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Abstract 

 Delaying aging while prolonging health and lifespan is a major goal in aging research. 

While many resources have been allocated to find positive interventions with promising results, 

negative interventions such as pollution and their accelerating effect on age-related 

degeneration and disease have been mostly neglected. Here, we used the short-lived model 

organism C. elegans to analyze whether two candidate pollutants interfere with positive 

interventions by corrupting general aging pathways. We took advantage of the immense data 

sets describing the age-related remodeling of the proteome including increased protein 

insolubilities to complement our analysis. We show that the emergent pollutant silica 

nanoparticles (NP) and the classic xenobiotic inorganic mercury reduce lifespan and cause a 

premature protein aggregation phenotype. Silica NPs rescaled the longevity effect of genetic 

interventions targeting the IGF-1/insulin-like signaling pathway. Comparative mass 

spectrometry revealed that increased insolubility of proteins with important functions in 
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proteostasis is a shared phenotype of intrinsic- and pollution-induced aging supporting the 

hypothesis that proteostasis is a central resilience pathway controlling lifespan and aging. The 

presented data demonstrate that pollutants corrupt intrinsic aging pathways, which results in 

premature aging phenotypes. Reducing pollution is therefore an important step to increase 

healthy aging and prolong life expectancies on a population level in humans and animals. 

 

Introduction: 

 Aging is a common risk factor for morbidity and mortality in modern human society. In 

order to prolong life and reduce age-related diseases, millions of dollars are invested into 

understanding aging and developing effective therapeutics (Partridge et al., 2018). However, 

these efforts have been made without the consideration of another challenge: global pollution. 

Since genetic and environmental factors contribute to aging, age-related changes and death 

(Kenyon, 2010; Sorrentino et al., 2014; Vermeulen et al., 2020), environmental pollution is a 

likely compounding factor on healthy aging. The Lancet Commission on Pollution and Health 

reported that pollution is the number one cause for environmentally-induced diseases and 

premature death (Landrigan et al., 2018). Air, water, and soil pollution caused an estimated 9 

million premature deaths worldwide in 2015 (Forouzanfar et al., 2016). The actual number of 

deaths may be even higher due to many emerging chemicals such as nanoparticles (NPs) or 

endocrine disruptors that have not yet been studied for their effects. Another neglected aspect 

in the evaluation of pollution costs, is a pollution-induced decline in quality of life or health span 

that is not directly linked to a specific disease or death. In summary, pollution is an 

understudied, negative aging intervention that counteracts healthy aging and reduces life 

expectancies. 

 To successfully promote a longer health- and lifespan in humans, a comprehensive 

analysis of the negative interventions from the pollutome, which includes all pollutants and 

sources of exposure to them, would be required in addition to the development of therapeutic 

strategies for anti-aging interventions. However, the large number of pollutants in the pollutome 

limits this analysis in the human population. In addition, pollutants reflect manufacturing trends 
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over time; therefore, old and emergent pollutants affect the overall composition of the 

pollutome. For example, inorganic mercury (iHg) represents an ‘old’ pollutant since its 

concentrations in oceans and soils have been highly elevated due to mining and fossil-fuel 

combustion for at least 150 years (Streets et al., 2011). Environmental mercury peaked around 

1900 due to the North American Gold/Silver Rush and rose again since 1950 with the rise in 

coal combustion and artisanal gold production (Streets et al., 2011). Since 1950, the chemical 

industry alone has added more than 150,000 newly synthesized chemicals (Landrigan et al., 

2018), and most of these are not systematically analyzed nor are their biological interactions 

known. Among these, industrial nanoparticles (e.g., silica NPs) experienced mass production 

at the beginning of the 21st century highlighted by the announcement of the National 

Nanotechnology Initiative in the United States (Roco, 2003).  

 The number and compositional complexity of pollutants complicates strategies that 

seek to understand the effects of the pollutome on human aging. A more feasible strategy is 

to take advantage of short-lived model organisms to analyze prominent representative ‘old 

versus emerging’ pollutants on general aging resilience pathways impacted by negative and 

positive interventions. 

 Caenorhabditis elegans is a free-living nematode roundworm that thrives in microbe-

rich habitats on rotting plant material. Its short life cycle has made C. elegans to one of the 

super model organisms of current biomedicine especially aging research (Tissenbaum, 2015). 

Under abundant growth conditions, a sequence of four larval stages is completed within 

approximately 2.5 days followed by a hermaphrodite adult stage lasting 2 to 3 weeks (Corsi et 

al., 2015). A plethora of genes regulate aging of the adult worm, including the insulin/IGF-1-

like signaling pathway identified in long-lived daf-2 (insulin-like growth factor 1, IGF-1) and 

short-lived daf-16 (FOXO transcription factor) mutants (Kenyon et al., 1993; Kenyon, 2010). 

The daf-2 pathway influences the longevity of adult worms as well as aging processes that 

manifest through the degeneration of neural connectivity, reduced neural signaling, amyloid 

protein aggregation and acceleration of neuromuscular defects (Collins et al., 2008; Kenyon, 

2010; Walther et al., 2015). Notably, the genes of the aging pathways are largely conserved 
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between C. elegans, Drosophila melanogaster, mice, and humans (Kaletta and Hengartner, 

2006; Kenyon, 2010).  

 The representative pollutants for ‘old versus emerging’ pollutants iHg and silica NPs 

are both neurotoxic/neurodegenerative and have the potential to induce amyloid protein 

aggregation in human cells and C. elegans (Arnhold et al, 2015, Scharf et al., 2016). Since it 

is well established that widespread protein aggregation is a hallmark of aging (David et al., 

2010; Hipp et al., 2019), the proteostasis network represents a possible candidate pathway in 

which to test the effects of pollutants on aging. Proteostasis shapes the proteome through 

ribosome-associated quality control, chaperone-mediated folding, transporters, and 

degradation processes via proteasome, lysosomes, and autophagy. Further, proteostasis 

mechanisms can be modulated by genetic intervention to increase health- and lifespan 

(Morimoto, 2020). 

 Here, we demonstrate that the pollutants silica NPs and iHg induce a premature aging 

phenotype by corrupting resilience pathways that normally preserve protein homeostasis and 

drive longevity. We show that the tested pollutants not only significantly reduce the lifespan of 

wild-type C. elegans, but also that silica NPs reverse the genetic lifespan resilience effects of 

daf-2 mutants. iHg induced proteotoxic stress and characteristics of aggregome network 

including components of protein folding, proteolysis, and stress response pathways. By 

comparative mass spectrometry of age- and pollutant-induced aggregomes, we identified a 

shared aggregation phenotype with an enrichment for proteins involved in protein homeostasis 

independent of protein abundance. Furthermore, we identified nine super-aggregation proteins 

with links to human diseases that became insoluble during intrinsic- as well as pollutant-

induced aging. These results demonstrate that pollutants negatively affect well described aging 

prevention pathways and that effective pollution control and reduction will be an important 

strategy to fight aging and premature death worldwide. 
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Results/Discussion: 
 

Silica NPs and inorganic mercury reduce lifespan 

 To characterize the impact of pollutants on resilience pathways of aging, we analyzed 

how two widely distributed pollutants, 50 nm silica nanoparticles (NPs) (von Mikecz, 2018) and 

iHg, affect the lifespan of C. elegans. To determine lifespan changes, C. elegans 

hermaphrodites were treated with different concentrations of silica NPs or iHg from the 

L4/young adult stage in S-Medium with E. coli and FUdR at 20°C (Figure 1, Table S1). While 

low concentrations of silica NPs did not show any significant changes in lifespan, 1.25 mg/mL 

silica NPs decreased the mean and maximum lifespan by 35% and 24% respectively (Figure 

1A). In contrast, iHg decreased lifespans in a concentration-dependent manner with 10, 25, 

and 50 µM iHg reducing lifespans by 14%, 63%, and 86%, respectively (Figure 1B, Table S1). 

Maximum lifespans after iHg exposure were decreased by 16%, 62%, and 78%, respectively 

(Figure 1B, Table S1). 

 

Silica NPs reverse genetic lifespan resilience effects 

 Next, we investigated whether aging interventions protect against the lifespan 

shortening effects of silica NPs using C. elegans strains carrying mutations in the IGF signaling 

pathway. Mutations in the daf-2/insulin/IGF-1-receptor gene extend lifespan via activation of 

the DAF-16/FOXO transcription factor-mediated protection gene program, whereas daf-16(lf) 

strains show reduced lifespans compared to wild-type (Kenyon et al., 1993; Piechulek & von 

Mikecz, 2018). We chose this genetic intervention due to its effective lifespan extension 

phenotype and potential to prevent protein aggregation (David et al., 2010), since silica NPs 

induce premature protein aggregation in C. elegans (Scharf et al., 2013). Silica NP treatment 

significantly decreased the mean and maximum lifespan of daf-2(e1368) mutant animals by 

23% and 30% (Figure 1C, Table S1). Similarly, daf-16(mu86) loss-of-function mutant animals 

(Lin et al., 1997) exhibited a 21% shorter mean and a 33% shorter maximum lifespan when 
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treated with silica NPs (Figure 1D, Table S1). Although silica NPs decreased the lifespans of 

wild-type and both mutant strains, we observed a temporal rescaling dependent on DAF-16 

activity (Figure 1E, F, Table S1). Silica NP exposure shifted the lifespan distribution of daf-2(lf) 

mutants back to wild-type and of wild-type animals back to daf-16(lf) mutants. This result 

indicates that DAF-16 activity protects C. elegans from silica NP-induced premature death and 

restores wild-type lifespan. However, these findings also indicate that silica NPs interfere with 

the longevity effect and reduce the lifespan of daf-2 mutants to wild-type. In conclusion, silica 

NPs diminished any effect of the positive genetic intervention on prolonging the lifespan.  

 

iHg induces proteotoxic stress 

 Temporal scaling of lifespan distributions is a feature of most aging interventions that 

is based on a shared organismal state also called resilience or vitality (Stroustrup et al., 2016). 

Therefore, if we consider pollutants as negative aging interventions, they would also affect 

aging by influencing the same organismal state or resilience pathway. Proteostasis is a 

possible candidate for such a resilience pathway given that (1) disruption of proteostasis is a 

hallmark of intrinsic aging that manifests as the accumulation of protein aggregates (Hipp et 

al., 2019), and (2) several studies have shown that pollutants and xenobiotics can induce 

protein fibrillation and disrupt proteostasis (Uversky et al., 2001; Chen et al., 2008; Arnhold et 

al., 2015; Scharf et al., 2016). Furthermore, xenobiotic exposure can be linked to 

neurodegenerative diseases such as Parkinson’s or Alzheimer’s disease and can induce 

pathogenic protein aggregation of amyloid-like assemblies containing several hundred proteins 

as well as nonproteinaceous components including metals (Uversky et al., 2001; Gerhardsson 

et al., 2008; Meleleo et al., 2020; Lashuel, 2021). 

 We predicted that if proteostasis is the underlying resilience pathway, silica NPs and 

iHg-exposed C. elegans would share features of the protein aggregation phenotype with aged 

C. elegans. To investigate this, we first used a transgenic C. elegans model for proteotoxic 

stress in muscle cells that allows the visualization of age-related induction of polyglutamine 

(polyQ) fibrillation (Morley et al., 2002). This strain expresses homopolymeric repeats of 35 
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glutamines fused to yellow fluorescent protein (Q35::YFP) in muscle cells of the body wall. 

Young Q35::YFP C. elegans showed a smooth fluorescent pattern along the muscle fibers 

which changes into an irregularly dotted pattern of polyQ aggregates with age (Morley et al., 

2002). We exposed Q35 animals on adult day 1 to 50 µM iHg or left them untreated (H2O) for 

24 hours. Untreated Q35 C. elegans showed a mostly smooth distribution of yellow 

fluorescence along the body wall muscles on adult day 2 (Figure 2A,B, S1), consistent with 

previously published observation (Morley et al., 2002). In contrast, exposure to iHg prematurely 

induced the dotted pattern of aggregated polyQ typical for animals older than adult day 3 

(Figure 2A,B, S1). Quantification of the fluorescent polyQ aggregates showed a significant 1.9-

fold increase in the number of aggregates after iHg exposure. This result indicates that iHg 

induces proteotoxic stress prematurely in young C. elegans, which is supported by the previous 

observations that iHg induces fibrillation of endogenous proteins in the nucleolus of intestinal 

cells in C. elegans as well as causes aggregation of nuclear proteins in human cells (Table 

S2). Notably, silica NPs induced the same age-related aggregation phenotype as we showed 

in a previous study (Table S2) (Scharf et al., 2016). In summary, the two candidate pollutants 

iHg and silica NPs induce widespread protein aggregation in young C. elegans that manifests 

on the local and global level representing a premature aggregation phenotype that normally 

develops during the intrinsic aging process.  

 

iHg-induced aggregome network  

 In a previous study, we identified the components of the silica NP-induced aggregome 

network in C. elegans via filter retardation assay and mass spectrometry (Scharf et al., 2016). 

To now characterize the iHg-induced aggregation network in order to compare the components 

to the silica NPs-induced aggregome network, wild-type day 1 adults were either left untreated 

(H2O) or treated with 50 µM iHg for 24 hours, lysed, and the SDS-insoluble protein fraction 

isolated via filter retardation assay (Scheme, Figure S2, (Scherzinger et al., 1997). This method 

specifically traps SDS-insoluble high molecular weight protein aggregates, also referred to as 

amyloid-like protein aggregates. The soluble fraction, including less stable amorphous protein 
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aggregates, passes through the 0.2 µm pores of cellulose acetate membranes, whereas the 

amyloid-like proteins are trapped (Wanker et al., 1999). In order to identify the amyloid-like 

proteins, we eluted and analyzed the trapped SDS-insoluble protein fraction via mass 

spectrometry, gene ontology (GO) analysis, and data mining. We identified 90 proteins that 

aggregated specifically in iHg-exposed C. elegans, whereas 57 proteins aggregated 

independently of iHg exposure (Figure 2C, Table S3). We defined these two groups of SDS-

insoluble proteins as mercury-specific aggregome and as ground state aggregome, 

respectively. Although proteins of the iHg-specific aggregome localized throughout the cell, 

proteins were mostly associated with the cytoplasm, nucleus, and membranes (Figure 2D). 

Interestingly, the nucleus showed the largest fraction of different insoluble proteins in the 

ground state and after iHg exposure. The insoluble fraction included many ribosomal proteins, 

but also prominent nucleolar proteins such as fibrillarin (FIB-1) (Table S3). GO analysis 

revealed that the iHg-induced aggregome network is enriched with proteins related to the 

biological functions of “metabolic processes” (17 out of 90 proteins) and “translation and RNA 

processing” (25 out of 90 proteins) (Figure 2E). Furthermore, proteins with the biological 

function of “proteolysis and stress-response” showed the largest increase with 650% after iHg 

exposure (Figure 2E,F). The two functional groups “translation and RNA processing” and 

“proteolysis and stress-response” can be combined as functional group “proteostasis”, 

accounting for over 42% of proteins identified in the iHg-specific aggregome.  

 Comparison with the previously described silica NP-induced aggregome network 

(Scharf et al., 2016) revealed 20 shared proteins that fibrillate after exposure to iHg and silica 

NPs (Figure 5, Table S3). In addition, both aggregome networks showed the largest 

enrichment of proteins with the biological functions “metabolic processes”, “translation and 

RNA processing”, and “proteolysis and stress-response”. Therefore, proteins that drive protein 

homeostasis (“translation and RNA processing” and “proteolysis and stress response” 

combined) showed the largest increase after exposure to silica NPs and iHg. Specifically, the 

chaperones HSP-6 and HSP-60 as well as the proteasome subunits RPN-2 and RPN-3 were 

shared components of both aggregomes. These proteins are essential for maintaining the 
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proteostasis and likely sequester to microenvironments in the cell to dissolve protein 

aggregations. In addition, many proteins that are essential for the first steps of proteostasis 

such as protein translation were also part of the aggregomes. While chaperones and 

proteasomes may be functional components of the amyloid-like protein aggregates (Chen et 

al., 2008), proteins necessary for protein synthesis are most likely dysfunctional in their 

amyloid-like protein state. As a consequence, fine-tuned cellular and organismal proteostasis 

is disturbed. This result supports the hypothesis of proteostasis as a central resilience pathway 

controlling lifespan and aging.  

 

Age-induced aggregome-network 

 Next, we asked whether iHg and silica NPs (1) accelerate age-related aggregation of 

proteins or (2) induce the insolubility of a specific set of proteins that are different from the age-

induced aggregome. In order to answer this question, we analyzed age-induced insoluble 

protein data sets from the literature. The Kenyon lab identified 461 proteins with an age-

dependent shift to an insoluble state using two temperature sensitive sterile strains: the gonad-

less mutant gon-2 and the germline-deficient mutant glp-1 at 25°C (David et al., 2010). The 

Lithgow and Hughes labs identified 203 proteins that shift age-dependently to an insoluble 

state by using the temperature sensitive sterile strain TJ1060 (spe-9(hc88)I; fer-15(b26)II) 

(Reis-Rodrigues et al., 2012). These two datasets shared 117 proteins that became insoluble 

in aged C. elegans (Figure 3E, Table S4,5). Both approaches used centrifugation-based 

separation of the insoluble and soluble protein fractions with SDS-containing buffers and 

resuspension with 70% formic acid. We reasoned that by using the amyloid-specific filter trap 

assay (Scherzinger et al., 1997) to analyze the aged aggregome network in wild-type C. 

elegans, we would add a dataset containing proteins that form age-dependent amyloid-like 

aggregates. Therefore, wild-type (N2) C. elegans were cultured on agar plates supplemented 

with FUdR to prevent egg hatching and lysed at adult day 1 (young) and adult day 12 (old). 

The SDS-insoluble protein fractions were isolated via filter retardation assay (Figure S2, 

Scherzinger et al., 1997) and analyzed by mass spectrometry. We identified 79 proteins that 
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aggregate specifically with old age, whereas 31 proteins are already insoluble in young animals 

(Figure 3A, Table S6). We defined these two groups as old age-specific aggregome and as 

ground aggregome respectively. Over 65% of the identified proteins of the old age-specific 

aggregome were enriched in the insoluble protein fractions reported in the David et al., 2010 

and Reis-Rodriguez et al., 2012 data sets. All three data sets shared 22 old age-induced 

insoluble proteins, seven of which play a role in proteostasis (Figure 3E, Table S4,5). Thus, 

comparative mass spectrometry based on different biochemical preparations clearly provides 

an added value by further clarification of the cellular pathways. Here, the comparative 

dissection of age-induced protein aggregates reveals proteostasis as a specific pathway of 

amyloid formation. 

 

Pollutant- and old age-induced aggregation phenotype  

 Next, we compared the old age-induced aggregome with the iHg-induced aggregome 

network and observed that proteins of both aggregomes localize throughout the cell. In 

agreement with the iHg-specific aggregome, the cytoplasm, nucleus, and membranes of the 

age-induced aggregome network showed the highest amount of age-induced insoluble 

proteins (Figure 3B). GO-analysis revealed that the old age-induced aggregome network was 

also enriched for proteins related to the biological functions of “proteolysis and stress-

response”, “metabolic processes”, and “translation and RNA processing” (Figure 3C). In 

contrast to the iHg- and silica NP-induced aggregome networks, proteins with the biological 

functions of “cellular organization” showed the largest increase with 750% of proteins in the 

SDS-insoluble amyloid-like protein fraction in old C. elegans compared to the ground state. 

While structural proteins such as the intermediate filament IFB-2 (human ortholog lamin B2) or 

IFC-2 (human orthologs include keratin 72,74,83) are not affected by xenobiotic-induced 

premature aging, they are an intrinsic part of the old age-induced aggregome network.  

 One possible explanation is that these structural proteins aggregate as a consequence 

of the age-related reduced capacity of chaperones and clearance machinery. The decline of 

the proteostasis network due to reduced expression (Ben-Zvi et al., 2009) and increased 
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sequestration of its components to protein aggregates with age causes an increasing solubility 

imbalance in the organism highlighted by the insolubility of structural proteins in the aged-

induced aggregome. In agreement, IFB-2 was identified as one of 10 age-dysregulated 

proteasomal targets, which mislocalizes into cytosolic protein aggregates linked to loss of 

intestinal integrity (Koyuncu et al., 2021). Further, knockdown of ifb-2 in adult C. elegans 

results in an increased lifespan and better intestinal health (Koyuncu et al., 2021). Future 

studies that include longitudinal experiments could time stamp the appearance of different 

functional protein groups in the insoluble fraction and allow construction of an insolubility time 

line. 

 We also compared the structural features of the proteins in old age-, iHg-, and silica 

NPs-induced aggregome networks (Figure 4). All three aggregome networks were enriched 

with proteins containing beta strands, cross-links, helices, nucleotide binding capacities and 

repeats. Only a few features were specific for a single aggregome. The old age-induced 

aggregome showed more DNA-binding proteins, whereas the xenobiotic-induced aggregomes 

exhibited an overrepresentation of zinc finger-containing proteins. Proteins with metal binding 

domains were only enriched in the iHg-induced aggregome. 

 Overall, all three aggregome networks showed many similarities including protein 

features and functional groups. Proteins that drive the protein homeostasis were the most 

enriched proteins in the old age-, iHg-, and silica NP-induced aggregome networks (Table 

S3,6, Figure 2,3,S3, S4 (Scharf et al., 2016)). This result supports the hypothesis that 

proteostasis represents a central resilience pathway, controlling lifespan. We showed that C. 

elegans exposed to iHg- and silica NPs prematurely induce an old age aggregome network, 

consistent with the idea that pollutants accelerate aging by corrupting the respective resilience 

pathways of intrinsic aging. 

 

Identification of super aggregation proteins 

 Given that the two pollutants studied, iHg and silica NPs, prematurely induce the same 

protein aggregation phenotype as intrinsic aging, we would expect that the same proteins 
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segregate into the aggregome network. Consistent with this, we found nine super aggregation 

proteins that were present in the iHg-, silica NP-, and age-induced aggregome networks 

(Figure 5, Table 1), suggesting the three aggregome networks are to more than 10% identical. 

The silica NPs- and iHg-aggregome networks shared 11 proteins, whereas 14 were shared 

between the iHg-induced and old aggregome network and 12 proteins were shared between 

the silica NPs-induced and the old aggregome network. 

 An alternative explanation for the identification of proteins with similar functions and 

even shared proteins in all three aggregomes could be their abundance in the tissues of C. 

elegans. To exclude that the identified proteins are just the highest expressed proteins under 

the different conditions, we first mined the mass spectrometry dataset from Walther et al., 2015 

for changes in abundance levels of proteins in old compared to young N2 C. elegans (Table 

1). AHCY-1 was the most abundant protein in day-1 C. elegans in the data set (Walther et al., 

2015) and was identified as insoluble protein in the ground aggregome here. In contrast, RPL-

30 was the second most abundant protein in adult day 1 C. elegans and 28th most abundant 

protein in adult day 12 worms (Walther et al., 2015), but was not identified in any aggregome. 

All nine super aggregation proteins ranked in the first 600 out of nearly 6000 proteins with 

abundance data in adult day 1 and adult day 12 C. elegans (Table 1). Nevertheless, 7 of the 

9 proteins are less abundant in 12-day old compared to 1-day old C. elegans (Table 1). This 

trend was confirmed with qPCR for the protein FIB-1 and HSP-60. Both proteins did not show 

any significant increase in mRNA expression after iHg-treatment, whereas HSP-6 exhibited a 

11-fold induction in mRNA expression (Figure S5). Although we concluded that the identified 

aggregomes do not simply reflect just the most abundant proteins, it is still possible that highly 

abundant insoluble proteins are more likely detected than less abundant insoluble proteins.  

 The nine super aggregation proteins were ART-1, the probable very-long-chain enoyl-

CoA reductase; HSP-6, a mitochondrial chaperone; FIB-1, the rRNA 2’-O-methyltransferase 

fibrillarin; DIM-1, the disorganized muscle-protein 1; LEC-1, a 32 kDa beta-galactoside-binding 

lectin; the unnamed protein F37C4.5; and the three ribosomal proteins RPL7/L7, RPL2/L8, and 

RPL22/L22 (Table 1). All of these proteins, with the exception of ART-1, were also identified 
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in the age-induced insoluble protein fraction of two temperature sensitive sterile strains: the 

gonad-less mutant gon-2 and the germline-deficient mutant glp-1 at 25°C (David et al., 2010), 

which validates the significance of these super aggregation proteins in the development of 

aggregome networks. Furthermore, all proteins, with the exception of F37C4.5 (orthologs are 

not known), have homologs in humans that are linked to human diseases (Table 1). The 

majority of these super aggregators are protein homeostasis proteins, which supports the 

hypothesis of proteostasis as a central resilience pathway controlling aging and lifespan.  

 Interestingly, experiments with HSP-6 and RPL-7, two proteostasis proteins, showed 

opposite effects on C. elegans lifespan in previous studies: hsp-6 RNAi reduced and HSP-6 

overexpression increased lifespan significantly (Kimura et al., 2007), whereas rpl-7 RNAi 

significantly increased the lifespan by more than 16% (Reis-Rodrigues et al., 2012). These 

results seem to be contradicting, but the functions of these two proteins can explain the 

different effects on lifespan. RPL-7 is a ribosomal protein that localizes in the nucleolus during 

ribosomal RNP subunit assembly and in the cytoplasm as part of ribosomes. While RPL-7 is 

normally abundant in the cell, it shows a 0.4 fold decreased relative abundance in the proteome 

of old worms compared to young worms (Table 1, Walther et al., 2015). Consequently, the 

appearance of RPL-7 as a super aggregation protein in induced aggregome networks is not 

just caused by abundance, although it is still the 35th most abundant protein in old worms 

(Walther et al., 2015). Ribosomal proteins are aggregation-prone due to unfolded extensions 

and basic regions that are essential for their interactions with rRNAs (Pillet et al., 2017). It 

seems likely that such a protein will fibrillate and drive protein aggregation once the 

proteostasis is misbalanced due to aging or pollutant stressors. Knockdown of rpl-7 via RNAi 

in adult animals reduces the abundance of RPL-7 without affecting the animals’ development 

and thereby decreases also the amount of RPL-7 that has the potential to fibrillate. As a 

consequence, rpl-7 RNAi reduces the burden of insoluble proteins and crowding effects in the 

nucleus/nucleolus (Vecchi et al., 2020), which results in an increased lifespan. In contrast to 

RPL-7, HSP-6 is a chaperone and part of the protein folding system of the organism (Ruan et 

al., 2020; Shin et al., 2021). HSP-6 is the mitochondrial HSP-70, highly conserved, and has 
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the ability to prevent aggregation (Bender et al., 2011). The protein is prone to self-aggregation 

with the important feature that aggregated mHSP70 preserves its chaperone function (Kiraly 

et al., 2020). Nevertheless, it seems likely that HSP-6 and other chaperones become part of 

the aggregome networks by binding to increasing amounts of misfolded and fibrillated proteins. 

Due to their sequestration into protein aggregation, these chaperones are unavailable for their 

physiological clients to assist them during folding and sustain a healthy proteome, a process 

called chaperone competition (Yu et al., 2019), creating a viscious cycle. Chaperones are 

occupied with the increasing pool of insoluble proteins and therefore unavailable for freshly 

synthesized proteins in need of folding support (Santra et al., 2019). These proteins join the 

pool of insoluble proteins and make chaperones even more necessary. Escape is impossible 

due to the dramatic decline of chaperone expression in early adulthood (Ben-Zvi et al., 2009). 

Consequently, the organism experiences widespread protein aggregation, protein dysfunction, 

and failure of organs and tissues with age (Santra et al., 2019), which can be  accelerated 

through pollutant exposure. 

 

Conclusion 

 The concept of environmentally-induced disease and premature death (Landrigan et 

al., 2018) is supported in the animal model C. elegans. Here, we show that the well-known 

xenobiotic iHg and the emerging pollutant silica NPs corrupt the same resilience pathways that 

normally preserve cellular homeostasis and thereby accelerate aging processes (Figure 6). 

Silica NPs accelerates global protein aggregation (Scharf, Piechulek, & von Mikecz, 2013) and 

reverse the genetic activation of resilience pathways through loss of function mutations in the 

daf-2 gene. The capacity of the proteostasis network to resolve misfolded and damaged 

proteins declines in early adulthood in C. elegans (Ben-Zvi et al., 2009) and causes an age-

related increase in protein aggregation manifested in an old age aggregation phenotype. The 

decline of the proteostasis network is most likely temporally fine-tuned to secure reproduction 

which peaks on day 2/3 of adulthood under normal condition (Scharf et al., 2021). This 

conclusion is supported by the observation, that most somatic age-related changes occur after 
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the decline of reproduction (Pickett et al., 2013). Exposure to pollutants such as iHg and silica 

NPs adds an additional proteotoxic stress to the declining proteostasis network. As a result, 

the fine-tuned resilience pathway reaches the tipping-point earlier resulting in premature 

aggregation phenotypes, accelerated somatic decline (Scharf et al., 2013; Piechulek et al., 

2019), and premature death of the animal.   

 The identified fibrillated proteins can be categorized in four different groups: (1) 

functional amyloid, (2) highly unstructured and “sticky”/aggregation-prone proteins, (3) 

components of the proteostasis network, (4) “victims” of failed proteome maintenance. (1) 

Functional amyloid proteins can form fibrillar aggregates as part of their executive function. For 

example, many RNA/DNA interacting proteins contain polyQ repeats that support the dynamic 

interaction at promoters during gene expression (von Mikecz, 2014). These proteins are 

sensitive to the crowding status of the cellular environments, and overcrowding can easily shift 

the balance to dysfunctional fibrillation. Proteins such as FIB-1 and many ribosomal proteins 

fit into this category. (2) By contrast, many of the identified proteins exhibit unstructured regions 

or protein features that are aggregation-prone and result in pathological fibrillation in the 

absence of a functional proteostasis network. Interestingly, HSP-6 and proteasome subunits 

belong in this category. (3) Components of the proteostasis network such as chaperones or 

the proteasome bind to fibrillated proteins in order to restore functional folding, therefore, 

sequestration to local protein aggregation environments is part of their function. (4) Finally 

“victims” of failed proteome maintenance are proteins that are normally refolded and/or 

cleared, but remain in their cellular environment due to missing proteostasis network 

capacities. Proteins such as IFB-1 fall into this category and are more specifically associated 

with the age induced-aggregome. Proteins of all four groups constitute the amyloid protein 

fibrillation landscape spanning from facilitation of functional protein interactions to pathological 

aggregates (von Mikecz, 2009; Lashuel, 2021). Consistent with this, deciphering the 

proteomes of intrinsic vs pollutant-induced aging has the potential to advance translational 

research in neurodegenerative diseases where age is the prominent risk factor.  
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 We show that pollutants corrupt resilience pathways of intrinsic aging. As a result, 

pollutants negatively affect the same prevention pathways of aging that are targeted by 

possible anti-aging therapeutics such as HSP90 inhibitors (Janssens et al., 2019). Thus, 

controlling and reducing pollution is an effective strategy for aging and disease prevention. 

 

Materials and methods: 

Worm strains, cultivation, and exposure to pollutants: 

 C. elegans were cultured at 20°C with E. coli OP50 as food source on standard NGM 

plates or in S-Medium as indicated. For all experiments, nematodes were synchronized by 

isolating eggs with hypochlorite/NaOH. For lifespans and aged populations, nematodes were 

cultured with supplemental FUdR from L4 larval stage to maintain synchronization. Nematodes 

were exposed on adult day 1 (24h after L4) to 0.02 or 1.25 mg/mL 50 nm silica NPs (Kisker, 

Steinfurt, Germany) or 10, 25, or 50 µM iHg, e.g., mercuric chloride (HgCl2). Silica NPs 

properties were previously analyzed by dynamic light scattering and live cell imaging and 

described (Hemmerich and von Mikecz, 2013; Scharf et al., 2013). The following strains were 

provided by the Caenorhabditis Genetics Center (funded by NIH Office of Research 

Infrastructure Programs (P40 OD010440)) and used where indicated: Wild type N2; DR1572 

daf-2(1368); CF1038 daf-16(mu86); AM140 rmIs132 [unc-54 p::Q35::YFP] (Morley et al., 

2002). 

 

Life span assays  

 Life span assays were performed as previously described (Petrascheck et al., 2007; 

Piechulek & von Mikecz, 2018). Briefly, approximately ten age-synchronized C. elegans were 

seeded as L1/L2 larvae in 96- well plates containing S-media and 6 mg/ mL E. coli OP50. To 

maintain worms age-synchronized, FUdR was added (1.5 mM final concentration, Sigma) at 

the L4 larval stage. On adult day 1, worms were left untreated or treated with particles or 

mercury at concentrations as indicated. Living animals were scored every second day with a 

dissecting scope. 67–262 worms were tested per group per experiment. Weibull plot was 
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applied to the data of the survival analyses, e.g. curve fitting of the Kaplan-Meier survival 

curves.  

 

Mass spectrometry (LC-ESI-MS) 

 Characterization of C. elegans aggregomes were performed as previously reported 

(Arnhold et al., 2015; Scharf et al., 2016). Exposed nematodes were lysed in SDS-lysis buffer 

(150mM NaCl, 10mM Tris-HCL pH8, 2% SDS, protease inhibitor) and SDS-insoluble proteins 

were separated from the soluble protein fraction via filter retardation assay (Scharf et al., 2013). 

The SDS-insoluble protein fraction was eluted from cellulose acetate membranes with 6M 

guanidinium hydrochloride (GuaHCl). Dithiothreitol (DTT) was added to the GuaHCl solution 

to a final concentration of 10 mM and samples were incubated for one hour at room 

temperature. After addition of iodoacetamide to a final concentration of 20 mM and incubation 

for one hour at room temperature in the dark, samples were equilibrated to trypsin digestion 

condition by multiple cycles of ultrafiltration (MWCO=5000 Da, Microcon, Millipore) and buffer 

exchange against trypsin digestion buffer (8% acetonitrile in 25 mM ammonium bicarbonate). 

The sample solutions were digested with 15 ng trypsin overnight, dried in a rotary evaporator, 

dissolved in 20 μl 0.1% formic acid (FA) in 5% acetonitrile, centrifuged for 2 min (14,000 rpm) 

and the supernatants were transferred to a polypropylene-sample vial. Five μl of each sample 

were analyzed by MS and where necessary the remaining 15 μl were used for one additional 

measurement. 

For mass spectrometry, the LTQ Orbitrap XL ETD (Thermo Scientific) coupled to a nano-HPLC 

NanoLC 2D System AS 1 (Eksigent) was used. The samples were loaded onto a trap column 

(Robust Reversed Phase Solid Phase Extraction Trap 100 μm × 40 mm, NanoSeparations) 

and washed with 30 μl buffer A (5% acetonitrile/0.1% formic acid). The bound analytes were 

transferred to a separation column (75 μm×100 mm,NanoSeparations) by applying a linear 

gradient from 0 to 38% of buffer B (80% acetonitrile/0.1% formic acid) over 76 min. 

The measured spectra (DDA, top 8, ion trap) were processed by ProteomeDiscoverer 1.4 

(ThermoScientific) and searched against the SwissProt (December 2015) database by Mascot 
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(MatrixScience). The following search parameters were used in all searches: enzyme - trypsin 

with two allowed miss cleavages; fixed modification - carbamidomethylation of cysteine; 

variable modification - oxidation of methionine, phosphorylation of serine and threonine; 

measurement precision of precursor ions - 10 ppm; measurement precision of fragment ions - 

0.5 Da. 

Data compilation was performed by Scaffold 4 (Proteome Software) using the Mascot dat files 

and the msf files of ProteomeDiscoverer 1.4 of the measurements. The following parameters 

were used for the evaluation by Scaffold: Protein Grouping Strategy: Experiment-wide 

grouping with binary peptide-protein weights, Peptide Thresholds: 95,0% minimum, Protein 

Thresholds: 99,0% minimum and 2 peptides minimum, Peptide FDR: 0,0% (Decoy), Protein 

FDR: 0,0% (Decoy). 

 

Aggregome analysis 

For the age-induced agregome, proteins that were identified in 2 out of 4 biological replicates 

were subjected to further analysis (Table S3), whereas for the iHg-induced aggregome, 

proteins identified in the 3 biological were pooled (Table S6) . Identification and analysis of 

candidates for the silica NPs-induced aggregome were previously reported (Scharf et al., 

2016).  For further characterization, the identified aggregome candidates were analyzed by 

data mining of the following databases: PANTHER (Mi et al., 2013), UniProt (Bateman et al., 

2021), and WormBase (Harris et al., 2020), and MalaCards (Rappaport et al., 2017). 

Specifically, each identified insoluble protein was categorized according to its biological 

process classified using the PANTHER database, UniProt, WormBase, and literature. 

Structural protein feature were analyzed as previously described (Arnhold et al., 2015). Briefly, 

structural feature information for each aggregome network were extracted from the UniProt 

database and percentage of aggregome network proteins with beta-strands, coiled-coil, cross-

link, DNA binding, disulfide bonds, helices, metal binding feature, nucleotide binding feature, 

repeats, and zinc fingers was calculated, respectively. Then, statistical over- or 
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underrepresentation was calculated by comparing to the average percentage of proteins in the 

total C. elegans genome with each feature. 

For the comparative MS data analysis of aged aggregomes, SDS- insoluble data sets from two 

previously publications (David et al., 2010; Reis-Rodrigues et al., 2012) were compared to the 

identified age-induced aggregome network of this study (Table S4,5). In addition, the 

proteomic data set published in Walther et al., (2015) were used for analysis of protein 

abundances. 

 

Microscopy and Quantification of polyQ aggregates 

C. elegans expressing repeats of 35 glutamines fused to yellow fluorescent protein in body 

wall muscle cells (AM140 rmIs132 [unc-54 p::Q35::YFP] (Morley et al., 2002)) were exposed 

to iHg or mock(H2O)-treated on adult day 1. After 24 hours, living hermaphrodites were imaged 

on 5% agarose pads/10 µM NaN3 with a 60x/1.4NA Plan Apo objective. Fluorescence 

quantifications was performed as described previously (Scharf et al., 2016). 

 

Statistical Analysis: 

Student’s t test was used to determine statistical significance with a p value below 0.05. The 

two parameters for the Weibull distribution were estimated to fit median survival function.  
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Figure 1. Environmental stressors rescale C. elegans lifespans. (A-F) Animals were cultured 

in S-medium with OP50 as food source and supplemented with FUDR to prevent larval hatching. 

(A) Representative survival curves for wild type (N2) exposed to silica NPs from adult day 1 as 

indicated. See table S1 for summary statistics. (B) Representative survival curves for wild type 

N2 exposed to iHg from adult day 1 as indicated. See table S1 for summary statistics. (C) 

Representative survival curves for daf-2 (e1368) exposed to silica NPs from adult day 1 as 

indicated. See table S1 for summary statistics. (D) Representative survival curves for daf-16 
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(mu86) exposed to silica NPs from adult day 1 as indicated. See table S1 for summary statistics. 

(E) Representative survival curves for wild type N2, daf-2 (e1368), daf-16 (mu86) exposed to 

silica NPs from adult day 1 as indicated. See table S1 for summary statistics. (F) The blue, 

grayscale and red (Weibull) lines represent maximum-likelihood estimation (MLE) fits of the 

parametric model using data up to median survival. 
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Figure 2. Inorganic mercury accelerates protein fibrillation in adult C. elegans. (A) 

Representative fluorescent micrographs of 2-day old, adult hermaphrodites of a C. elegans 

proteotoxic stress model that expresses homopolymeric repeats of 35 glutamines fused to yellow 

fluorescent protein (Q35::YFP) in body wall muscle cells (Morley et al., 2002). Hermaphrodites 

were mock-treated or exposed to 50 µM iHg for 24 hours. Bar, 100 µM. (B) Respective 

quantification of the increase in Q35-YFP aggregates per hermaphrodite compared to control. 
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Values represent +/- SD of three independent experiments with n>90 for each treatment. 

Student’s t test p<0.05 for H2O versus iHg. (C) Venn-diagram of the insoluble protein fraction of 

24-hour mock-treated or iHg-exposed wild type C. elegans. We defined proteins that aggregate 

specifically in iHg-exposed C. elegans as iHg-specific aggregome and all other SDS-insoluble 

proteins as ground state aggregome respectively. (D) Cellular localization of iHg-induced 

insoluble proteins. The numbers indicate the number of identified candidate proteins associated 

with each cellular subcellular compartment according data mining of the PANTHER database (Mi 

et al., 2013), UniProt (Bateman et al., 2021), and WormBase (Harris et al., 2020). (E) GO analysis 

of the ground and iHg-induced aggregome. Each identified insoluble protein was categorized 

according to its biological process classified using the PANTHER database, UniProt, WormBase, 

and literature. The graph presents the absolute number of identified SDS-insoluble proteins per 

biological process category. The percentage indicates the change in the number of identified 

proteins in the respective functional group in the ground versus the iHg-induced aggregome 

network. (F) The functional group protein folding, proteolysis, and stress responds shows the 

highest increase in insoluble proteins in iHg-exposed C. elegans as illustrated in the pie chart.  
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Figure 3. Age-related amyloid protein fibrillation in C. elegans. (A) Venn-diagram of the 

insoluble protein fraction of 1- (young) and 12-day (old) adult wild type C. elegans. We defined 

proteins that aggregate specifically in 12-day old adult C. elegans as age-specific aggregome and 

all other SDS-insoluble proteins as ground state aggregome respectively. (B) Cellular localization 

of age-induced insoluble proteins. The numbers indicate the number of identified candidate 

proteins associated with each cellular subcellular compartment according data mining of the 
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PANTHER database (Mi et al., 2013), UniProt (Bateman et al., 2021), and WormBase (Harris et 

al., 2020). (C) GO analysis of the ground and age-induced aggregome. Each identified insoluble 

protein was categorized according to its biological process classified using the PANTHER 

database, UniProt, WormBase, and literature. The graph presents the absolute number of 

identified SDS-insoluble proteins per biological process category. The percentage indicates the 

change in the number of identified proteins in the respective functional group in the ground versus 

the age-induced aggregome network. (D) The change of the functional group protein folding, 

proteolysis, and stress responds in young versus old C. elegans is illustrated in the pie chart. (E) 

Comparative mass spectrometry based on different biochemical preparations: Venn diagram of 

insoluble proteins identified in David et al., 2010 and Reis-Rodrigues et al., 2012 compared to the 

amyloid-like protein aggregates identified in this study. 
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Figure 4. Shared structural protein feature of aggregome networks. Analysis of structural 

protein features of the (A) iHg-, (B) silica NPs- (Scharf et al., 2016), and (C) age-induced 

aggregomes based on the UniProt database (Bateman et al., 2021). The identified fibrillated 

proteins show a statistical overrepresentation in beta strands, cross links, helices, and nucleotide 

binding. Metal binding is only overrepresented in the iHG-induced aggregome, and zinc fingers 

are absent from the age-induced aggregome. 
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Figure 5. Identification of 9 super aggregators shared between aggregomes. (A) Venn 

diagram of insoluble proteins of the iHg-, silica NPs- (Scharf et al., 2016), and the age-induced 

aggregome. (B) All three aggregomes share 9 super aggregator proteins: HSP-6, FIB-1, RPL-2, 

RPL-7, RPL-22, ART-1, LEC-1, DIM-1, and F37C4.5. Shared identified insoluble proteins 

between (C) the silica NPs- and the age-induced aggregome, (D) iHg- and the age-induced 

aggregome, and (E) between the iHg- and silica NPs-induced aggregome. 
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Figure 6. Pollutants hijack resilience pathways of intrinsic aging. The schematic shows how 

negative interventions and positive interventions change the fibrillation status of an organism and 

affect its aging rate. We propose that genetic interventions such as daf-16 and daf-2 loss of 

function mutations, anti-aging treatments such as HSP-90 inhibitors, or pollution such as the well-

known pollutant iHg as well as the emerging pollutant silica NP affect the same resilience 

pathways that normally preserve cellular homeostasis and thereby accelerate or delay aging 

processes. As a conclusion, reducing pollution and controlling the synthesis of new compounds 

has to be an important part of an effective strategy to support healthy aging. 
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Table 1. Super Aggregators are identified in the iHg-, silica NPs-, and age-specific aggregome. 

Gene 
name

1 
Protein2 

GO 
biological 
process3 

Cellula
r 

Locali
sation

4 

(Reis-
Rodri
gues 
et al., 
2012)

5 

(David 
et al., 
2010)6 

Rank 
abundant 
protein7 

Fold 
expression 
day12/day18 

Human homolog9 Human disease10 

art-1 

Probable 
very-long-

chain enoyl-
CoA 

reductase 

metabolic 
processes ER - - 355 -0.5 

TECR (trans-2,3-
enoyl-CoA 
reductase) 

autosomal recessive non-syndromic intellectual 
disability and catecholaminergic polymorphic 

ventricular tachycardia 3. 

dim-1 
Disorganized 

muscle 
protein 1 

muscle cyto - 4.1 fold 201 0.5 MYPN (myopalladin) dilated cardiomyopathy and nemaline 
myopathy 11,  Myopathy, 

F37C4
.5 ND ND ND - 3.1 fold 151 2.7   

fib-1 

rRNA 2'-O-
methyltransf

erase 
fibrillarin 

translation, 
rRNA 

metabolic 
process 

nu - 3.6 fold 231 -0.5 FBL (fibrillarin) 

Systemic sclerosis, Skleroderma, Myositis, 
Myopathy, Connective Tissue Disease, 

Dyskeratosis Congenita, Spinal Muscular 
Atrophy, Telangiectasis, Retinitis Pigmentosa, 

hsp-6 Heat shock 
protein 

protein 
folding, 

proteolysis, 
stress 

response 

mito yes, 
yes 7.4 fold 204 -0.1 

HSPA9 (heat shock 
protein family A 

(Hsp70) member 9) 

autosomal dominant sideroblastic anemia 4, 
Even-Plus Syndrome, Parkinson Disease, Late-
Onset, 1  Friedreich Ataxia, Codas Syndrome, 

Myositis Ossificans, Alternating Esotropia 

lec-1 
32 kDa beta-
galactoside-
binding lectin 

extracelluar 
Matrix extra - 4.6 fold 432 0.4 

LGALS9 (galectin 9); 
LGALS9B (galectin 
9B); and LGALS9C 

(galectin 9C) 

Cone-Rod Dystrophy 2, Systemic Lupus 
Erythematosus, Rheumatoid Arthritis, 

rpl-2 
60S 

ribosomal 
protein L8 

translation, 
rRNA 

metabolic 
process 

nu, cyto - 7.4 fold 38 -0.4 RPL8 (ribosomal 
protein L8) 

Cystic Renal Dysplasia, Spermatogenic Failure 
1&2 

rpl-22 
60S 

ribosomal 
protein L22 

translation, 
rRNA 

metabolic 
process 

nu, cyto - 4.4 fold 55 -0.3 RPL22 (ribosomal 
protein L22) 

Myelodysplastic Syndrome, Diamond-Blackfan 
Anemia 

rpl-7 
60S 

ribosomal 
protein L7 

translation, 
rRNA 

metabolic 
process 

nu, cyto yes, 
yes 5.5 fold 35 -0.4 RPL7 (ribosomal 

protein L7) 
Systemic Lupus Erythematosus, Diamond-

Blackfan Anemia 

 

1 Gene name according to WormBase (Harris et al., 2020). 
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2 Protein according to PANTHER, UniProt, or WormBase database. 

3 GO biological process: classified according PANTHER database. Additional UniProt, Wormbase and Literature mining. 

4 Cellular Localisation accoding PANTHER, UniProt, or WormBase database. 

5 Candidate of age-specific aggregome identified, lifespan prolonged if mutated/knockdown via RNAi (Reis-Rodrigues et al., 2012). 

6 Candidate of age-specific aggregome identified in (David et al., 2010). 

7 All proteins characterized in Walther et al., 2015 were ranked according their abundance on day 12. 

8 Relative abundance values of proteins on day 12 compared to day 1 according the data set published in Walther et al., (2015). 

9 Human homolog according to WormBase. 

10 Human disease according to WormBase and MalaCards data bases. 
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