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Abstract: The Price equation provides a general partition of evolutionary change into two com-
ponents. The first is usually thought to represent natural selection and the second, transmission
bias. Here, we provide a new derivation of the generalised equation, which contains a largely ig-
nored third term. Unlike the original Price equation, this extension can account for migration and
mixed asexual and sexual reproduction. The notation used here expresses the generalised equation
explicitly in terms of fitness, rendering this otherwise difficult third term more open to biological
interpretation and use. This re-derivation also permits fundamental results, derived from the Price
equation, to be more easily generalised. We take Hamilton’s rule as a case study, and provide an
exact, total expression that allows for population structures like haplodiploidy. Our analysis, more
generally, makes clear the previously hidden assumptions in similar fundamental results, highlight-
ing the caution that must be taken when interpreting them.
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Introduction

A primary goal of evolutionary theory is to analyse how
phenotypic change occurs over time. There are many
forces that can cause such change: mutation, transgen-
erational plasticity and migration, to name a few. How-
ever, the key force of interest in most studies is natural
selection. This is because it is the long-term driver of
adaptation and gives direction to evolutionary change.
It is therefore particularly useful to isolate its influence
from all other forces.

One of the most useful tools to do this was devel-
oped by Price (1970, 1972a). The Price equation is
an abstract partition of total evolutionary change into
two terms. The first is intended to represent natu-
ral selection and the second accounts for any resid-
ual change that occurs during parent-offspring trans-
mission of traits. These are commonly referred to as
the natural selection and transmission bias terms re-
spectively (Frank, 2012; Okasha, 2006; Gardner, 2020;
Okasha & Otsuka, 2020). In most instances, parents
and offspring are not clones of one another, so trans-
mission bias will be non-zero. Despite this, the struc-
ture of the Price equation allows for the natural selec-
tion term to be analysed in isolation. Following this
method, many historical results such as Hamilton’s rule
and Fisher’s fundamental theorem have been rederived
using the Price equation (Queller, 1992; Frank, 1997).
Such results focus on natural selection alone but can
be generalised to include the transmission bias term as
well, giving a complete expression for total evolutionary
change. These exact expressions can be useful for solv-
ing more complex evolutionary problems that involve
forces beyond natural selection (Frank, 1997).

However, the standard form of the Price equation
is not fully general to all biological situations. Price
(1970) himself noted this in his original paper: ‘equa-
tion 1 fails if gene A ploidy is not the same in each P1
member.’ It is therefore well known that the Price equa-
tion does not account for migration or mixes of asexual
and sexual reproduction. There have been several at-
tempts to correct for this in the literature. Kerr and
Godfrey-Smith (2009) did so by creating a connection-
based partition and Grafen (2015) developed a class-
structured Price equation that allowed for both sex and
age-classes. Both of these approaches have their appli-
cations (for example, see Fox & Kerr, 2012). Yet these
extended partitions cannot be easily reconciled with the
fundamental theorems of evolution as derived from the
Price equation (Queller, 2017).

In this paper, we aim to connect these fundamen-
tal theorems to the extended Price equation given by
Kerr and Godfrey-Smith (2009). We do this by first re-
deriving the extended equation using a new method.
This yields an expression that is identical in form to the
original Price equation, but with an additional term.
Second, we discuss what this additional term repre-
sents, how it can be used, and when it has an explicit
causal interpretation (Okasha & Otsuka, 2020). We
note that the extra term allows for the population struc-
tures ofmigration and sex to be integrated into the Price
equation. Third, we use a standard quantitative ge-
netic model to derive a genetical form of the extended
equation. Using this equation, we follow a similar path
to Frank (1997) to derive a total, exact expression for
Hamilton’s rule (Hamilton, 1964). We highlight that
this extended rule can be applied to situations of hap-
lodiploidy, which was not previously possible with the
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Figure 1: Definitions of fitness and ancestry value. Circles in the top
row represent ancestors in A with each interior number indicating
absolute fitness (wi). Circles in the bottom row represent descendants
in D with each interior number indicating ancestry value (a j). Arrows
are parent-offspring relationships.

standard Price equation. Fourth, we consider applica-
tions to modelling and derive a simple model for the
evolution of altruism with migration. Here, the ex-
tended partition allows the modeller to identify and
quantify the specific causes of change. Finally, we sum-
marise our findings and consider future applications of
our equations.

Definitions
Consider an ancestral population A containing nA an-
cestors and a descendant population D containing nD
descendants. Let the absolute fitness of an ancestor, wi ,
be given by the number of descendants that they have
in D. In the language of parent-offspring relationships,
we think of wi as the number of children that the ith
ancestor bears. Let w̄ denote the average fitness of all
ancestors in A. Additionally, we also define an index set
Wi , which contains the indices of all the descendants of
the ith ancestor. Its cardinality is therefore wi .

In the descendant population D, we let a j be the
number of ancestors of a particular descendant j. Sim-
ilar to fitness, we can think of a j as the number of par-
ents of the jth descendant. As such, we refer to a j as
the ancestry value of the jth descendant. Let āD be the
average ancestry value of all descendants. Since we are
now dealing with averages over two different sets, we
use the subscript D to indicate that āD is an average
over descendants not ancestors. Again, we also define
the index set A j which contains the indices of all the an-
cestors of the jth descendant and which has cardinality
a j . The definitions above are summarised graphically in
Figure 1.

We can now derive two identities which will be use-
ful in the next section. First, the total number of con-
nections (arrows) between A and D is:

nAw̄=
nA
∑

i=1

wi =
nD
∑

j=1

a j = nD āD. (1)

This is just two different ways of counting the total

Migrant Offspring of
asexual rep.

Offspring of
sexual rep.

Figure 2: The ancestry bias term, CovD(a, z)/āD, detects whether
there is a statistical association between ancestry value and trait
value. Shading here represents different trait values for descendants
in D and arrows are implied parental connections to A.

number of parent-offspring connections. Second, we
can also replace wi and a j in Equation 1 above with
summations over their corresponding index sets to get:

nA
∑

i=1

∑

j∈Wi

1=
nA
∑

i=1

wi =
nD
∑

j=1

a j =
nD
∑

j=1

∑

i∈A j

1. (2)

Here, the unit constant function under the summations
is acting as a counter, similar to Kerr and Godfrey-
Smith’s (2009) indicator variable. However since nD
and nA are finite, we can replace this constant function
with any arbitrary function fi j , and still interchange the
order of summation according to Equation 2.

As is standard with the Price equation, eventually we
aim to track some trait value z across the two popula-
tions. To this end, let an ancestor in A have trait value
zi and let their (potential) offspring have average trait
value z′i =

1
wi

∑

j∈Wi
z j . We use dashes to indicate a prop-

erty of D as seen from the perspective of A. This feature
of the standard Price equation will become significant
later on. We can then let ∆zi = z′i − zi denote the av-
erage change in trait value between a parent and their
offspring. Across all of A and D, we let z̄A and z̄D be
the average trait values of the ancestor and descendant
populations respectively. Finally, let∆z̄ = z̄D−z̄A denote
total average change between A and D.

Derivation
Using these definitions, the next step in typical deriva-
tions of the Price equation is to make the following as-
sumption (Frank, 2012; Gardner, 2020; Okasha, 2006):

z̄D =
1
nA

nA
∑

i=1

wi

w̄
z′i . (3)

This assumption however, restricts several possible pop-
ulation structures, and is not fully general. For exam-
ple, migration can affect the left hand side of Equation
3 by changing descendant average trait value, but it cer-
tainly cannot affect the right hand side, since migrants
cannot be detected by z′i and wi alone. To derive an ex-
tended partition, we will not make this assumption. In-
stead, we seek a remainder term by rearranging Equa-
tion 3 and simplifying using Equations 1 and 2:
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z̄D −
1
nA

nA
∑

i=1

wi

w̄
z′i = z̄D −

1
nA

nA
∑

i=1

wi

w̄
1
wi

∑

j∈Wi

z j

= z̄D −
1

nAw̄

nA
∑

i=1

∑

j∈Wi

z j

= z̄D −
1

nD āD

nA
∑

i=1

∑

j∈Wi

z j

= z̄D −
1

nD āD

nD
∑

j=1

∑

i∈A j

z j

= z̄D −
1

nD āD

nD
∑

j=1

a jz j .

The second term is equal to ED(az/āD) and since
ED(a/āD) = 1 we can write z̄D = z̄DED(a/āD). Using
the statistical definition of (population) covariance then
yields:

z̄D =
1
nA

nA
∑

i=1

wi

w̄
z′i −CovD

�

a
āD

, z
�

. (4)

Equation 4 is fully general as opposed to Equation 3,
so this highlights that the original Price equation as-
sumes that CovD(a, z) = 0. We discuss the significance
of this below. To derive the extended partition, we can
now follow any of the standard derivations of the Price
equation listed above whilst using Equation 4 in place
of Equation 3. In short, we do this by applying the iden-
tity z′i = zi +∆zi and then simplify using the statistical
definitions of expectation and covariance to get:

∆z̄ = z̄D − z̄A = z̄D − EA

�

w
w̄

�

z̄A

= CovA

�

w
w̄

, z
�

+ EA

�

w
w̄
∆z
�

−CovD

�

a
āD

, z
�

. (5)

Equation 5 is written in terms of relative fitness wi/w̄
and relative ancestry value a j/āD. For notational conve-
nience, it is often easier to multiply both sides of Equa-
tion 5 by w̄ to remove fractions and deal with absolute
fitness and ancestry value instead:

w̄∆z̄ = CovA(w, z) + EA(w∆z)−
nD

nA
CovD(a, z), (6)

where w̄/āD = nD/nA by Equation 1.

Interpretation of the third term
How do we interpret CovD(a, z)? At first the answer
seems quite simple. This term measures how much the
trait value of descendants (z) varies with the number
of ancestors that each descendant possesses (a). Thus,
we call this the ancestry bias term (Figure 2).

Using this straightforward covariance interpretation,
we can quickly identify two biological cases where this
term will be non-zero. First, in the case of migration

A
z j

a j

B
a j

z j

C

u

z j a j

Figure 3: (A) Causal dependence of a j on z j . (B) Causal dependence
of z j on a j . (C) An unidentified cause u that results in z j and a j being
correlated.

where individuals from a population with a different av-
erage trait value, immigrate into D. Second, if ancestors
reproduce both asexually and sexually, with offspring
trait value dependent upon the mode of reproduction
— reproductive bias. One interesting case of this are
horizontal gene transfers (HGT) of antibiotic resistance
genes between bacteria (von Wintersdorff et al., 2016).
Bacteria that receive a HGT are more likely to receive a
resistance gene and are therefore more likely to survive
in the presence of the particular antibiotic in question.
Whilst those bacteria that are only produced via binary
fission, with no HGT, are less likely to carry the resis-
tance gene and are thereforemore likely to die. In terms
of the internal book-keeping of the Price equation, these
bacteria can be considered to have two parents. In this
way, ancestry bias will be non-zero since ancestry value
covaries with trait value.

These interpretations give an intuitive description of
what the ancestry bias term describes, but what if we
try to understand the covariance causally? There are
three clear possibilities for causal relationships, shown
in Figure 3. In the case of horizontal gene transfers
above, ancestry value is influencing trait value (Figure
3b). Another example of this type of relationship is the
sex determination of honey bees (or any haplodiploid
species). Unfertilised eggs, the result of asexual repro-
duction, become male drones whilst fertilised eggs, the
result of sexual reproduction, become female workers
(Figure 4).

On the other hand, trait value can also influence an-
cestry value (Figure 3a). This interpretation lends it-
self quite easily to cases of migration. For instance,
we could consider a population with several distinct
groups and migration between them. If faster indi-
viduals are more likely to migrate and slower individ-
uals more likely to be philopatric, then trait value is
clearly influencing ancestry value. On a genetic level,
there are also genes that can predispose an individual
to be migratory (Liedvogel et al., 2011). Further still,
some other unidentified factor u might be influencing
both descendant ancestry value and trait value causing
CovD(a, z) to be non-zero (Figure 3c).

This discussion highlights that we cannot simply as-
sume what CovD(a, z) represents causally by inspection
(Okasha & Otsuka, 2020). In general, it is not even
clear whether the ancestry bias term will always have
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Drone Queen

Worker Drone

Figure 4: Multi-level selection in eusocial haplodiploid species such
as honey bees. Larger circles are individuals, inner circles are alleles
at a particular gene locus. Male drones are haploid, female workers
and queens are diploid. Counting alleles, both the drone and the
queen have a genetic fitness of 1 since there is one exact copy of their
respective genotypes among descendants. However, the queen has an
individual fitness of 2, whilst the drone has an individual fitness of 1.
See Okasha (2006) for an in-depth review on multi-level selection.

an evolutionary interpretation. The key issue lies in the
fact that migration and reproductive bias are both ac-
counted for by the ancestry bias term, despite the fact
that these are not typically seen as biologically related
phenomena. Indeed, a priori, there are few reasons to
suspect that migration and reproductive bias should be
at all related. For this reason, if both of these phenom-
ena are present in the model we are studying, this term
is unlikely to have an interpretation beyond the statis-
tical association shown in Figure 2.

It is possible however, to get clear causal partitions
of the ancestry bias term when models are restricted
slightly. For instance, when migration is present with
only one mode of reproduction. In this case, migration
will be the only force changing the ancestry bias term
meaning that CovD(a, z) can be interpreted as the effect
of migration.

Partial Fisherian change

Many applications of the Price equation seek to describe
the part of total evolutionary change that is caused by
natural selection, in a constant environment. First con-
sidered by Fisher (1930), this partial change became
the focus of many subsequent evolutionary theorems,
rules and equations (Queller, 2017). We call this par-
tial Fisherian change and denote it by ∆F z̄A (Frank,
1997). In this section, we use the extended Price equa-
tion to derive an exact expression for total evolutionary
change, from which we can more clearly interpret what
exactly partial Fisherian change represents.

In classical quantitative genetics, the phenotype of a
particular trait A is often written using the model:

P = A+ D+ I
︸ ︷︷ ︸

Genotype

+E (7)

where A represents the additive genetic component of
the phenotype, D is the effect of dominance, I the ef-

fect of epistasis between genes and E is the influence of
the environment. Fisher (1930) was particularly inter-
ested in the heritable (additive) components of traits.
In the model above, this is A but in the rest of the Price
equation literature, it is usually written as g. We call g
the additive genetic value or breeding value of a partic-
ular trait z. For a diploid organism, it is calculated as
follows. Consider all possible alleles ` at every gene lo-
cus for a particular organism. Each organism will have
x` = 0,1 or 2 copies of allele `. Using partial linear
regression, we can then write:

zk =
∑

`

b`xk` + ek = gk + ek (8)

where b` is the average effect of allele x` on the pheno-
type. This linear model is fully general unlike Equation
7, which assumes independence of the right-hand side
terms.

In practice, most of the average effects (b`), will be
close to zero meaning that we only need to index over
a handful of alleles rather than all of them. In any case,
by standard linear regression theory, Cov(gk, ek) = 0 so
by definition, there is no interaction between gk and ek.
We also have E(e) = 0 which means that E(z) = E(g).
We have intentionally chosen the index k above to be
abstract as it applies to both populations A and D. Thus
w̄∆z̄ = w̄∆ ḡ. Substituting z = g into Equation 6 then
yields:

w̄∆z̄ = CovA(w, g) + EA(w∆g)−
nD

nA
CovD(a, g). (9)

To derive the expression for partial Fisherian change
now requires setting [EA(w∆g)−CovD(a, z)]→ 0 to get:

w̄∆F z̄ = CovA(w, g). (10)

Equation 10 is known as Robertson’s secondary theo-
rem of natural selection and it can be used to prove
several other theorems: Fisher’s fundamental theorem,
the general form of Hamilton’s rule (HRG) and the
breeder’s equation (Frank, 1997, 2012). In a slightly
different form, Fisher (1930)made the claim that Equa-
tion 10 represents the change in trait value that would
occur if the environment were constant and if the only
force acting upon the populationwere natural selection.

At face value, this claim seems reasonable if we as-
sume that CovA(w, g) is a faithful, causal representation
of the effect of natural selection and if the other missing
terms encapsulate all other effects. Setting the latter
two terms of Equation 6 to zero is equivalent to isolat-
ing the force of natural selection in a constant environ-
ment and we are then left with Fisher’s interpretation.

There are a few problems with this line of reason-
ing. The key one is that Fisher’s interpretation of the
environment was much broader than what most biolo-
gists would consider constitutes the environment today.
Recall that g only represents additive genetic effects so
dominance, epistasis and frequency dependence of al-
leles on others in the population are not encapsulated
by CovA(w, g). Under Fisher’s interpretation then, these
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effects are all part of the environment (Price, 1972b;
Ewens, 1989; Okasha, 2008). This is quite different to
the model shown in Equation 7.

Furthermore, many of the discussions about par-
tial Fisherian change listed above are based on setting
EA(w∆g)→ 0 or making equivalent assumptions. How-
ever, we now know that this condition is actually not suf-
ficient to arrive at Equation 10, since there is the extra
ancestry bias term to deal with. In addition to ignor-
ing the effects of dominance, epistasis and frequency
dependence, we also require setting CovD(a, g) → 0.
Note that we will ignore the case where CovD(a, g) =
EA(w∆g) since this equality is unlikely to be stable.

For ancestry bias to be zero, we require the absence
of all the possible effects described in the previous sec-
tion. In most biological cases, it makes sense to ignore
migration, as this is usually considered to be a distinct
evolutionary force from natural selection. Excluding
the other effects however, is more complex. This would
set aside phenomena like haplodiploidy and horizon-
tal gene transfers. These are not typically seen to be
separate forces from natural selection; they are merely
features of the reproductive structure of the species
in question. Hence, the force of haplodiploidy is not
typically investigated separately from natural selection.
This is all to say that it is very natural to consider the
change due to natural selection in a haplodiploid pop-
ulation. Yet such an analysis would require the ances-
try bias term, or equivalent, and cannot be captured by
CovA(w, g) alone.

Equation 10 therefore describes change in popula-
tions where phenomena described by the ancestry bias
term are absent. This is an important point, espe-
cially when considering social evolution, where hap-

lodiploidy is often of particular interest (Fromhage &
Kokko, 2011; Gardner et al., 2012). This is primarily
because many eusocial species have haplodiploid genet-
ics. Analysis of such models with theorems that come
from Equation 10, will ignore these features of popula-
tion structure. For instance, HRG alone will not be able
to distinguish between haplodiploid reproduction and
standard diploid reproduction (Queller, 1985). This is
somewhat concerning given that haplodiploidy was the
initial inspiration for Hamilton (1964). However, we
can easily correct for this issue by including both the
transmission and the ancestry bias term in HRG. The re-
sult is an exact expression for total evolutionary change,
whereby w̄∆z̄ > 0 if and only if:

βA
g ′,gβ

A
w,g ′|g + β

A
w,g|g ′ >

(nD/nA)CovD(a, g)− EA(w∆g)
VarA(g)

,

(11)
where each βA is a regression coefficient over the
population of ancestors and g ′ is the average genetic
value of social partners. See Queller (1992), Frank
(1997) and Gardner et al. (2011) for full derivations
and in-depth discussion. Substituting r = βA

g,g ′ , b =
βA

w,g ′|g ′ , c = −βA
w,g|g ′ and T = [(nD/nA)CovD(a, g) −

EA(w∆g)]/VarA(g) gives the familiar form of Hamilton’s
rule with an additional term, allowing for effects like
haplodiploidy: r b− c > T .

This is an exact, total result that applies to all evo-
lutionary situations that can be modelled with the ex-
tended Price equation. As we have discussed in length
above, these applications are much wider in scope than
the standard Price equation. Although, in the particular
case where T = 0, we recover the usual form of HRG.
Here, it is important to note that this standard form of
HRG emerges directly out of the natural selection term
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Figure 5: A simple model for the evolution of an altruistic trait. In both (A) and (B), there are 50 altruistic individuals and 10 selfish individuals
in generation 0. Base fitness is w0 = 0.95. Altruists provide fitness benefit b = 1.05 to all individuals in the population at fitness cost c = 1 for
themselves. Selfish individuals are repelled from the population with strength d = 1.5. (A) The force of selection is always positive meaning
that altruism is favoured by natural selection. This causes the altruistic trait to become rapidly fixed. (B) The force of migration is now added,
with µ= 1 selfish individuals entering the population each generation. Altruism is initially favoured by natural selection, but as the population
shrinks, the force of migration increases until selfishness becomes favourable. The altruistic trait is eventually lost, and the number of selfish
individuals plateaus.
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of the Price equation. Yet Equation 11 accounts for all
forces of evolution, not just natural selection. On the
one hand, this may be useful in certain applications,
but on the other, it complicates the relatively simple
r b − c > 0. This however, is a necessary complication
if we want to study the effect of haplodiploidy, within
the framework of the extended version of HRG. If the
standard form of HRG is used alone, then the effects of
haplodiploidy will be ignored. Ultimately, whether hap-
lodiploidy should be considered together with, or apart
from natural selection, is up to the theorist.

There are two further caveats to bear in mind when
using Equation 11. First, each side of the inequality
is not independent from the other. This is namely be-
cause the value of VarA(g) appears on both sides of
the inequality; it is used in the calculation of r for in-
stance. Second, the effect of haplodiploidy on T may
not be straightforward to understand. For example,
haplodiploidy can have an effect on both transmission
and ancestry bias (Figure 4). Depending on how exactly
this occurs, it may result in either a positive or a nega-
tive value of T . Hence, it can be misleading to draw im-
mediate conclusions from the value of T alone. This is
in contrast to the game theoretic version of Hamilton’s
rule, denoted HRS for the special case (Birch, 2014).
With HRS, the effect of haplodiploidy on altruism is
clear because of the use of Wright’s coefficient of re-
latedness. This is the form of the rule that Hamilton
(1964) originally used when describing social evolu-
tion in haplodiploid insect species. However, HRS does
not generalise well and fails for non-additive payoffs, as
well as for more complex cases (Queller, 1985; Nowak
et al., 2010; van Veelen, 2009). Equation 11 however,
generalises just as well as the extended Price equation,
making it applicable to a very wide array of circum-
stances (Gardner et al., 2011).

Using a similar method to that shown in this section,
we can also derive total expressions for any of the other
fundamental theorems of evolution. Namely, we can
start from Equation 9 and follow their respective deriva-
tions to arrive at the extended versions (Queller, 2017;
Frank, 1997). We will not provide these expressions
here.

Partitioning evolutionary forces

Another application of the extended Price equation is
partitioning the dynamics of a particular model into
specific evolutionary forces. This of course can be done
using other methods, but in this section, we construct
a simple model for studying the evolution of altruism
within the framework of the Price equation. The an-
cestry bias term in particular is useful in comparing the
effects of migration against natural selection. This anal-
ysis could also be done with the equations given by Kerr
and Godfrey-Smith (2009). However, our equations of-
fer two advantages. First, our notation makes it slightly
clearer what each term represents. Second, our equa-

tions are an extension of the standard Price equation.
This means that any previous models constructed using
a Price equation approach can easily be extended to in-
clude migration and reproductive bias by simply adding
in the ancestry bias term.

For our model, we consider an asexually reproducing
population with two types of individuals: selfish (z = 0)
and altruistic (z = 1). In the nth generation, let there
be sn selfish individuals, ln altruistic individuals and let
pn = ln/(ln+ sn) be the proportion of altruistic individu-
als. Both types have a base fitness of w0 = 1 and receive
a fitness benefit of pn b from all altruistic individuals —
the greater the proportion of altruistic individuals the
greater the benefit received. Let altruists suffer fitness
cost c for conducting the altruistic act and assume that
altruists can detect selfish individuals and actively re-
pel them from the group. This is similar to how the
immune system can detect and destroy selfish cancer
cells (Loose & Van de Wiele, 2009). Accordingly, self-
ish individuals suffer fitness cost pnd — the greater the
proportion of altruistic individuals, the stronger selfish
individuals are repelled. With this setup, the fitness val-
ues of altruistic and selfish individuals in generation n
are respectively:

wl = w0 + pn b− c,

ws = w0 + pn(b− d).

To prevent the overall population from becoming too
large, we can adjust w0 to be smaller, so long as it re-
mains positive. In doing this we must also be careful
to avoid negative population sizes. This can be done by
ensuring: w0 ≥ d − b and w0 ≥ c. For simplicity, as-
sume that the altruistic trait is perfectly inherited such
that transmission bias is zero. Using the standard Price
equation we get (see Appendix for details):

w̄∆z̄ = CovA(w, z) = pn(1− pn)(pnd − c).

nD

nA
CovD(a, z) = pn+1µn,

and therefore Equation 6 gives:

w̄∆z̄ = pn(1− pn)(pnd − c)− pn+1µn. (12)

Equation 12 allows us both to model the dynamics
of this toy model and to examine the causes of these
dynamics (Figure 5). In our particular example, we see
that the force of migration is relatively small whilst the
population is large (n> 25). As the population shrinks
due to the base fitness, w0 = 0.95, being less than 1, this
force begins to increase. Then, as altruists become less
frequent, selection switches to favour selfish behaviour
rather than altruism.

We could use this analysis to aid hypothetical exper-
imental interventions to favour the evolution of altru-
ism. For instance, to keep the force of migration small,
it is ideal to keep the local population large. This is ob-
vious in our simple case where all migrants are selfish.
However, our model can also be extended to account for
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Complete Diagram Perspective from A Complete Diagram Perspective from A

A w̄∆z̄ = 1 w̄∆z̄ = 1 C w̄∆z̄ = 1 w̄∆z̄ = 1

B w̄∆z̄ = 1/2 w̄∆z̄ = 1 D w̄∆z̄ = 3/4 w̄∆z̄ = 1/2

Figure 6: Evolutionary scenarios from complete and restricted perspectives. Arrows indicate parent-offspring relationships. Shaded individuals
have trait value 1 and unshaded individuals have trait value 0. The perspective from A is the evolution perceived by natural selection, CovA(w, z),
and transmission bias, EA(w∆z), alone. w̄∆z̄ is the total evolutionary change as seen from each perspective. (A) Homogeneous migration where
migrants appear the same as direct descendants. (B) Non-homogeneous migration where migrants introduce new variation. This is invisible
from the perspective of A. (C) Completely sexual reproduction. From the perspective of A, there are twice the number of descendants, but
the total evolutionary change is the same. (D) Mixed asexual and sexual reproduction. The perspective from A is inaccurate and results in an
incorrect calculation of total evolutionary change.

instances where only a proportion of migrants are self-
ish. Analysis like this is straightforward with the Price
equation, since the partitioning of evolutionary forces
is built into its structure, up to causal interpretation of
the statistical terms. In this way, the extended partition
expands the modelling capacities of the Price equation
to match those achieved via other methods (Niehus et
al., 2015).

Discussion

To date, the standard Price equation has certainly been
the best contender for the title of a fundamental the-
orem of evolution (Queller, 2017). Its abstract nature
makes very few assumptions compared to almost every
other equation in evolutionary biology. However, in this
paper we have made clear the implicit assumptions of
Price’s original equation. At a minimum, one of the four
classical forces of evolution is missing: gene flow. Be-
yond this, the equation also assumes a constant mode of
reproduction and equal ploidy amongst all individuals.

For this reason, applications of the Price equation
have nearly always made simplifying assumptions such
as: (1) excluding migration and (2) assuming only one
mode of reproduction (exclusively asexual or sexual).
These assumptions ensure that CovD(a, z)→ 0, and al-
low the standard Price equation to be used. It is also
very common to make such assumptions when con-
structing models in population genetics. In light of this,
it is not so surprising that the ancestry bias term has
been largely neglected.

Despite this, it is still unclear what exactly goes

wrong with the original two terms to fail to account
for the expanded scenarios discussed above. The key to
investigating this is noting that both the natural selec-
tion and transmission bias terms index over the ances-
tral population A alone (Frank, 1998; Okasha, 2006).
Yet some aspects of population structure can only be
detected by also indexing across D (Figure 6). Migra-
tion is one such example. If we only index over A, it will
be impossible to find a migrant in D, who by definition
has no connections to ancestors in A (Figure 6a, b).

In the case of mixed modes of reproduction, a mis-
counting problem can arise. To see how this occurs, first
consider the case of constant sexual reproduction with
two sexes (Figure 6c). Here, two parents reproduce
sexually to have two children. Each parent has fitness
wi = 2 but from the perspective of A, this means quite
bizarrely that there are apparently four children in to-
tal. However, this is not a problem since each descen-
dant is counted exactly twice when indexing over A, re-
sulting in the correct calculation of total evolutionary
change (w̄∆z̄). By contrast, if there is amix of reproduc-
tion methods, then some descendants may be counted
twice and others only once (Figure 6d). This can lead
to a miscalculation of total evolutionary change.

Therefore, the view of evolution from the perspective
of the ancestral population alone, is restricted, whilst
the extended partition allows for a complete view of
evolution. In situations where the perspective from A
is incomplete, the ancestry bias term perfectly adjusts
for this, giving the correct calculation of total evolution-
ary change (w̄∆z̄). Thus, we can think of ancestry bias
as a correction term.
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Conclusion

The extended Price equation provides an integrated ap-
proach to allow for a range of evolutionary phenom-
ena, including migration and mixed asexual and sex-
ual reproduction. These effects are all accounted for
by a single extra term, CovD(a, z), which represents an-
cestry bias. This term detects the covariance between
a descendant’s trait value and the number of parents
they have in the ancestral population. When a specific
causal model is imposed, ancestry bias can also quan-
tify particular evolutionary forces like migration. More
generally, ancestry bias allows for mixed ploidies within
the framework of the Price equation. With this exten-
sion, we can therefore connect phenomena like hap-
lodiploidy to many standard fundamental theorems of
evolution that are derived from the Price equation. For
instance, a generalised form of Hamilton’s rule can be
derived that accounts for haplodiploidy and migration.

There are also applications to modelling. The ex-
tended partition allows for the integration of migration
and mixed modes of reproduction into Price-equation
based models. This increases the domain of applicabil-
ity of the Price equation, and may make it a suitable
alternative to ODE-based models.

There are several further applications of the gener-
alised Price equation that could be considered. First,
asexual reproduction could be reinterpreted as a con-
tinuation of generations alongside standard sexual re-
production. Under this interpretation, simple models
for overlapping generations could be constructed, offer-
ing an alternative to class-basedmodels (Grafen, 2015).
We envisage that this approach could be used to study
life-history traits and social evolution between genera-
tions, such as in the Grandmother hypothesis (Cant &
Johnstone, 2008). Second, applications to other funda-
mental theorems could be considered. In this paper we
have focused on Hamilton’s rule, but the extended par-
tition could easily be used to derive total expressions
for Fisher’s fundamental theorem of natural selection
or the breeder’s equation. Third, a multi-level selec-
tion (MLS) partition could also be imposed upon the
extended Price equation. In fact, the standard deriva-
tion used to derive the MLS partition could also be ap-
plied to the ancestry bias term (Okasha, 2006; Gardner,
2015). This would allow for the study of intra-group
versus inter-group ancestry bias. Finally, deeper causal
analysis of the ancestry bias term using the counterfac-
tual method employed most recently by Okasha and Ot-
suka (2020) would be insightful.
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Appendix

Derivation of altruism model

We use a set of tables to calculate Price equation terms,
similar to Gardner et al. (2011).

Table 1: Population data over A

Fitness (wi) Trait value (zi) Frequency

1+ pn b− c 1
ln

ln + sn
= pn

1+ pn(b− d) 0
sn

ln + sn
= 1− pn

Table 2: Population data over D

Ancestry Trait Frequencyvalue (a j) value (z j)

1 1
ln+1

ln+1 + sn+1
= pn+1

1 0
sn+1 −m

ln+1 + sn+1
= 1− pn+1 −µn+1

0 0 m
ln+1 + sn+1

= µn+1

The average trait value in A will simply be the pro-
portion of altruists: z̄A = ln/(ln + sn) = pn. Multiplying
across the rows in Table 1 and adding the appropriate
results yields:

w̄= pn(1+ pn b− c) + (1− pn)(1+ pn(b− d))

EA(wizi) = pn(1+ pn b− c)

which means that the natural selection term is:

CovA(wi , zi) = EA(wizi)− w̄z̄A

= pn(1− pn)(pnd − c).

Similarly, the average trait value in D will be the propor-
tion of altruists: z̄D = ln+1/(ln+1 + sn+1) = pn+1. Again,
we multiply across the rows in Table 2 and add the cor-
responding results together to get:

āD = 1−µn+1 and ED(a jz j) = pn+1

So the ancestry bias term is:

nD

nA
CovD(a, z) =

ln+1 + sn+1

ln + sn
(ED(a jz j)− āD z̄D)

=
ln+1 + sn+1

ln + sn
pn+1µn+1 = pn+1µn.
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