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Abstract: Determining the forces that shape diversity in host-associated bacterial
communities is critical to understanding the evolution and maintenance of
metaorganisms. To gain deeper understanding of the role of host genetics in shaping gut
microbial traits, we employed a powerful genetic mapping approach using inbred lines
derived from the hybrid zone of two incipient house mouse species. Further, we
uniquely performed our analysis on microbial traits measured at the gut mucosal
interface, which is in more direct contact with host cells and the immune system. A high
number of mucosa-associated bacterial taxa have significant heritability estimates;
heritabilities are greater for 16S rRNA transcript- compared to gene copy-based traits,
and interestingly, are positively correlated with cospeciation rate estimates. Genome-
wide association mapping identifies 443 loci influencing 123 taxa, with narrow genomic
intervals pinpointing promising candidate genes and pathways. Importantly, we
identified an enrichment of candidate genes associated with several human diseases,
including inflammatory bowel disease, and functional categories including innate
immunity and G-protein-coupled receptors. These results highlight key features of the
genetic architecture of mammalian host-microbe interactions and how they diverge as
new species form.

 

Keywords: microbiome; GWAS; cospeciation; codiversification; hybridization;
phylosymbiosis
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Introduction

The recent widespread recognition of the gut microbiome’s importance to host
health and fitness represents a critical advancement of biomedicine. Host phenotypes
affected by the gut microbiome are documented in humans (Ley et al., 2006; Turnbaugh
et al., 2009; Lynch and Pedersen, 2016), laboratory animals (Backhed et al., 2004;
Turnbaugh et al., 2008; Rolig et al., 2015; Rosshart et al., 2017; Gould et al., 2018), and
wild populations (Suzuki, 2017; Roth et al., 2019; Suzuki et al., 2020; Hua et al., 2020),
and include critical traits such as aiding digestion and energy uptake (Rowland et al.,
2018), and the development and regulation of the immune system (Davenport, 2020). 

Despite the importance of gut microbiome, community composition varies
significantly among host species, populations, and individuals (Benson et al., 2010;
Yatsunenko et al., 2012; Brooks et al., 2016; Rehman et al., 2016; Amato et al., 2019).
While a portion of this variation is expected to be selectively neutral, alterations of the
gut microbiome are on the one hand linked to numerous human diseases (Carding et al.,
2015; Lynch and Pedersen, 2016) such as diabetes (Qin et al., 2012), inflammatory bowel
disease (IBD) (Ott et al., 2004; Gevers et al., 2014) and mental disorders (Clapp et al.,
2017). On the other hand, there is evidence that the gut microbiome can play an
important role in adaptation on both recent- (Hehemann et al., 2010; Suzuki and Ley,
2020) and ancient evolutionary timescales (). Collectively, these phenomena suggest that
it would be evolutionarily advantageous for hosts to influence their microbiome.

An intriguing observation made in comparative microbiome research in the last
decade is that the pattern of diversification among gut microbiomes appears to mirror
host phylogeny (Ochman et al., 2010). This phenomenon, coined “phylosymbiosis”
(Brucker and Bordenstein, 2012a; Brucker and Bordenstein, 2012b; Lim and Bordenstein,
2020), is documented in a number of diverse host taxa (Brooks et al., 2016) and also
extends to the level of the phageome (Gogarten et al., 2021). Several non-mutually
exclusive hypotheses are proposed to explain phylosymbiosis (Moran and Sloan, 2015).
However, it is likely that vertical inheritance is important for at least a subset of taxa, as
signatures of co-speciation/-diversification are present among numerous mammalian
associated gut microbes (Moeller et al., 2016; Groussin et al., 2017; Moeller et al., 2019),
which could also set the stage for potential coevolutionary processes. Importantly,
experiments involving interspecific fecal microbiota transplants indeed provide
evidence of host adaptation to their conspecific microbial communities (Brooks et al.,
2016; Moeller et al., 2019). Further, cospeciating taxa were observed to be significantly
enriched among the bacterial species depleted in early onset IBD, an immune-related
disorder, suggesting a greater evolved dependency on such taxa (Papa et al., 2012;
Groussin et al., 2017). However, the nature of genetic changes involving host-microbe
interactions that take place as new host species diverge remains under-explored.   

House mice are an excellent model system for evolutionary microbiome research, as
studies of both natural populations and laboratory experiments are possible (Suzuki,
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2017; Suzuki et al., 2019). In particular, the house mouse species complex is comprised of
subspecies that hybridize in nature, enabling the potential early stages of
codiversification to be studied. We previously analyzed the gut microbiome across the
central European hybrid zone of Mus musculus musculus and M. m. domesticus (Wang et
al., 2015), which share a common ancestor ~ 0.5 million years ago (Geraldes et al., 2008).
Importantly, transgressive phenotypes (i.e. exceeding or falling short of parental values)
among gut microbial traits as well as increased intestinal histopathology scores were
common in hybrids, suggesting that the genetic basis of host control over microbes has
diverged (Wang et al., 2015). The same study performed an F2 cross between wild-
derived inbred strains of M. m. domesticus and M. m. musculus and identified 14
quantitative trait loci (QTL) influencing 29 microbial traits. However, like classical
laboratory mice, these strains had a history of rederivation and reconstitution of their
gut microbiome, thus leading to deviations from the native microbial populations found
in nature (Rosshart et al., 2017; Org and Lusis, 2018), and the genomic intervals were too
large to identify individual genes.

In this study, we employed a powerful genetic mapping approach using inbred
lines directly derived from the M. m. musculus - M. m. domesticus hybrid zone, and
further focus on the mucosa-associated microbiota due to its more direct interaction
with host cells (Fukata and Arditi, 2013; Chu and Mazmanian, 2013), distinct functions
compared to the luminal microbiota (Wang et al., 2010; Vaga et al., 2020), and greater
dependence on host genetics (Spor et al., 2011; Linnenbrink et al., 2013). Previous
mapping studies using hybrids raised in a laboratory environment showed that high
mapping resolution is possible due to the hundreds of generations of natural admixture
between parental genomes in the hybrid zone (Turner and Harr, 2014; Pallares et al.,
2014; Škrabar et al., 2018). Accordingly, we here identify 443 loci contributing to
variation in 123 taxa, whose narrow genomic intervals (median <2Mb) enable many
individual candidate genes and pathways to be pinpointed. We identify a high
proportion of bacterial taxa with significant heritability estimates, and find that bacterial
phenotyping based on 16S rRNA transcript compared to gene copy-based profiling
yields an even higher proportion. Further, these heritability estimates also significantly
positively correlate with cospeciation rate estimates, suggesting a more extensive host
genetic architecture for cospeciating taxa. Finally, we identify numerous enriched
functional pathways, whose role in host-microbe interactions may be particularly
important as new species form. 
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Results

Microbial community composition

To obtain microbial traits for genetic mapping in the G2 mapping population, we
sequenced the 16S rRNA gene from caecal mucosa samples of 320 hybrid male mice
based on DNA and RNA (cDNA), which reflect bacterial cell number and activity,
respectively. After applying quality filtering and subsampling 10,000 reads per sample,
we identified a total of 4684 amplicon sequence variants (ASVs). For further analyses,
we established a "core microbiome" (defined in Methods), such that analyses were
limited to those taxa common and abundant enough to reveal potential genetic signal.
The core microbiome is composed of four phyla, five classes, five orders, eleven families,
27 genera, and 90 ASVs for RNA, and four phyla, five classes, six orders, twelve families,
28 genera and 46 ASVs for DNA. A combined total of 98 unique ASVs belong to the core,
of which 38 were shared between DNA and RNA (Suppl. Fig. 1). The most abundant
genus in our core microbiome is Helicobacter (Suppl. Fig. 2), consistent with a previous
study of the wild hybrid M. m. musculus/M. m. domesticus mucosa-associated
microbiome (Wang et al., 2015).

Correlation between host genetic relatedness and microbiome structure

To gain a broad sense of the contribution of genetic factors to the variability of
microbial phenotypes in our mapping population, we compared the kinship matrix
based on genotypes to an equivalent based on gut microbial composition, whereby ASV
abundances were used as equivalents of gene dosage. We found a significant correlation
between these matrices (P = .001; Suppl. Fig. 3), indicating a host genetic effect on the
diversity of the gut microbiota.

SNP-based heritability

Next, we used a SNP-based approach to estimate the proportion of variance
explained (PVE) of the relative abundance of taxa, also called the narrow-sense
heritability (h2) or SNP-based heritability. Out of the 153 total core taxa, we identified 46
taxa for DNA and 69 taxa for RNA with significant heritability estimates (PRLRT < .05),
with estimates ranging between 29 and 91% (see Fig. 1A-B and Suppl. Table 1). An
unclassified genus belonging to the phylum Bacteroidetes followed by ASV7 (genus
Paraprevotella), Paraprevotella and Paraprevotellaceae showed the highest heritability
among DNA-based traits (91.8%, 88.8%, 88.8%, and 87.1%, respectively; Fig. 1A), while
ASV97 (genus Oscillibacter), followed by Prevotellaceae, Paraprevotella and ASV7
(Paraprevotella) had the highest heritability among RNA-based traits (86.6%, 85.7%,
85.7%, and 85.6%, resp.; Fig. 1B). The heritability estimates for DNA- and RNA-based
measurements of the same taxa are significantly correlated (P = 5.013 x 10-8, R2=0.58,
Suppl. Fig. 4), and neither measure appears to be systematically more heritable than
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another, i.e. some taxa display higher RNA-based heritability estimates and others
higher DNA-based estimates.

Heritability estimates are correlated with predicted co-speciation rates

In an important meta-analysis of the gut microbiome across diverse mammalian
taxa, Groussin et al. (2017) estimated co-speciation rates of individual bacterial taxa by
measuring the congruence of host and bacteria phylogenetic trees relative to the number
of host-swap events. We reasoned that taxa with higher co-speciation rates might also
demonstrate higher heritability, as these more intimate evolutionary relationships would
provide a greater opportunity for genetic aspects to evolve. Intriguingly, we observe a
significant positive correlation for RNA-based traits (P= .008, R2=.46, Fig. 1D) and a
similar trend for DNA (P= 0.1; Fig. 1C). These results support the notion that
cospeciating taxa evolved a greater dependency on host genes, and further suggest that
bacterial activity may better reflect the underlying biological interactions.

Taxonomic level

ASV
Genus
Family
Order
Class
Phylum

ASV115 (unclassified Lachnospiraceae)
ASV23 (Eisenbergiella)
ASV173 (Acetatifactor)

Marvinbryantia
ASV82 (unclassified Ruminococcaceae)

ASV238 (Marvinbryantia)
ASV108 (Butyricicoccus)

ASV243 (unclassified Prevotellaceae)
unclassified Prevotellaceae

ASV101 (Oscillibacter)
ASV248 (unclassified Lachnospiraceae)
ASV38 (unclassified Lachnospiraceae)

unclassified Ruminococcaceae
ASV32 (unclassified Lachnospiraceae)

unclassified Deltaproteobacteria
ASV21 (Alistipes)

ASV26 (Oscillibacter)
ASV102 (unclassified Lachnospiraceae)

ASV91 (Clostridium XlVa)
ASV47 (unclassified Lachnospiraceae)

ASV212 (unclassified Clostridiales)
ASV50 (unclassified Lachnospiraceae)

ASV181 (Lactobacillus)
Bacteroidia

Bacteroidales
ASV31 (Lactobacillus)
ASV20 (Lactobacillus)

Bacteroidetes
ASV124 (unclassified Clostridiales)

Eisenbergiella
ASV135 (unclassified Bacteroidales)

ASV3 (Helicobacter)
unclassified Porphyromonadaceae

ASV17 (Eisenbergiella)
ASV126 (unclassified Lachnospiraceae)

Lactobacillales
Lactobacillaceae

Lactobacillus
SV4 (Lactobacillus)
SV36 (Oscillibacter)

ASV22 (Bacteroides)
ASV264 (Alistipes)

ASV97 (Oscillibacter)
Prevotellaceae
Paraprevotella

ASV7 (Paraprevotella)
unclassified Bacteroidetes

0.00 0.25 0.50 0.75 1.00
Heritability estimate

A

Campylobacterales
ASV281 (unclassified Lachnospiraceae)
ASV248 (unclassified Lachnospiraceae)
ASV115 (unclassified Lachnospiraceae)
ASV47 (unclassified Lachnospiraceae)

ASV63 (Oscillibacter)
ASV21 (Alistipes)

ASV23 (Eisenbergiella)
ASV12 (Eisenbergiella)

Clostridia
Clostridiales

ASV99 (Clostridium XlVa)
ASV29 (unclassified Deltaproteobacteria)

ASV70 (Odoribacter)
ASV32 (unclassified Lachnospiraceae)

ASV82 (unclassified Ruminococcaceae)
unclassified Bacteroidales
unclassified Bacteroidales

ASV6 (Mucispirillum)
ASV50 (unclassified Lachnospiraceae)

ASV102 (unclassified Lachnospiraceae)
Firmicutes

Clostridium XlVa
unclassified Deltaproteobacteria

Bacteroidia
Bacteroidales

ASV13 (Mucispirillum)
ASV77 (unclassified Lachnospiraceae)

ASV212 (unclassified Clostridiales)
ASV101 (Oscillibacter)

unclassified Clostridiales
unclassified Clostridiales

Lachnospiraceae
Alistipes

Anaerostipes
ASV79 (Anaerostipes)

Rikenellaceae
Porphyromonadaceae

Odoribacter
Bacteroidetes

ASV238 (Marvinbryantia)
Ruminococcaceae

ASV2 (Helicobacter)
ASV229 (Clostridium XlVa)

ASV108 (Butyricicoccus)
Eisenbergiella

Bacilli
Lactobacillales

Lactobacillaceae
Lactobacillus

ASV4 (Lactobacillus)
ASV26 (Oscillibacter)

ASV20 (Lactobacillus)
ASV31 (Lactobacillus)
ASV52 (Odoribacter)

ASV91 (Clostridium XlVa)
Oscillibacter

ASV1 (Helicobacter)
ASV264 (Alistipes)

unclassified Prevotellaceae
ASV45 (unclassified Lachnospiraceae)
ASV243 (unclassified Prevotellaceae)

unclassified Bacteroidetes
ASV135 (unclassified Bacteroidales)

ASV22 (Bacteroides)
ASV36 (Oscillibacter)

ASV7 (Paraprevotella)
Paraprevotella
Prevotellaceae

ASV97 (Oscillibacter)

0.00 0.25 0.50 0.75 1.00
Heritability estimate
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Figure 1: (A-B) Heritability estimates for the relative abundance of bacterial taxa. Proportion
of variance explained for each taxon on DNA level (A), and RNA level (B) for all SNPs (GRM) in
green, mating pair identifier in blue and residual variance in grey. Only significant heritability
estimates are shown (P < .05). The text labels on the y-axis are colored according to taxonomic
level: ASV in black, genus in purple, family in light blue, order in red, class in green, and phylum
in yellow. (C-D) Relationship between the heritability estimates for the relative abundance of
bacterial taxa and co-speciation rate for the same genus calculated by Groussin et al. (2017). DNA
level (C), and RNA level (D). The blue line represents a linear regression fit to the data and the
grey area the corresponding confidence interval. 

Genetic mapping of host loci determining microbiome composition

Next, we performed genome-wide association mapping of the relative abundances
of core taxa, in addition to two alpha-diversity measures (Shannon and Chao1 indices),
based on 32,625 SNPs. We included both additive and dominance terms in the model to
enable the identification of under- and over-dominance (see Methods). While we found
no significant associations for alpha diversity at either the DNA or RNA level (P > 1.53 ×
10-6), a total of 1099 genome-wide significant associations were identified for individual
taxa (P < 1.53 × 10-6, Suppl. Table 2), of which 443 achieved study-wide significance (P
< 1.29 × 10-8). Apart from the X chromosome, all autosomal chromosomes contained

study-wide significant associations (Fig. 2). Out of the 153 mapped taxa, 123 had at least
one significant association (Table 1). For the remainder of our analyses, we focus on the
results using the more stringent study-wide threshold, and combined significant SNPs
within 10 Mb into significant regions (Suppl. Table 3). The median size of significant
regions is 1.91 Mb, which harbor a median of 14 protein-coding genes. On average, we
observe 10 significant mouse genomic regions per bacterial taxon.

Of the significant loci with estimated interval sizes, we find 73 intervals (16.5%) that
are smaller than one Mb (Suppl. Table 4). The smallest interval is only 231 bases and
associated with the RNA-based abundance of an unclassified genus belonging to
Deltaproteobacteria. It is situated in an intron of the C3 gene, a complement component
playing a central role in the activation of the complement system, which modulates
inflammation and contributes to antimicrobial activity (Ricklin et al., 2016).
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Figure 2: Heatmap of significant host loci from association mapping of bacterial
abundances. Karotype plot showing the number of significant loci found using a study-
wide threshold, where (A) plots the significance intervals, and (B) the significant SNP
markers on the chromosomes. 
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Table. 1. Overview of mapping statistics.

DNA RNA Total
Mapped taxa 101 142 153

Taxa with significant loci 67 96 123
Median interval size (Mb) 1.52 2.29 1.91

Total significant loci 478 791 1269
Unique significant loci 179 313 443
Significant loci total P 91 167 233

Significant loci additive P 155 260 377
Significant loci dominance P 95 166 231

Median significant loci per trait 5 6 8
Median unique significant loci per trait 3 3 4

Median unique significant SNPs per locus 2 2.5 2
Median number of genes per locus 31 52 43

Median protein coding genes per locus 11 15 14

The significant genomic regions and SNPs are displayed in Figure 2A and 2B,
respectively. Individual SNPs were associated with up to 12 taxa, and significant
intervals with up to 30 taxa. The SNPs with the lowest P values were associated with the
genus Dorea and two ASVs belonging to Dorea (ASV184 and ASV293; Suppl. Fig. 5). At
the RNA level this involves two loci: mm10-chr4: 67.07 Mb, where the peak SNP is 13 kb
downstream of the closest gene Tlr4 (UNC7414459, P=2.31 × 10-69, additive P= 4.48 ×
10-118, dominance P= 1.37 × 10-111), and mm10-chr15: 94.4 Mb, where the peak SNP is
found within the Adamts20 gene (UNC26145702, P=4.51 × 10-65, additive P= 1.87 × 10-113,
dominance P= 1.56 × 10-105; Fig. 2; Suppl. Fig. 5). Interestingly, the Irak4 gene, whose
protein product is rapidly recruited after TLR4 activation, is also located 181 kb
upstream of Adamts20. The five taxa displaying the most associations were ASV19
(Bacteroides), Dorea, ASV36 (Oscillibacter), ASV35 (Bacteroides), and ASV98 (unclassified
Lachnospiraceae) (Suppl. Fig. 6).

Ancestry, dominance, and effect sizes

A total of 435 significant SNPs were ancestry informative between M. m. musculus
and M. m. domesticus (i.e. represent fixed differences between subspecies). To gain further
insight on the genetic architecture of microbial trait abundances, we estimated the
degree of dominance at each significant locus using the
d/a ratio (Falconer, 1996), where alleles with strictly recessive, additive, and dominant
effects have d/a values of -1, 0, and 1, respectively. As half of the SNPs were not ancestry
informative (Fig. 3A), it was not possible to consistently have a associated with one
parent/subspecies, hence we report d/|a| such that it can be interpreted with respect to
bacterial abundance. For the vast majority of loci (83.53%), the allele associated with
lower abundance is dominant or partially dominant (-1.25 < d/|a| < -0.75; Fig. 3B). On
the basis of the arbitrary cutoffs we used to classify dominance, only a small proportion
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of alleles are underdominant (0.22%; d/|a| < -1.25) or overdominant (0.15%; d/|a|>
1.25). However for one-third of the significant SNPs, the heterozygotes display
transgressive phenotypes, i.e. mean abundances that are either significantly lower (31%
of SNPs)- or higher (2% of SNPs) than those of both homozygous genotypes.
Interestingly, the domesticus allele was associated with higher bacterial abundance in
two-thirds of this subset (33.2% vs 16.3% musculus allele; Fig. 3A).

 Figure 3: Genetic architecture of significant loci. A) Source of the allele with the highest phe-
notypic value. B) Histogram of dominance values d/a of significant loci reveals a majority of 
loci acting recessive or partially recessive. C) Histogram showing the percentage of variance 
explained (PVE) by the peak SNP for DNA (blue, left) and RNA (orange, right). D) Collective
PVE by lead SNPs of significant loci within a taxon. Values are calculated separately for each 
P value type (total, additive, and dominance).

Next, we estimated phenotypic effect sizes by calculating the percentage variance
explained (PVE) by the peak SNP of each significant region. Peak SNPs explain between
3% and 64% of the variance in bacterial abundance, with a median effect size of 9.3%
(Fig. 3C). The combined effects of all significant loci for each taxon ranged from 4.9% to
259%, with a median of 41.8% (Fig. 3D). Note, combined effects for many taxa (33 out of
59) exceed SNP-heritability estimates (Fig. 1). While exceeding 100% explained variance
is biologically possible, as loci can have opposite phenotypic effects, many of these are
likely inflated due to the Beavis effect (Beavis, 1994).
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Functional annotation of candidate genes

In order to reveal potential higher level biological phenomena among the identified
loci, we performed pathway analysis to identify interactions and functional categories
enriched among the genes in significant intervals. We used STRING (Szklarczyk et al.,
2019) to calculate a protein-protein interaction (PPI) network of 925 protein-coding
genes nearest to significant SNPs (upstream and/or downstream). A total of 768 genes
were represented in the STRING database, and the maximal network is highly
significant (PPI enrichment P value: 2.15 × 10-14) displaying 668 nodes connected by 1797
edges and an average node degree of 4.68. After retaining only the edges with the
highest confidence (interaction score > 0.9), this results in one large network with 233
nodes, 692 edges and ten smaller networks (Fig. 4).

Next, we functionally annotated clusters using STRING’s functional enrichment
plugin. The genes of the largest cluster are part of the G protein-coupled receptor
(GPCR) ligand binding pathway. GPCRs are the largest receptor superfamily and also
the largest class of drug targets (Sriram and Insel, 2018). We then calculated the top ten
hub proteins from the network based on Maximal Clique Centrality (MCC) algorithm
with CytoHubba to predict important nodes that can function as ’master switches’
(Suppl. Fig. 7). The top ten proteins contributing to the PPI network were GNG12,
MCHR1, NMUR2, PROK2, OXTR, XCR1, TACR3, CHRM3, PTGFR, and C3, which are
all involved in the GPCR signaling pathway.

Further, we performed enrichment analysis on the 925 genes nearest to significant
SNPs using the clusterprofiler R package. We found 14 KEGG pathways to be over-
represented: circadian entrainment, oxytocin signaling pathway, axon guidance, calcium
signaling, cAMP signaling, cortisol synthesis and secretion, cushing syndrome, gastric
acid secretion, glutamatergic synapse, mucin type O-glycan biosynthesis, inflammatory
mediator regulation of TRP channels, PD-L1 expression and the PD-1 checkpoint
pathway in cancer, tight junction, and the Wnt signaling pathway (Suppl. Table 5, Suppl.
Fig. 8-9). Finally, genes involved in five human diseases are enriched, among them
mental disorders (Suppl. Fig. 10).

Finally, due to the observation of a significant enrichment of cospeciating taxa
among the bacterial species depleted in early onset IBD (Groussin et al., 2017) and the
evidence that IBD is especially associated with a dysbiosis in mucosa-associated
communities (Yang et al., 2020a; Daniel et al., 2021), we specifically examined possible
over-representation of genes involved in IBD (Khan et al., 2021) among the 925 genes
neighboring significant SNPs. We found 14 out of the 289 IBD genes, which was
significantly more than expected by chance (10 000 times permuted mean: 2.7, simulated
P = .0001; Suppl. Table 6). Interestingly, SNPs in five out of the 14 genes are associated
with ASVs belonging to the genus Oscillibacter, a cospeciating taxon known to decrease
during the active state of IBD (Metwaly et al., 2020).
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Figure 4: High confidence protein-protein interaction network of genes closest to SNPs
significantly associated with bacterial abundances. Network clusters are annotated using
STRING’s functional enrichment (Doncheva et al., 2019). Nodes represent proteins and
edges their respective interactions. Only edges with an interaction score higher than 0.9
are retained. The width of the edge line expresses the interaction score calculated by
STRING. The color of the nodes describe the expression of the protein in the intestine
where yellow is not expressed and purple is highly expressed. 
Comparison of significant loci to published gut microbiome mapping studies

Next, we compiled a list of 648 unique confidence intervals of significant
associations with gut bacterial taxa from seven previous mouse QTL studies (Benson et
al., 2010; McKnite et al., 2012; Leamy et al., 2014; Wang et al., 2015; Org et al., 2015;
Snĳders et al., 2016; Kemis et al., 2019) and compared this list to our significance
intervals for bacterial taxa at both the DNA and RNA level (346 unique intervals).
Regions larger than 10Mb were removed from all studies. We found 434 overlapping
intervals, which is significantly more than expected by chance (10 000 times permuted
mean: 368, simulated P=.0073, see Methods). Several of our smaller significant loci
overlapped with larger loci from previous studies and removing this redundancy left
186 significant loci with a median interval size of 0.78 Mb (Fig. 5). The most frequently
identified locus is located on chromosome 2 169-171 Mb where protein coding genes
Gm11011, Znf217, Tshz2, Bcas1, Cyp24a1, Pfdn4, 4930470P17Rik, and Dok5 are situated.

Additionally, we collected genes within genome-wide significant regions reported
in seven human microbiome GWAS (mGWAS) (Bonder et al., 2016; Turpin et al., 2016;
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Goodrich et al., 2016; Wang et al., 2016; Hughes et al., 2020; Rühlemann et al., 2021;
Kurilshikov et al., 2021). However, no significant over-representation of genes was
found within our significance intervals (P = .156), nor within our list of genes closest to a
significant SNP (P = .62).

Figure 5: Heatmap showing the significant loci in this study that were previously 
found in other QTL studies of the mouse gut microbiome. The genes present in 
two repeatedly identified regions are depicted in boxes. 

Proteins differentially expressed in germ-free vs conventional mice

To further validate our results, we compared the list of genes contained within
intervals of our study to a list of differentially expressed protein between germ-free and
conventionally raised mice (Mills et al., 2020). This comparison was made based on the
general expectation that genes associated with variation in microbial abundances would
be more likely to differ according to the colonization status of the host. Thus, we
examined the intersection between genes identified in our study and the proteins
identified as highly associated ( |π| > 1) with the colonization state of the colon and the
small intestine (Mills et al., 2020). Out of the 373 over- or under-expressed proteins
according to colonization status, we find 198 of their coding genes to be among our
significant loci, of which 17 are the closest genes to a significant marker (Iyd, Nln,
Slc26a3, Slc3a1, Myom2, Nebl, Tent5a, Fxr1, Cbr3, Chrodc1, Nucb2, Arhgef10l, Sucla2, Enpep,
Prkcq, Aacs, and Cox7c). This is significantly more than expected by chance (simulated
P=.0156, 10 000 permutations). Further, analyzing the protein-protein interactions with
STRING results in a significant network (P=1.73 × 10-14, and average node degree 2.4,
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Suppl. Fig. 11), with Cyp2c65, Cyp2c55, Cyp2b10, Gpx2, Cth, Eif3k, Eif1, Sucla2, and Rpl17
identified as hub genes (Suppl. Fig. 12).

Subsequently, we merged the information from Mills et al. (2020) and the seven
previous QTL mapping studies discussed above to further narrow down the most
promising candidate genes, and found 30 genes overlapping with our study. Of these 30
genes, six are the closest gene to a significant SNP. These genes are myomesine 2
(Myom2), solute carrier family 3 member 1 (Slc3a1), solute carrier family 26 member 3
(Slc26a3), nebulette (Nebl), carbonyl reductase 3 (Cbr3), and acetoacetyl-coA synthetase
(Aacs).

Candidate genes influencing bacterial abundance

Finally, all previously mentioned candidate genes were combined in one gene set of
304 genes and compiled in a highly significant PPI network (P < 1.0 × 10-16, average node
degree=4.85, see Methods 4.13). Guided by this network, we filtered out genes situated
in the same genomic region and kept the gene with the highest connectivity and
supporting information (original network see Suppl. Fig. 13). This gave a resulting gene
set of 80 candidate genes (Fig. 6 and Suppl. Table 7). The G protein, GNG12 and the
complement component 3 C3, are the proteins with the most edges in the network (30
and 25, respectively), followed by MCHR1, CXCL12, and NMUR2 with each 18 edges.
Of these 80 highly connected genes, 66 are associated with bacteria that are either co-
speciating (co-speciation rate > 0.5; Groussin et al., 2017) and/or have high heritability
(> 0.5) suggesting a functionally important role for these bacterial taxa (Suppl. Table 7).
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Figure 6: Network of host candidate genes influencing bacterial traits using 
STRING (https://string-db.org). The nodes represent proteins and are colored ac-
cording to a selection of enriched GO terms and pathways: G protein coupled re-
ceptor (GPCR) signaling (red), regulation of the immune system process (blue), re-
sponse to nutrient levels (light green), fatty acid metabolic process (pink), glucose 
homeostasis (purple), response to antibiotic (orange), regulation of feeding behavior 
(yellow), positive regulation of insulin secretion (dark green), circadian entrainment 
(brown), and response to vitamin D (turquoise). The color of the edges represents 
the interaction type: known interactions from curated databases (turquoise) or ex-
perimentally determined (pink); predicted interactions from gene neighborhood 
(green), gene fusions (red), gene co-occurrence (blue); other interactions from text-
mining (light green), co-expression (black), and protein homology (purple).
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Discussion

Understanding the forces that shape variation in host-associated bacterial
communities within host species is key to understanding the evolution and maintenance
of meta-organisms. Although numerous studies in mice and humans demonstrate that
host genetics influences gut microbiota composition (McKnite et al., 2012; Leamy et al.,
2014; Goodrich et al., 2014; Org et al., 2015; Davenport et al., 2015; Wang et al., 2016;
Bonder et al., 2016; Goodrich et al., 2016; Kemis et al., 2019; Suzuki et al., 2019; Ishida et
al., 2020; Hughes et al., 2020; Rühlemann et al., 2021), our study is unique in a number of
important ways. First, the unique genetic resource of mice collected from a naturally
occurring hybrid zone together with their native microbes yielded extremely high
mapping resolution and the possibility to uncover ongoing evolutionary processes in
nature. Second, our study is the first to perform genetic mapping of 16S rRNA
transcripts in the gut environment, which was previously shown to be superior to DNA-
based profiling in a genetic mapping study of the skin microbiota (Belheouane et al.,
2017). Third, our study is one of the only to specifically examine the mucosa-associated
community. It was previously reasoned that the mucosal environment may better reflect
host genetic variation (Spor et al., 2011), and evidence for this hypothesis exists in nature
(Linnenbrink et al., 2013). Finally, by cross-referencing our results with previous
mapping studies and recently available proteomic data from germ-free versus
conventional mice, we curated a more reliable list of candidate genes and pathways.
Taken together, these results provide unique and unprecedented insight into the genetic
basis for host-microbe interactions.

Importantly, by using wild-derived hybrid inbred strains to generate our mapping
population, we gained insight into the evolutionary association between hosts and their
microbiota at the transition from within species variation to between species divergence.
Genetic relatedness in our mapping population significantly correlates with microbiome
similarity, supporting a basis for codiversification at the early stages of speciation. A
substantial proportion of microbial taxa are heritable, and heritability is correlated with
cospeciation rates. This suggests that (i) vertical transmission could enable greater host
adaptation to bacteria and/or (ii) the greater number of host genes associated with
cospeciating taxa could indicate a greater dependency on the host, such that survival
outside a specific host is reduced, making horizontal transmission less likely. 

By performing 16S rRNA gene profiling at both the DNA and RNA level, we found
that 30% (DNA-based) to 45% (RNA-based) of bacterial taxa are heritable, which is
consistent with or higher than estimates reported in humans (~10%, Goodrich et al.,
2016; ~21%, Turpin et al., 2016) and previous mouse studies (Kovacs et al., 2011; McKnite
et al., 2012; Campbell et al., 2012; O’Connor et al., 2014; Carmody et al., 2015; Korach-
Rechtman et al., 2019;). The high proportion of heritable taxa, with estimates of up to
91%, is likely explained in part by several factors of our study design. First, mice were
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raised in a controlled common environment, and heritability estimates in other
mammals were shown to be contingent on the environment (Grieneisen et al., 2021).
Further, bacterial communities were sampled from cecal tissue instead of fecal content
(Linnenbrink et al., 2013), and genetic variation was higher than in a typical mapping
study due to subspecies differences. For the RNA-based traits, heritability estimates
were significantly correlated with previously reported cospeciation rates in mammals
(Groussin et al., 2017). This pattern, as well as the higher proportion of heritable taxa in
RNA-based traits, suggest that host genetic effects are more strongly reflected by
bacterial activity than cell number.

Accordingly, we found a total of 179 and 313 unique significant loci for DNA-based
and RNA-based bacterial abundance, respectively, passing the conservative study-wide
significance threshold. Taxa had a median of five significant loci, suggesting a complex
and polygenic genetic architecture affecting bacterial abundances. We identify a higher
number of loci in comparison to previous QTL and GWAS studies in mice (Benson et al.,
2010; McKnite et al., 2012; Leamy et al., 2014; Wang et al., 2015; Org et al., 2015; Snĳders
et al., 2016; Kemis et al., 2019), which may be due to a number of factors. The parental
strains of our study were never subjected to rederivation and subsequent reconstitution
of their microbiota, and natural mouse gut microbiota are more variable than the
artificial microbiota of laboratory strains (Kohl and Dearing, 2014; Weldon et al., 2015;
Suzuki, 2017; Rosshart et al., 2017;). Furthermore, as noted above, our mapping
population harbors both within- and between-subspecies genetic variation. We crossed
incipient species sharing a common ancestor ~ 0.5 million years ago, hence we may also
capture the effects of mutations that fixed rapidly between subspecies due to strong
selection, which are typically not variable within species (Walsh, 1998; Barton and
Keightley, 2002).

Importantly, our results also help to describe general features of the genetic
architecture of bacterial taxon activity. For the majority of loci, the allele associated with
lower relative abundance of the bacterial taxon was (partially) dominant. This suggests
there is strong purifying selection against a high abundance of any particular taxon,
which may help ensure high alpha diversity. The heterozygotes of one-third of
significant SNPs displayed transgressive phenotypes. This is consistent with previous
studies of hybrids (Turner et al., 2012; Turner and Harr, 2014; Wang et al., 2015;), for
example, wild-caught hybrids showed broadly transgressive gut microbiome
phenotypes. This pattern can be explained by over- or underdominance, or by epistasis
(Rieseberg et al., 1999).

Notably, many loci significantly associated with bacterial abundance in this study
were implicated in previous studies (Fig. 5). For example, chromosome 2 169-171 Mb is
associated with ASV23 (Eisenbergiella), Eisenbergiella and ASV32 (unclassified
Lachnospiraceae) in this study, and overlaps with significant loci from three previous
studies (Leamy et al., 2014; Snĳders et al., 2016; Kemis et al., 2019). This region contains
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eight protein-coding genes: Gm11011, Znf217, Tshz2, Bcas1, Cyp24a1, Pfdn4,
4930470P17Rik, and Dok5. Another hotspot is on chromosome 5 101-103 Mb. This locus is
significantly associated with four taxa in this study (Prevotellaceae, Paraprevotella, ASV7
genus Paraprevotella and Acetatifactor) and overlaps with associations for Clostridiales,
Clostridiaceae, Lachnospiraceae, and Deferribacteriaceae (Snĳders et al., 2016). Protein-
coding genes in this region are: Nkx6-1, Cds1, Wdfy3, Arhgap24, and Mapk10. As previous
studies were based on rederived mouse strains, identifying significant overlap in the
identification of host loci suggests that some of the same genes and/or mechanisms
influencing major members of gut microbial communities are conserved even in the face
of community ’reset’ in the context of re-derivation. The identity of the taxa is however
not always the same, which suggests that functional redundancy may contribute to
these observations, if e.g. several bacterial taxa fulfill the same function within the gut
microbiome (Moya and Ferrer, 2016; Tian et al., 2020). Additionally, there is significant
overlap of genes within loci identified in the current study and proteins differentially
expressed in the intestine of germ-free mice compared to conventionally raised mice
(Mills et al., 2020). Finally, by analyzing the functions of the genes closest to significant
SNPs, we found that 12 of the 14 significantly enriched KEGG pathways were shown to
be related to interactions with bacteria (Fonken et al., 2010; Thaiss et al., 2014; Neumann
et al., 2014; Thaiss et al., 2015a; Thaiss et al., 2015b; Castoldi et al., 2015; Erdman and
Poutahidis, 2016; Thaiss et al., 2016; Deaver et al., 2018; Wu et al., 2018; Peng et al., 2020;
Nagpal et al., 2020; Hollander and Kaunitz, 2020; Suppl. Table 5).

To improve the robustness of our results, we combined multiple lines of evidence to
prioritize candidates, resulting in a network of 80 genes (Suppl. Table 7). At the center of
this network is a set of 22 proteins involved in G-protein coupled receptor signaling (Fig.
6, red nodes). MCHR1, NMUR2, and TACR3 (Fig. 6, yellow) are known to regulate
feeding behavior (Saito et al., 1999; Cardoso et al., 2012; Smith et al., 2019), and CHRM3
to control digestion (Gautam et al., 2006; Tanahashi et al., 2009). Gut microbes can
produce GPCR agonists to elicit host cellular responses (Cohen et al., 2017; Colosimo et
al., 2019; Chen et al., 2019; Pandey et al., 2019). Thus, GPCRs may be key modulators of
communication between the gut microbiota and host. Another interesting group of
genes are those responding to nutrient levels (Bmp7, Cd40, Aacs, Gclc, Nmur2, Cyp24a1,
Adcyap1, Serpinc1, and Wnt11) (Sethi and Vidal-Puig, 2008; Peier et al., 2009; Townsend et
al., 2012; Yi and Bishop, 2015; Shi and Tu, 2015; Toderici et al., 2016; Yasuda et al., 2021;
Gastelum et al., 2021;), as gut microbiota affect host nutrient uptake (Chung et al., 2018).
In addition, CYP24A1, BMP7 and CD40 respond to vitamin D. Previous studies
identified vitamin D/the vitamin D receptor to play a role in modulating the gut
microbiota (Wang et al., 2016; Malaguarnera, 2020; Yang et al., 2020b; Singh et al., 2020),
and CD40 is known to induce a vitamin D dependent antimicrobial response through
IFN-γ activation (Klug-Micu et al., 2013). 
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Another important category of candidate genes are those involved in immunity.
Our most significant SNP was situated downstream of the Tlr4 gene and was associated
with the genus Dorea and several Dorea species. Dorea is a known short chain fatty acid
producer (Taras et al., 2002; Reichardt et al., 2018) and interacts with tight junction
proteins Claudin-2 and Occludin (Alhasson et al., 2017). Tlr4 is a member of the Toll-like
receptor family, and has been linked with obesity, inflammation, and changes in the gut
microbiota (Velloso et al., 2015). These combined results reflect an important role for
Dorea in fatty acid harvesting and intestinal barrier integrity, both of which could act
systemically to activate TLR4 and to promote metabolic inflammation (Cani et al., 2008;
Delzenne et al., 2011; Nicholson et al., 2012). Moreover, the SNP with the second lowest
P value was associated with the same taxa and situated 181 kb upstream of Irak4. IRAK4
is rapidly recruited after TLR4 activation to enable downstream activation of the NFκB
immune pathway. Irak4 has previously been associated with a change in bacterial
abundance using inbred mice (McKnite et al., 2012; Org et al., 2015).

Finally, we identified notable links between candidate genes and five human
diseases (mental disorders, blood pressure finding, systemic arterial pressure, substance-
related disorders, and atrial septal deficits; Suppl. Fig. 10). The connection to mental
disorders is intriguing as involvement of the gut microbiota is suspected (Kelly et al.,
2015; Foster et al., 2017; Cox and Weiner, 2018; Chen et al., 2019; Sarkar et al., 2020;
Parker et al., 2020; Flux and Lowry, 2020). Taken together with our finding of an
enriched set of GPCRs, this highlights the importance of host-microbial interplay along
the gut-brain axis. Moreover, we also identify a significant over-representation of IBD
genes (Khan et al., 2021) among the 925 genes nearest to significant SNPs (Suppl. Table
6). Interestingly, SNPs in five out of 14 genes are associated with ASVs belonging to the
genus Oscillibacter, a highly cospeciating taxon known to decrease during the active state
of IBD (Metwaly et al., 2020). 

In summary, our study provides a number of novel insights into the importance of
host genetic variation in shaping the gut microbiome, in particular for cospeciating
bacterial taxa. These findings provide an exciting foundation for future studies of the
precise mechanisms underlying host-gut microbiota interactions in the mammalian gut
and should encourage future genetic mapping studies that extend analyses to the
functional metagenomic sequence level.

19 of 47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2021. ; https://doi.org/10.1101/2021.09.28.462095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462095
http://creativecommons.org/licenses/by-nc-nd/4.0/


525

526
527
528
529
530
531
532
533
534
535

536
537
538
539
540
541
542
543

544
545
546
547

548
549
550
551
552
553

554
555
556
557
558
559
560
561
562

Materials and Methods

Intercross design

We generated a mapping population using partially inbred strains derived from
mice captured in the M. m. musculus - M. m. domesticus hybrid zone around Freising,
Germany in 2008 (Turner et al., 2012). Originally, four breeding stocks were derived
from 8-9 ancestors captured from one (FS, HA, TU) or two sampling sites (HO), and
maintained with four breeding pairs per generation using the HAN-rotation out-
breeding scheme (Rapp, 1972). Eight inbred lines (two per breeding stock) were
generated by brother/sister mating of the 8th generation lab-bred mice. We set up the
cross when lines were at the 5th-9th generation of brother-sister meeting, with
inbreeding coefficients of > 82%.

We first set up eight G1 crosses, each with one predominantly domesticus line (FS,
HO - hybrid index <50%; see below) and one predominantly musculus line (HA, TU -
hybrid index >50%); each line was represented as a dam in one cross and sire in another
(Suppl. Fig. 14). One line, FS5, had a higher hybrid index than expected, suggesting
there was a misidentification during breeding (see genotyping below). Next, we set up
G2 crosses in eight combinations (subcrosses), such that each G2 individual has one
grandparent from each of the initial four breeding stocks. We included 40 males from
each subcross in the mapping population.

This study was performed according to approved animal protocols and in-
stitutional guidelines of the Max Planck Institute. Mice were maintained and handled in
accordance with FELASA guidelines and German animal welfare law (Tierschutzgesetz
§ 11, permit from Veterinäramt Kreis Plön: 1401-144/PLÖ-004697).

Sample collection

Mice were sacrificed at 91 ± 5 days by CO2 asphyxiation. We recorded body weight,
body length and tail length, and collected ear tissue for genotyping. The caecum was
removed and gently separated from its contents through bisection and immersion in
RNAlater (Thermo Fisher Scientific, Schwerte, Germany). After overnight storage in
RNAlater at 4° C, the RNAlater was removed and tissue stored at -20° C.

DNA extraction and sequencing

We simultaneously extracted DNA and RNA from caecum tissue samples using
Qiagen (Hilden, Germany) Allprep DNA/RNA 96-well kits. We followed the
manufacturer’s protocol, with the addition of an initial bead beating step using Lysing
matrix E tubes (MP Biomedical, Eschwege) to increase cell lysis. We used caecum tissue
because host genetics has a greater influence on the microbiota at this mucosal site than
on the lumen contents (Linnenbrink et al., 2013). We performed reverse transcription of
RNA with High-Capacity cDNA Transcription Kits from Applied Biosystems
(Darmstadt, Germany). We amplified the V1-V2 hypervariable region of the 16S rRNA
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gene using barcoded primers (27F-338R) with fused MiSeq adapters and heterogeneity
spacers following (Rausch et al., 2016) and sequenced amplicons with 250 bp paired-
reads on the Illumina MiSeq platform.

16S rRNA gene analysis

We assigned sequences to samples by exact matches of MID (multiplex identifier, 10
nt) sequences processed 16S rRNA sequences using the DADA2 pipeline, implemented
in the DADA2 R package, version 1.16.0 (Callahan et al., 2016; Callahan, 2016). Briefly,
raw sequences were trimmed and quality filtered with the maximum two ‘expected
errors’ allowed in a read, paired sequences were merged and chimeras removed. For all
downstream analyses, we rarefied samples to 10,000 reads each. Due to the quality
filtering, we have phenotyping data for 286 individuals on DNA level, and 320 G2
individuals on RNA level. We classified taxonomy using the Ribosomal Database Project
(RDP) training set 16 (Cole et al., 2014). Classifications with low confidence at the genus
level (<0.8) were grouped in the arbitrary taxon ’unclassified_group’.

We used the phyloseq R package (version 1.32.0) to estimate alpha diversity using
the Shannon index and Chao1 index, and beta diversity using Bray-Curtis distance
(McMurdie and Holmes, 2013). We defined core microbiomes at the DNA- and RNA-
level, including taxa present in > 25% of the samples and with median abundance of
non-zero values > 0.2% for amplicon sequence variant (ASV) and genus; and >0.5% for
family, order, class and phylum.

Genotyping

We extracted genomic DNA from ear samples using Qiagen Blood and Tissue 96
well kits (Hilden, Germany), according to the manufacturer's protocol. We sent DNA
samples from 26 G0 mice and 320 G2 mice to GeneSeek (Neogen, Lincoln, NE) for
genotyping using the Giga Mouse Universal Genotyping Array (GigaMUGA; Morgan et
al., 2015), an Illumina Infinium II array containing 141,090 single nucleotide
polymorphism (SNP) probes. We quality-filtered genotype data using plink 1.9 (Chang
et al., 2015); we removed individuals with call rates <90% and SNPs that were: not bi-
allelic, missing in >10% individuals, with minor allele frequency <5%, or Hardy-
Weinberg equilibrium exact test P values <1e-10. A total of 64,103 SNPs and all but one
G2 individual were retained. Prior to mapping, we LD-filtered SNPs with r2 >0.9 using a
window of 5 SNPs and a step size of 1 SNP. We retain 32,625 SNPs for mapping.

Hybrid index calculation

For each G0 and G2 mouse, we estimated a hybrid index – defined as the
percentage of M. m. musculus ancestry. We identified ancestry-informative SNP markers
by comparing GigaMUGA data from ten individuals each from two wild-derived
outbred stocks of M. m. musculus (Kazakhstan and Czech Republic) and two of M. m.
domesticus (Germany and France) maintained at the Max Planck Institute for
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Evolutionary Biology (L.M. Turner and B. Payseur, unpublished data). We classified
SNPs as ancestry informative if they had a minimum of 10 calls per subspecies, the
major allele differed between musculus and domesticus, and the allele frequency
difference between subspecies was > 0.3. A total of 48,361 quality-filtered SNPs from the
G0/G2 genotype data were informative, including 8,775 SNPs with fixed differences
between subspecies samples.

Correlation between host relatedness and microbiome structure

To investigate if host relatedness is correlated with individual variation in
microbiome composition, we computed a centered relatedness matrix using the 32,625
filtered SNPs with GEMMA (v 0.98.1; Zhou and Stephens, 2012) and microbial
composition-based kinship matrix among individuals based on relative bacterial
abundances (Chen et al., 2018). The kinship matrix was calculated with the formula:

where X denotes the n × p matrix of genotypes or relative abundances, xi as its ith
column representing the genotypes of ith SNP or the relative abundance of the ith ASV,
x ̄i as the sample mean and 1n as a n × 1 vector of 1's. We used a Mantel test with the
Spearman's correlation to test for correlation between the host SNP-based kinship and
microbial composition-based kinship using 10,000 permutations.

SNP-based heritability of microbial abundances

We calculated SNP-based heritabilities for bacterial abundances using a linear
mixed model implemented in the lme4qtl R package (version 0.2.2; Ziyatdinov et al.,
2018). The SNP-based heritability is expressed as:

where σg
2 is the genetic variance estimated by KSNP, σm

2 variance of the mating pair
component, and σe

2 the variance due to residual environmental factors. We determined
significance of the heritability estimates using exact likelihood ratio tests, following
Supplementary Note 3 in Ziyatdinov et al., 2018, using the exactLRT() function of the R
package RLRsim (version 3.1-6; Fabian et al., 2008).

Genome-wide association mapping

Prior to mapping, we inverse logistic transformed bacterial abundances using the
inv.logit function from the R package gtools (version 3.9.2; Gregory R. Warnes, 2020).

We performed association mapping in the R package lme4qtl (version 0.2.2;
Ziyatdinov et al., 2018) with the following linear mixed model:

<latexit sha1_base64="4bhegxfzAlXRU07JGEMGqbjz+FE="></latexit>

Kinship = 1/p
pX

i=1

(xi � 1nx̄i)(xi � 1nx̄i)
T
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where yj is the phenotypic value of the jth individual; μ is the mean, Xaĳ the additive
and Xdĳ the dominance genotypic index values coded as for individual j at locus i. a and
d indicate fixed additive and dominance effects, W indicates random effects mating pair
and kinship matrix, plus residual error e.

We estimated additive and dominance effects separately because we expected to
observe underdominance and overdominance in our hybrid mapping population, as
well as additive effects, and aimed to estimate their relative importance. To model the
additive effect (i.e. 1/2 distance between homozygous means), genotypes at each locus,
i, were assigned additive index values (Xa ∈ 1, 0, −1) for AA, AB, BB, respectively, with A
indicating the major allele and B the minor allele. To model dominance effects (i.e.
heterozygote mean - midpoint of homozygote means), genotypes were assigned
dominance index values (Xd ∈ 0, 1) for homozygotes and heterozygotes, respectively.

We included mating pair as a random effect to account for maternal effects and cage
effects, as male litter mates are kept together in a cage after weaning. We included
kinship coefficient as a random effect in the model to account for population and family
structure. To avoid proximal contamination, we used a leave-one-chromosome-out
approach, that is, when testing each single-SNP association we used a relatedness matrix
omitting markers from the same chromosome (Parker et al., 2014). Hence, for testing
SNPs on each chromosome, we calculated a centered relatedness matrix using SNPs
from all other chromosomes with GEMMA (v0.97; Zhou and Stephens, 2012). We
calculated P values for single-SNP associations by comparing the full model to a null
model excluding fixed effects. Code for performing the mapping is available at https:/
/github.com/sdoms/mapping_scripts. 

We evaluated significance of SNP-trait associations using two thresholds; first, we
used a genome-wide threshold for each trait, where we corrected for multiple testing
across markers using the Bonferroni method (Abdi, 2007). Second, as bacteria interact
with each other within the gut as members of a community, bacterial abundances are
non-independent, so we calculated a study-wide threshold dividing the genome-wide
threshold by the number of effective taxa included. We used matSpDlite (Nyholt, 2019;
Li and Ji, 2005; Qin et al., 2020) to estimate the number of effective bacterial taxa based
on eigenvalue variance.

To estimate the genomic interval represented by each significant LD-filtered SNP,
we report significant regions defined by the most distant flanking SNPs in the full pre-
LD-filtered genotype dataset showing r2 > 0.9 with each significant SNP. We combined
significant regions less than 10 Mb apart into a single region. Genes situated in

<latexit sha1_base64="1J64qchDeEUkh/3gmWTI20zClpg=">AAACG3icbVDLSgMxFM3UV62vqks3wSIIhTJTQd0IRTcuK9gHtGPJZG7b2MyDJCOUYb7AH3Djzu9w40IRV4ILP8S9mbaL2noh4ZxzzyW5xwk5k8o0v43MwuLS8kp2Nbe2vrG5ld/eqcsgEhRqNOCBaDpEAmc+1BRTHJqhAOI5HBrO4CLtN+5ASBb412oYgu2Rns+6jBKlpU6+POzELDlrexEuYpLipr5ukxuiuTvFXc0bqQk6+YJZMkeF54E1AYVK8efpHgphtZP/bLsBjTzwFeVEypZlhsqOiVCMckhy7UhCSOiA9KCloU88kHY82i3BB1pxcTcQ+vgKj9TpiZh4Ug49Rzs9ovpytpeK//Vakeqe2jHzw0iBT8cPdSOOVYDToLDLBFDFhxoQKpj+K6Z9IghVOs6cDsGaXXke1Msl67h0dKXTOEfjyqI9tI8OkYVOUAVdoiqqIYoe0DN6RW/Go/FivBsfY2vGmMzsoj9lfP0CllejhQ==</latexit>

yi = µ+ aiX
a
ij + diX

d
ij +Wu+ e
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significant regions were retrieved using biomaRt (Steffen Durinck, 2009), and the mm10
mouse genome.

Dominance analyses

We classified dominance for SNPs with significant associations on the basis of the
d/a ratio (Falconer, 1996) where d is the dominance effect, a the additive effect. As the
expected value under purely additive effects is 0. As our mapping population is a multi-
parental-line cross, and not all SNPs were ancestry-informative with respect to musculus/
domesticus, the sign of a effects is defined by the major allele within our mapping
population, which lacks clear biological interpretation. To provide more meaningful
values, we report d/|a|, such that a value of 1 = complete dominance of the allele
associated with higher bacterial abundance, and a value of -1 = complete dominance of
the allele associated with lower bacterial abundance. Values above 1 or below -1 indicate
over/underdominance. We classified effects of significant regions the following
arbitrary d/|a| ranges to classify dominance of significant regions (Burke et al., 2002;
Miller et al., 2014): underdominant <-1.25, high abundance allele recessive between -1.25
and -0.75, partially recessive between -0.75 and -0.25, additive between -0.25 and 0.25,
partially dominant between 0.25 and 0.75, dominant 0.75 and 1.25, and
overdominant >1.25.

Gene ontology and network analysis

The nearest genes up- and downstream of the significant SNPs were identified
using the locateVariants() function from the VariantAnnotation R package (version
1.34.0; Valerie et al., 2014) using the default parameters. A maximum of two genes per
locus were included (one upstream, and one downstream of a given SNP). 

To investigate functions and interactions of candidate genes, we calculated a a
protein-protein interaction (PPI) network with STRING version 11 (Szklarczyk et al.,
2019), on the basis of a list of the closest genes to all SNPs with significant trait
associations. We included network edges with an interaction score >0.9, based on
evidence from fusion, neighborhood, co-occurrence, experimental, text-mining,
database, and co-expression. We exported this network to Cytoscape v 3.8.2 (Shannon et
al., 2003) for identification of highly interconnected regions using the MCODE
Cytoscape plugin (Bader and Hogue, 2003), and functional annotation of clusters using
the stringApp Cytoscape plugin (Doncheva et al., 2019). 

We identified overrepresented KEGG pathways and human diseases using the
clusterprofiler R package (version 3.16.1; Yu et al., 2012). P values were corrected for
multiple testing using the Beǌamini-Hochberg method. Pathways and diseases with an
adjusted P value < .05 were considered over-represented. 
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Calculating overlap with other studies and over-representation of IBD genes

To test for significant overlap with loci identified in previous mapping studies and
for over-representation of IBD genes, we used the tool poverlap (Brent Pedersen, 2013) to
compare observed overlap to random expectations based on 10,000 permutations of
significant regions. We identified genes within overlapping regions using the
locateVariants() function from the VariantAnnotation R package (version 1.34.0; Valerie
et al., 2014).

Combination of results

Hub genes SNP network and their first neighbors, the hub genes from the
’differentially expressed in GF mice’-network and their respective first neighbors, genes
found in both Mills et al. (2020) and other mouse QTL studies, closest genes to a SNP
found in Mills et al. (2020), genes situated in the 20 smallest intervals, six genes in the
two intervals with the lowest P values, twenty genes in intervals found in most different
taxa, genes situated in the region with most overlap within our study, and finally the
genes situated in the intervals that most frequently overlapped with other studies were
combined into on gene set and analyzed with STRING. Genes situated in the same
genomic locus were curated according to the number of edges in the STRING network.

Data and code availability: DNA- and RNA-based 16S rRNA gene sequences are
available under project accession number PRJNA759194. Code is available at https:/
/github.com/sdoms/mapping_scripts. 

Supplementary Materials: Suppl. Fig 1-14, Suppl. Table 1: Heritability estimates,
Suppl. Table 2: Genome-wide significant associations, Suppl. Table 3: Study-wide
significant associations, Suppl. Table 4: Intervals smaller than 1Mb, Suppl. Table 5:
Over-represented KEGG pathways, Suppl. Table 6: IBD genes, Suppl. Table 7:
Candidate genes.
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Supplementary figures

Supplementary figure 1: Selection of taxa for mGWAS analysis. A scatter plot showing the
association of average relative abundance of taxa with their prevalence in the G2 mapping
population. Taxa retained for analysis are colored according to the originating core. The size of
each dot represents the number of individuals that have a median abundance higher than 0.2% of
the taxon. The dashed lines represent the thresholds of the core (vertical: median abundance>0.2%
and horizontal prevalence of 25 %.
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Supplementary figure 2: Relative abundances of core genera in G2 mapping population.
Each vertical line represents one individual. Subcross (see supplementary figure 14) is indicated at
the top. 

28 of 47

0

HZA.HZF HZB.HZG HZC.HZA HZD.HZE HZE.HZB HZF.HZH HZG.HZD HZH.HZC

DNA
RNA

1

0.75

0.5

0.25

0.75

0.5

0.25

0

1

Individuals

Re
la
tiv
e
Ab

un
da

nc
e

Genus
Helicobacter

unclassified Lachnospiraceae

Eisenbergiella

Mucispirillum

Lactobacillus

Oscillibacter

unclassified Bacteroidales

Bacteroides

Clostridium XlVa

unclassified Clostridiales

Paraprevotella

Alistipes

Hungatella

Staphylococcus

unclassified Ruminococcaceae

Acetatifactor

Roseburia

Intestinimonas

unclassified Porphyromonadaceae

Marvinbryantia

unclassified Deltaproteobacteria

Odoribacter

Fusicatenibacter

Dorea

unclassified Bacteroidetes

Butyricicoccus

Anaerostipes

unclassified Prevotellaceae

Other

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2021. ; https://doi.org/10.1101/2021.09.28.462095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462095
http://creativecommons.org/licenses/by-nc-nd/4.0/


755
756
757

Supplementary figure 3: Host genetic relatedness calculated from SNP data (x-axis) correlat-
ed with microbial composition-based relatedness (y-axis) calculated from ASV abundances. 
The blue line represents a linear regression fit to the data.
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Supplementary figure 4: Correlation of SNP-based heritability estimates based on DNA (x-
axis) or RNA (y-axis). The blue line represents a linear regression fit to the data. Red dashed 
line represents the identity line with a slope of 1. 
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Supplementary figure 5: Manhattan plots for ASV184 (Dorea) of the complete model (A), the 
additive effect (B) or the dominance effect (C). SNPs passing the study-wide significance 
threshold (solid line) are shown in dark blue, while genome-wide significant SNPs (dashed 
line) are shown in light blue. In panel A, the closest gene to the SNP is shown for a subset of 
significant SNPs.
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Supplementary figure 6: Number of significantly associated loci per bacterial taxon. Loci 
with significant additive effects (add.P), dominance effects (dom.P) or effects in full model 
(P) are indicated. 
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Supplementary figure 7: Top ten hub genes of the protein-protein interaction (PPI) network 
with the closest genes to the host SNPs significantly associated with bacterial abundances. 
The nodes are colored according to hub gene rank from 1 (red) to 10 (yellow). Blue nodes are 
the first neighbors.
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Supplementary figure 8: Genes belonging to over-represented KEGG pathways within the 
host genes closest to significant SNPs from association analysis.
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Supplementary figure 9: Enriched KEGG pathways among closest genes to significant SNPs from
association analysis. Node color indicates FDR-adjusted P value of enrichment and node size indi-
cates number of candidate genes in pathway.
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Supplementary figure 10: Enriched human diseases among genes closest to significant SNPs from
association analysis.
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Supplementary figure 11: STRING (Szklarczyk et al., 2019) protein-protein interaction network of
proteins that are differentially expressed in the intestine (small intestine and colon) of germ-free
(GF) mice compared to conventionally raised mice, found in the present study. The color of the
network nodes indicates whether the QTL hit was found using the DNA abundances (green),
RNA abundances (purple) or was found in both (orange). The shape represents if the gene of the
protein was the closest gene to the significant SNP (rectangle), if the gene was also found in QTLs
of other studies (octagon), a combination of both (diamond), or only differentially expressed in GF
mice vs. conventionally raised mice. The node size expresses the number of taxa where the gene
was found in a QTL. The edges represent protein-protein interactions, where the line thickness in-
dicates the strength of the data support from text mining, experiments, databases, co-expression,
gene-fusion, and co-occurrence.
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Supplementary figure 12:  Visualization of the top hub genes calculated with the MCC algo-
rithm and their first neighbors from the protein-protein interaction (PPI) network of genes 
found in intervals in present study that are also differentially expressed in germ-free versus 
conventionally raised mice. Edges represent the protein-protein associations. The red nodes 
represent genes with a high degree (= hub genes), and the yellow nodes with a low degree, 
while the blue nodes represent their first neighbors. All nodes shown are differentially ex-
pressed in GF mice. Hexagon shaped nodes are genes/proteins also found associated with 
gut microbiome abundances in other mouse QTL studies, and round nodes are ’only’ differ-
entially expressed in GF mice. The size of the node is an indication of the amount of taxa as-
sociated with the gene.
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Supplementary figure 13: Original protein protein interaction (PPI) network of  304 candi-
date genes closest to SNPs significantly associated with bacterial abundances. Generated in 

STRING (Szklarczyk et al., 2019) and Cytoscape (Shannon et al., 2003).  
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Supplementary figure 14: Overview of the intercross design. G0 mice are from eight partially
inbred lines derived from mice wild-caught in four hybrid zone sites. Hybrid index - the per-
centage of musculus alleles - is reported as the mean for the G0 mice from each line (top), or 
mean of 40 G2s from each subcross (bottom). We performed eight G1 crosses with one line 
with hybrid index ~50% (purple shades) and one line with hybrid index >50% (green 
shades); color on the left side of mouse diagram indicates dam line and right side indicates 
sire line. Next, G1 mice were crossed in eight combinations such that each G2 mouse had one
grandparent from each of the four breeding stocks, indicated by colors of mouse diagram, 
and representative chromosomes below. Tail color indicates Y chromosome strain, and oval 
indicates mitochondrial strain. 
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