our null distribution. 1032

Betti numbers. We computed the Betti numbers of the clique- 1033

complex induced by the graphs. These are distinct from the graphs 1034

Betti numbers (95). A clique in a graph is an all-to-all connected set 1035

of vertices. The clique complex X(G) of an undirected graph G is 1036

an abstract simplicial complex (that is, a family of finite sets closed 1037

under the operation of taking subsets), formed by the sets of vertices 1038

in the cliques of G. Intuitively, the clique-topology can be char- 1039

acterized by counting arrangements of cliques which bound holes. 1040

Formally, the dimensions of the homology groups Hm(X(G),Z2) 1041

yield the Betti numbers bm (95). Given our low connectivity ( 9%), 1042

bm was almost always zero for m ≥ 2. On the other side, b0 simply 1043

counts the number of connected components, so in our analysis 1044

we focused on b1. This is the number of cycles, or holes, that are 1045

bounded by 1-dim cliques. Graphically, these are 4 edges that form 1046

a square, or 5 edges that form a pentagon etc. Notice that 3 edges 1047

that form a triangle don’t count towards b1, because they represent 1048

a 2-dim clique (i.e. 3 vertices that are all-to-all connected). This is 1049

why a higher clustering coefficient (i.e. more triangles) implies a 1050

lower b1. 1051
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Supplementary figures 1264

A

B

Figure S1. Further data on validation and null model. (A) Scatter plot of ground truth Wij values used in the model for validation vs wij inferred from
artificial data. (B) Left: Scatter of inferred wij vs tuning similarity. Notice the absence of bias towards detection for cells with higher or lower tuning similarity. Right: Wij

detection error inferred as the difference between wij (scaled by the appropriate slope) and the true Wij . Notice the absence of bias towards highly similarly tuned pairs.
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Figure S2. Population marginal statistics. (A) Left: distribution of average firing rates of putative CA1 excitatory neurons in familiar (blue) and novel (orange)
environment. Right: paired difference across environments (familiar− novel). Error bars represent 95th CI for the mean. (B) Same as (A) for putative inhibitory neurons.
(C) Distribution of synchrony in 25 ms time windows of excitatory neurons for different behavioral speed: [3, 10), [10, 15), [15, 20), [20, 25), [25, 100) cm/sec for familiar
(blue) and novel (orange). All KS test p < 0.0001. (D) Same as (C) for putative inhibitory neurons.
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Figure S3. Efficacy of monosynaptic excitatory-inhibitory connections. Left: average normalized cross-correlogram of putative monosynaptically
connected excitatory-inhibitory pairs. The cross correlogram was normalized by subtracting the mean and dividng by the STD of cross-correlograms computed on randomly
shifted data 100 times. The pairs that had peak (normalized) cross-correlogram > 7STD in both environments were labelled as monosynaptically connected (47). Right:
average peak of normalized cross-correlogram for familiar and novel environments. Error bars represent 95th CI for the mean. Paired T-test p = 0.61.
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mover distance (EMD) among the histograms of preferred theta phases (t-test for Spearman rank correlations: EE p > 0.05, EI p < 0.001, EE p < 0.001).
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Figure S5. Small worldness of EE subnetwork. (A) Average clustering coefficient of excitatory subnetworks normalized against the same values computed on
ER random graphs with matching edges density (Fig 2). (B) Left: log-nodes number vs shortest path length in the largest connected component of excitatory subnetworks
with standard significancy threshold at |w| > 4.5 (two dots per animal: familiar and novel). Right: same as left for excitatory subnetworks with higher significancy threshold at
|w| > 6. (C) Overexpression of triangles in real networks against random shuffling of the edges that preserved the number of incident edges onto each single node (see
Methods).
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Figure S6. Marginal statistics of place cells in hippocampus match circuit model. The interactions in the model were drawn from the inferred
couplings observed in data and rescaled according to Supp. Fig. 1A. Afterwards, we fixed the input strength by picking the parameters that allowed the model to best match the
marginal statistics observed in data. All the measures were computed on traditional 2D firing rate maps (see Methods). (left) single cell spatial information, (center) firing rate
map gain, measured as peak over mean (right) firing rate sparsity.
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Figure S7. Comparison with null couplings. (A) Estimated spatial information (MI; error bar – 99th percentile CI for the mean) using structured, random and null
interactions, in the novel-like and familiar-like scenario (see text). Structured interactions significantly increase the spatial information (p < 0.001 (***) or p < 0.01 (**) under a
non-parametric Mann–Whitney U-test). (B) Decoding error using a simple population vector approach (PV; error bar – 99th percentile CI for the mean) using structured,
random and null interactions, in the novel-like and familiar-like scenario. Structured interactions significantly decrease the average decoding error in novel environments
(p < 0.01 (**) under a non-parametric Mann–Whitney U-test). (C) Improvement in decoding performance by taking into account co-variability of cells (“COV” decoder) relative
to a simple population vector (“PV”) decoder, evaluated on 4 · 104 samples). (error bars and significance tests as in B). (D) Fraction of variance explained by the first principal
component of population vectors for 103 random pairs of locations in the maze. The fraction is unchanged between the novel and familiar environments on structured network
and on real data, but differs significantly on the random and null networks (error bars and significance tests as in B). (E) Linear separability measured as SVM classification
accuracy of random pairs of stimuli (trained on 1000 pairs of same vs. different positions). The separability is unchanged between the novel and familiar environments on
structured network and on real data, but differs significantly on the random and null networks.
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Figure S8. Linear separability as a function of distance. Left: linear separability of responses to stimuli at a given distance for data-like copupling structure (solid line), random
connectivity (dotted) or null couplings (x) for novel-like (orange) and familiar-like (blue) input quality. Right: linear separability of responses to stimuli at a given distance for data
novel environments (orange) and familiar (blue).
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Figure S9. Single cell MI optimization. Optimizing the mutual information between single cells stimulus-dependent (marginalized) activity and location-stimulus led
to the same result for each level of input noise – almost linear relation between place field overlap and optimal predicted Wij .
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Figure S10. Negatively coupled optimized connections and proportion of strongest. A Proportion of cell pairs to reach minimum allowed Wij as a
function of tuning similarity. B Proportion of cell pairs that reached maximum Wij = 1 (after optimization) decreased for increasing input quality h.
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Figure S11. Non constrained maximization does not show nonlinear coupling preferences. Top row: Proportion of couplings that exceed 1 after
optimization. Couplings were optimized so to maximize the mutual information between population responses and stimuli. The average population firing rate was constrained
but Wijs were not. Bottom row: mean proportion of couplings that exceed different thresholds also do not show the nonlinear relation we observed in the constrained case.
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Figure S12. Topology (A) Distribution of incident edges with the three different connectivity-rules. (B) Average shortest path length. 1-way ANOVA p > 0.05. (C) Betti
numbers of the clique complex induced by the graph (b1) for 1-dim holes. Using the data-like nonlinear coupling strategy increased the chance of creating triangles, hence
diminishing the number of 1-dim cavities.
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Figure S13. Strongest couplings only. After optimizing the connections W (as in Fig. 4), the MI of the fully optimized networks was compared to null couplings and
the "strongest only" case, i.e., where every connection |Wij | < 1 was set to 0.
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