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Abstract 
 
Balancing selection occurs when multiple alleles are kept at elevated frequencies in equilibrium 

due to opposing evolutionary pressures. A new statistical method was developed to test for se-

lection using efficient Bayesian techniques. Selection signals in three different data sets, gener-

ated with variable sequencing technologies, were compared: clinical trios, HLA NGS typed sam-

ples, and whole-genome long-read samples. Genome-wide, selection was observed across mul-

tiple gene families whose biological functions favor diversification, revealing established targets 

as well as 45 novel genes under selection. Using high-resolution HLA typing and long-read se-

quencing data, for the characterization of the MHC, revealed strong selection in expected peptide-

binding domains as well as previously understudied intronic and intergenic regions of the MHC. 

Surprisingly, SIRPA, demonstrated dramatic selection signal, second only to the MHC in most 

settings. In conclusion, employing novel statistical approaches and improved sequencing tech-

nologies is critical to properly analyze complex genomic regions.  

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.09.28.462165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462165
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Introduction: 

Balancing selection occurs when one or multiple sources of evolutionary pressures such 

as pleiotropy, overdominance, negative selection, and positive selection strike a balance to 

keep multiple competing alleles in equilibrium across a population. This is in contrast with nega-

tive selection, which purges alleles that are detrimental to fitness 1–4, and positive selection, 

which pushes advantageous alleles towards fixation 5–7. When balancing selection occurs, it not 

only results in increased polymorphism at the allele directly under evolutionary pressure, but 

surrounding variants on the same haplotypes will also rise in frequency, in a process known as 

hitchhiking (Figure 1). This leaves behind linkage disequilibrium (LD) blocks, regions that con-

tain strong correlation among neighboring variants, and a higher local density of polymorphisms 

than would be expected from neutral genetic drift. Improved detection and understanding of bal-

ancing selection in the human genome can provide valuable insight into heritable diseases and 

our species’ adaptation to varying environmental exposures 8,9. Existing methods for identifying 

balancing selection look for enrichment of common alleles 10,11 or deviations from neutral drift 12, 

while others search for trans-species selective alleles 9,13–16. Testing for deviations from neutral 

drift may miss selective signals and testing for trans-species selective alleles predominantly 

captures only ancient signals that affect the fitness across multiple species. To address the 

shortcomings, we developed LD approximate Bayesian factor (LD-ABF), a new robust statistical 

method that directly investigate balancing selection by testing for both density of polymorphisms 

and strength of LD. Patterns of balancing selection were investigated using three distinct da-

tasets derived from varying sequencing technologies. First, we scanned for selection genome-

wide using phased high-quality SNP array and exome sequence data from 497 clinical samples 

(including 334 trios, Table 1). In order to investigate the major histocompatibility complex 

(MHC), a complex genomic region governing immunity known to be under various evolutionary 

pressures, in greater detail, we then specifically analyzed key human leukocyte antigen (HLA) 

genes using high-resolution Next Generation Sequencing (NGS) typing on thousands of unre-

lated haplotypes worldwide from the 17th International HLA and Immunogenetics Workshop 

(IHIW) 17. Finally, we validated our findings and identified complex signal artifacts using an inde-

pendent set of high quality long-read whole genome sequencing (WGS) samples from the Hu-

man Pangenome Reference Consortium (https://humanpangenome.org).  

Results 

Overview of LD-ABF Statistical Method 

Approaches to assess balancing selection by quantifying local polymorphisms and LD 

patterns are complicated by both rare variants (resulting in sparse data) and instances of close 
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or perfect LD among variants (resulting in quasi or fully separated data). We implemented a 

Bayesian logistic regression model using logF priors (the conjugate family for binomial logistic 

regression), which enabled us to utilize established data augmentation techniques to efficiently 

estimate posterior coefficients 18–20. Such application of logF priors, which are weakly informa-

tive priors that are also grounded in penalized regression methods, has been shown to be effec-

tive in settings of both sparse and fully separated data without making major assumptions 18,21. 

Then to test how well a SNP predicts its neighboring variants we derived an approximate Bayes 

factor (ABF)22 . Finally, the log of the products of ABFs for every base in a set window (here 1Kb 

was used) is taken to derive a combined score that measures both the density of polymor-

phisms and degree of LD around the test SNP. Comparing against existing methods, evolution-

ary simulations showed that our novel method performed as well or better in almost all settings 

and appears most robust in picking up subtle signals of recent balancing selection (Supple-

mental Table 1 and Supplemental Figure 1). A more detailed account of the method can be 

found in the supplemental material and code is available online at https://github.com/tris-10/LD-

ABF.  

Genome Wide Scan for Balancing Selection in Clinical Trios  

First, we analyzed 497 clinical samples from the Children’s Hospital of Philadelphia with 

SNP array data and matching whole exome sequencing, including 334 trios (Table 1). These 

samples were phased using SHAPEIT2 and clustered into ancestral populations based on PCA 

using 1000 Genomes Project (1KGP)23 super populations24,25 (see Methods). LD-ABF was cal-

culated genome wide for each population to determine where different balancing selection 

events occurred and in what populations (Figure 2A, Supplemental Figure 3-4). Although LD will 

dissipate further away from a selection event, there is some spread beyond the immediate win-

dow to neighboring regions. To identify unique selection events, when a local LD-ABF peak was 

identified, bases within a set neighborhood were excluded from additional LD-ABF peak deter-

mination. To be conservative in avoiding double counting peaks within long extended LD, the 

analysis was first performed using neighborhoods of 1 Mb around the highest local scores. A 

follow up analysis was then performed using 100 Kb neighborhoods to detect peaks at a finer 

granularity (Online Data). Within each super population, coordinates of the 100 highest peaks 

were used to identify candidate genes under balancing selection (Online data). Among these, 

61 genes were shared across populations (Figure 2D), including key HLA genes. Furthermore, 

we investigated the top 10 peaks of each population in detail (Table 2).  

The top peak for the AFR population is in OR51B6 of the olfactory receptor (OR) gene 

cluster; for SAS, the top peak appears in HLA-DPA1, a MHC class II gene; and for AMR, EUR, 
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and EAS populations, the top peak is in SIRPA, which encodes for a signal regulatory protein of 

the immunoglobulin superfamily. In fact, peaks in SIRPA rank among the top 4 for each popula-

tion. The second strongest selection signal in the AFR samples is in SLC35G4, which encodes 

for a putative solute carrier. This strong selection signal in SLC35G4 is a novel one. Among all 

top 100 peaks across populations, a total of 45 novel genes (online data, 34 genes using 100Kb 

peak neighborhood Figure 2D, 37 with 1Mb peak neighborhood) were tagged by signals of bal-

ancing selection (Table 2 and online data), including 9 shared between all populations (Figure 

2D): COL5A1, HCG20, OR1S1, OR2T4, QRICH2, SLC35G4, SNHG14, SNRPN, TRMT9B.   

As expected, several other top peaks are in HLA genes. In fact, peaks in HLA-A, -C, and 

-DPA1 are shared among the top 100 peaks across all populations. Their relative rankings, 

however, vary from population to population. In the largest populations, EUR and AMR, the 

highest HLA peak is found in -C, while for AFR, EAS, and SAS, the highest HLA peak is found 

in -DPA1. In total, 18 HLA and other immunoglobulin superfamily genes are marked by top 100 

LD-ABF peaks across all populations (Figure 2B and Supplemental Table 4). Immune related 

and cell surface receptor signaling genes are expected candidates for balancing or positive se-

lection as their functionality is often directly tied to environmental interactions. Consistent with 

this, we also detected LD-ABF peaks across 22 OR genes and several taste receptor genes 

(Figure 2B and online data). In addition, peaks were also seen across members of several other 

gene families 26, including zinc fingers (ZF) (14), cytochromes (6), solute carriers (4), and myo-

sin heavy chains (4) (Figure 2B).  

Bases scoring in the top 0.1% LD-ABF genome wide were then intersected with known 

GWAS catalog significant SNPs 27 to find overlap between strong signals of selection and 

known disease associated variants (Table 3 and Supplemental Table 2). Using 0.1% coincides 

with a more restrictive threshold than the cut off for top 100 peaks while still allowing for consid-

eration of multiple variants of interest within the same peak. Many of the SNPs overlapping high 

LD-ABF scores were found to be associated with blood and immune related traits. Among 

these, the strongest signal for EAS was at rs17855611 in SIRPA associated with blood protein 

levels, and for SAS, at rs1126506 in HLA-DPA1 associated with anti-rubella IgG levels. In con-

trast, the strongest signals in AFR, AMR, and EUR were seen in OR51B6, which corresponds to 

rs5006884 with known association to fetal hemoglobin (HbF) levels in sickle cell anemia, a clas-

sical example of balancing selection driven disease 28. This SNP lies upstream of the β-globin 

locus control region and is in close proximity to several candidate enhancers of HBG2 29, which 

codes for the gamma-2 subunit of HbF. ClinVar SNPs 30 were also investigated, showing possi-
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ble selection in CYP2D6 and OPRM1 related to drug responses, and in IRF5 and HAO, associ-

ated with systemic lupus erythematosus and calcium oxalate urolithiasis respectively (see Meth-

ods and Supplemental Table 5). 

Detailed look at HLA Genes Using High Quality Typing 
Diversity in HLA genes have long been recognized as key examples of balancing selec-

tion31–33. Moreover, even though the MHC accounts for only 0.16% of the genome, 39% of all 

GWAS SNPs that overlapped top LD-ABF scores occurred within the MHC. Despite these ob-

servations and its profound importance to the fields of immunology, immunogenetics, and evolu-

tionary biology, detailed follow up and characterization of the MHC and its HLA genes has been 

limited. Fortunately, due to the vital importance of HLA matching for avoiding rejection and graft 

versus host disease in organ and stem cell transplants, detailed typing of selective HLA genes 

is routinely performed in the clinical setting 34–36.Taking advantage of this, we utilized high-reso-

lution HLA typing data from the IHIW to take a closer look at balancing selection across these 

genes. This dataset consists of over 3,500 samples, each providing 2 alleles per HLA gene 

typed at 4 field resolution and represents a diverse set of world populations (see Methods).  

Strikingly, the strongest LD-ABF signals were consistently observed in -DQA1, -DQB1, 

and DRB1 across all IHIW populations (Figure 3 and Supplemental Figure 11-13). This is in 

contrast to scans of the clinical samples, where either -C or -DPA1 were the top hits across the 

MHC depending on the population. Furthermore, within each HLA gene, consistent patterns of 

balancing selection were observed across all populations, including strong signals in the intronic 

regions (Supplemental Figure 7-13). Not surprisingly, these regions with the highest LD-ABF 

scores corresponds to regions with the highest concentration of GWAS trait associated SNPs. A 

review of SNPs overlapping top LD-ABF scores revealed associations with traits like red blood 

cell count, leukemia, autism, schizophrenia, and asthma (Supplemental Table 3). The sequence 

context of the majority of these SNPs was either intronic or missense, which is expected in the 

context of balancing selection; as opposed to nonsense or frameshift SNPs, which would be ex-

pected in settings of purifying selection. Looking over the exons of HLAs, the highest LD-ABF 

signals for both -DQA1 and -DQB1 were found in exon 2, which encode for extracellular do-

mains key to peptide presentation. Diversity in the peptide-binding pocket ensures effective im-

mune recognition of a wide range of foreign pathogens, in tune with mechanisms driving balanc-

ing selection.   

Validation with Long-read Pangenome Samples 

To further validate and reconcile findings, LD-ABF testing on whole genome HiFi PacBio 

sequencing data gathered by the Pangenome Consortium was performed. These high quality 
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long-read samples are expected to help remove artifacts introduced by inaccurate assembly 

and alignment of other platforms. This is especially applicable for genomic regions of high ho-

mology and complexity that are difficult or impossible to properly align and map when using 

short-read sequencing, including the MHC. Although these samples offer superior sequencing 

quality, the largest population consists of just 23 African samples (Supplemental Figure 14); so, 

they are presented here predominantly for selective verification and not as part of the broader 

analysis. The other Pangenome populations were too small to perform statistical inference.  

Revealingly, with the African Pangenome samples, signals at SIRPB1 seen in the clini-

cal samples were absent (Supplemental Figure 5), indicating that they were likely artifacts of in-

accurate sequence mapping. In contrast, the strong signals in the MHC and SIRPA were again 

demonstrated, even with the more restrictive segmental duplication filter applied (Figure 4). The 

magnitude of the SIRPA signal is second only to the MHC in the Pangenome data, confirming 

strong balancing selection. Beyond the MHC and SIRPA, the top 100 peaks in the Pangenome 

samples (online data) included OR51B5, MYO3A, and OR6J1, which were also found to be top 

hits for clinical samples. Additionally, when removing the segmental duplication filter, two more 

genes, LILRA6 and FLG, overlapped. While LILRA6 appears to be another balancing selection 

candidate of interest, we caution any inferences to be made on FLG as its signal appears bor-

derline.  

Signals in HLA genes from African populations were compared across datasets. As the 

scale of LD-ABF signal is a function of sample size, for this comparison, we focus on the relative 

peaks and shapes of the distributions as opposed to the absolute LD-ABF scores. Since the 

data for the clinical samples are limited by the exome sequencing and variants on the SNP ar-

rays, it became clear how incomplete the data were as compared to the IHIW and the Pange-

nome (Figure 3 and Supplemental Figure 15). The patterns of LD-ABF from the IHIW samples 

largely matched those of the Pangenome samples, with the exception of a problematic subre-

gion within the HLA-DRB1 (Supplemental Figure 15 and Supplemental Figure 13). A dramatic 

peak centered on intron 5 of -DRB1 seen in the IHIW dataset was completely absent in the Pan-

genome analysis. This portion of DRB1 is known to have structural variation and repeat ele-

ments, hindering accurate mapping of shorter sequencing reads, and therefore likely causes ar-

tifactual LD in IHIW but not the Pangenome (see Methods). The Pangenome, and long read se-

quencing in general, offers an invaluable resource for reconciling such artifacts while also 

providing dramatic replication of surprisingly strong signals like that seen in SIRPA. 

 

Discussion: 
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LD-ABF improves detection of evolutionary selective pressures by measuring both the 

strength of LD and the density of variation. Here, we analyzed three independent datasets rep-

resenting different sequencing technologies, each with unique advantages and limitations. The 

comparison revealed the significant impact of sequencing strategies in identifying patterns of se-

lection that likely applies to any such study of evolutionary pressures. 

The MHC is a genomic region of particular interest both from a medical perspective and 

in terms of understanding evolutionary pressures. Studies have linked over 700 diseases and 

traits to the MHC, more than to any other genomic region of comparable size 37,38. In fact, SNPs 

within the MHC represent nearly 2% of all GWAS catalog associations genome wide 27. Much 

work has also been done looking at the MHC as a key example of balancing selection 31–33, with 

an emphasis for greater selection in class I genes 39. In general agreement with prior studies, 

we also saw some of the strongest LD-ABF scores genome wide within the MHC. However, 

there is a limitation of using SNP array and exome data alone, as it is inherently restricted to de-

tecting evolutionary selection only on the variants covered by the platforms. In this study, we uti-

lized thousands of samples reported by the 17th IHIW to better characterize key HLA genes 

within the MHC. With this improved resolution, interestingly we saw the strongest signals in 

HLA-DQA1, -DQB1, and -DRB1 across all populations. Supporting the IHIW results, the African 

Pangenome samples also showed the strongest signals in the DQ region. Looking at -DQA1 

and -DQB1 in more detail using both datasets, the strongest exonic signals appeared in exon 2 

for both genes, which codes for α1 and β1 subunits respectively of the peptide-binding domain. 

Interestingly, when examining class I HLA genes, this was not always the case. For both class I 

and class II genes, exons coding for the peptide-binding domains are known to be the most di-

verse, consistent with selection in the presence of varying pathogen exposures. Importantly, 

while the peptide-binding domain is derived from a single gene for class I, it is formed by the di-

merization of α and β chains encoded by separate genes in class II. Each haplotype’s α chain is 

capable of dimerizing with not only its β chain in cis, but also with the β chain of the opposite 

haplotype. While the α chain of DR is nearly monomorphic, both α and β chains are highly poly-

morphic for DQ and DP. Critically, only certain combinations of α and β alleles are frequently 

observed, which are reinforced by known LD between -DQA and -DQB and -DPA and -DPB. 

These same selective restraints likely contribute to the strong LD within the DQ genes centered 

around exon 2. In contrast, DPB1 appears to demonstrate a different LD pattern from other 

class II genes, with stronger selection signal in the intronic regions as compared to exonic re-

gions dominated by only a few alleles (Figure 3 and Supplemental Figure 15). There is a known 
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recombination event in the DP region 40–42 and the -DPA1 and -DPB1 genes overlap with oppo-

site orientations. Additionally, there are multiple functional elements within this overlap region, 

including multiple eQTLs, 43,44 two promoters (one for each gene), and a processed pseudogene 

of the ribosomal protein L32 45, further constraining this portion of sequence. It is noteworthy 

that correspondingly, we saw a distinct dip in the LD-ABF (Supplemental Figure 17) over this 

region.  

The patterns of LD-ABF in HLA genes are consistent across different populations based 

on the IHIW data (Supplemental Figure 7-13); however, they are variable across different popu-

lations based on the SNP array and exome data of the clinical samples (Table 2 and Supple-

mental Figure 4). This strongly suggests that the previously observed variability in balancing se-

lection between populations, at least in part, is due to sparce data that’s inherent of SNP arrays 

and even exome sequence data (Figure 3 and Supplemental Figure 15). Beyond highlighting 

the strong balancing selection signals in class II HLAs, the IHIW and Pangenome data also re-

vealed very strong signals in intronic and intergenic regions of the MHC (Figure 4, Figure 3, 

Supplemental Figure 15 and Online Data), which have not been extensively analyzed by previ-

ous studies. Many GWAS disease associated SNPs fall within these noncoding regions; our 

analysis here begins to offer some clues regarding the evolutionary forces that contributed to 

these polymorphisms. Although the clinical samples also showed strong signals across HLA 

genes, it alone would have missed much of these interesting intricacies due to the sparseness 

of the data, especially over introns and intergenic regions.  Furthermore, the consistent patterns 

of balancing selection in the HLA genes across different populations in the IHIW data (Supple-

mental Figure 7 Supplemental Figure 13) hints at possible convergent evolution, which have 

previously been noted in the HLAs17,46. Future work would look to distinguish between genetic 

similarity arising from ancestral adaptation being passed over generations versus convergence 

of different haplotypic lineages driven by similar selective pressures resulting in consistent ge-

netic character.  

In the clinical samples, SIRPA had one of the strongest, if not the strongest, balancing 

selection signals genome wide. The signal was replicated in the Pangenome, a completely inde-

pendent sample set (Figure 4). Tennessen et al also observed selection around SIRPA, though 

they did not identify nearly as strong of a signal–likely due to a combination of different se-

quencing platforms, sample sources, and methodology. SIRPα acts as an inhibitory receptor for 

CD47 and is a key component of the “do-not-eat-me” signaling pathway and may have implica-

tions in transplantations 47. Similar to the HLA genes, the strongest signal appears in sequences 
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coding for the extracellular domain of SIRPα48. Interestingly, although this outward facing do-

main of SIRPα is analogous to the antigen-binding domains of HLAs and immunoglobulins 49, 

structural analysis showed that unlike variation in the complementary determining regions of 

those proteins, most polymorphisms in SIRPA do not affect CD47 binding 50. Instead, they clus-

ter away from the CD47 binding footprint, and are thought to be selected to minimize pathogen 

binding and manipulation of the “do-not-eat-me” signal 50.  

Beyond HLAs and SIRPA, several other notable genes and gene families were identified 

by top LD-ABF peaks across all populations (Table 2). OR genes formed the largest gene family 

under balancing selection. Notably, both HLAs and ORs are thought to have diversified through 

gene duplications and consequently both families reside in regions of high gene density. These 

observations, along with the high homology among members of HLAs, ORs, and other gene 

families identified by our method suggests that balancing selection and gene duplications are 

often the result of similar evolutionary pressures. Similarly, TAS2R genes, encoding bitter taste 

G-protein coupled receptors, also form a cluster and have been found to be under selective 

pressure 51. Although technically neither an OR nor a taste receptor gene, CNR2, coding for a 

cannabinoid receptor, was also identified in the top 10 peaks of several populations. It is known 

to have associations with psychoactive and anti-inflammatory responses 52,53. Following ORs 

and the immunoglobulin superfamily, ZFs form the third largest gene family under selection and 

includes 2 genes identified in top 10 peaks: ZNF280A and ZNF717. Since ZFs function as bind-

ing molecules, with DNA and RNA among their targets, it comes as no surprise that polymor-

phism dictating binding specificity were found to be under balancing selection. Additionally, sev-

eral cytochrome P450 genes were also identified. These enzymes catalyze many reactions in 

drug metabolism and lipid synthesis 54; their polymorphisms have been extensively studied and 

are of vital importance in pharmacology. Furthermore, GPC6 was found within top 10 peaks in 

four of five populations demonstrating dense LD over several Mbs (Supplemental Figure 6), 

similar to those seen around HLAs. GPC6 is associated with bone density 55 and omodysplasia 
53,56, a rare skeletal dysplasia characterized by severe limb shortening57. GBP4, with a top 10 

peak in EAS and top 100 peaks across every other population, is an IFN-inducible GTPase of 

the guanylate binding protein family, whose members has emerged as key orchestrators of in-

flammation in anti-bacterial immunity, metabolic disorders, and cancer 58.  

Looking at the top 100 peaks across every population (1Mb and 100kb neighborhoods), 

we identified a total of 45 novel genes. Although these specific genes were not previously de-

scribed to be under selection, related genes or their gene families have been found by previous 

studies.  Among these, SLC35G4 had the second strongest signal in the AFR clinical samples 
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(and top 100 in all other populations) and was corroborated by the Pangenome analysis (Sup-

plemental Figure 16). SLC35G4 belongs to the solute carrier family of genes, which has been 

found to be under selection7,9,15,59. Although minimally studied to date, SLC35G4 has recently 

been described as a potential neoantigen in prostate cancer60.  

Several limitations of this work leave room for future investigation. When evaluating the 

representativeness of our datasets, it must be noted that the clinical samples correspond to indi-

viduals that have come into the children’s hospital for various clinical assessment and not spe-

cifically curated for the specific study of evolutionary selection. Depending on the dataset, there 

were limitations directly noted in terms of sequencing quality and/or representation of certain 

populations. The current analysis focuses on LD within a 1Kb window and does not test for 

long-range LD. To these ends, long-read sequencing will become increasingly important61 as we 

try to decipher the complexity of the MHC and other regions of genome with high homology or 

extensive LD.  

Our results demonstrated that orders of magnitude smaller set of high-quality long-read 

sequencing data has the potential to more effectively characterizing genetic variation than larger 

sets of sequencing data from other platforms. Potentially, a combination of high-quality se-

quencing data and an optimal set of samples, would offer the most cost-effective way of per-

forming such studies while providing thorough characterization of complex genomic regions. In 

addition, improved mapping and alignment techniques, like the use of population reference 

graphs62, will further facilitate genetic characterization of different human populations63. This, 

coupled with methodological advances like LD-ABF, will enable the better understanding of evo-

lutionary pressures and their impacts on genomic functionality as well as the interrelationships 

between pathogens and corresponding diseases.  
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Pangenome https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?pre-
fix=working/HPRC/HG01361/assemblies/  
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HUGO Gene Name Committee: https://www.genenames.org/data/genegroup/#!/group/589  
Git repository with code and online data: https://github.com/tris-10/LD-ABF  
In addition to the code, data files can be downloaded online data (github Readme.md section 
Download LD-ABF supplemental files): 

• CHOP Trios: Genome Wide LD-ABF test statistics and peaks detailed for all included 
populations in Hg19 

• All 17th IHIW: HLA LD-ABF test statistics for all included populations, tab delimited 
sequence data generated from 17th IHIW and IMGT 3.25 with lifted over alignments to 
Hg19 performed. Plots across all genes for all included populations. 

• Pangenome Freeze 1 African samples: LD-ABF test statistics and variant calling vcfs in 
Hg38 for samples. 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.09.28.462165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462165
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

 
 
 

 

Figure 1 Evolutionary diagram depicting the progression of an allele under balancing selection The green X denotes the 
variant under selection, green triangles are variants originating on the same haplotype denoted by an orange line as the balancing 
selection variant, and blue triangles occur on an alternate haplotype denoted by an orange line. In the first pane the variant is 
introduced on a single haplotype. Then after some time has passed evolutionary pressures favoring multiple alleles  at the position of 
focus maintaining both haplotypes with and without the polymorphism, where hitchhiking effects are observed around the variant 
under balancing selection–inducing LD patterns.  Recombination breaks the strong LD resulting in mosaics of the haplotypes, where 
strong hotspots will diffuse the LD effects of hitchhiking.  
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Figure 2 Genome wide scan for balancing selection in clinical samples and gene patterns. Clinical samples were clustered based on 1KGP 
superpopulations: African (AFR), American (AMR), East Asian (EAS), Southern Asian (SAS), and European (EUR).  Genome wide scans were performed within 
population to detect balancing selection, here in A.) EUR genome wide with other populations shown in Supplemental Figure 3 and C) zoomed in plot across the 
MHC with class I and II HLA genes in the EUR clinical samples. Looking across the entire MHC, there appears to be several clusters of balancing selection signals 
centered around HLA genes. Three of these clusters (1. HLA-C, HLA-B; 2. HLA-DRB1, HLA-DQA1, HLA-DQB1; and 3. HLA-DPA1, HLA-DPB1) are separated by 
previously noted recombination hotspots64–66.  Then restricting to the top 100 peaks, where LD-ABF scores in the immediate 100 Kb window around a peak are 
ignored to determine subsequent peaks, within each population is intersected with different B.) HGNC gene families to get gene counts and the D.) Venn diagram 
of unique and shared top 100 peak genes between populations with the two Asian populations combined with novel gene counts shown in parenthesis. 

 
  

A 

C 

B 

D 
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Figure 3 Balancing selection in HLA-DQA1 and DQB1 comparing the clinical samples, 17th IHIW, and Pangenome. LD-ABF scores over A) DQA1 and B) DQB1 from independent samples of African 
ancestry are compared. Exonic regions are highlighted in purple. The relative magnitude of the LD-ABF signals reflects the sample size of the population as any standard test statistic would.   

A B 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.09.28.462165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462165
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

  

    
 

Chr Start End LD-ABF Gene/ 
Region 

# Genes Within  

100Kb 100Mb 

6 32653905 32653906 2.23 HLA-DQA1 4 44 

6 29988153 29988162 2.00 MHC 4 39 

6 31341578 31341578 1.35 MHC 4 83 

20 1914695 1914695 1.19 SIRPA 4 24 

17 72912209 72912209 0.95 SLC39A11 0 13 

 

 

 
 

 
Figure 4 Signals of balancing selection detected in the Pangenome samples. LD-ABF scores calculated from long-read HiFi PacBio data are shown 

A) genome wide and with a B) table detailing the top 5 LD-ABF peaks C) zoom in around the MHC D) zoom in around the SIRP genes. 
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Population Individuals Duo Probands Trio Probands Totals 

AFR 16 9 34 59 
AMR 12 12 44 68 
EAS 11 1 17 29 
EUR 64 33 221 318 
SAS 3 2 18 23 

Totals 106 57 334 497 
 
Table 1 Detailed counts for CHOP trios and individuals collected for analysis that include both SNP array data and whole 
exome sequence data. 
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Table 2 Top 10 genome wide peaks in balancing selection signal in each clinical sample population. Peaks reported using 

1Mb neighbor hoods with genic context and regional gene density. For instances where the exact peak position occurs at multiple 

variants within a region in perfect LD, the start and end positions are represented here and each individual variant can be found in 

the online data.  

  

Pop Chr Start End LD- ABF Gene Gene Category # 
Genes  
within  
100Kb 

# 
Genes 

 within  
1Mb 

AFR 11 5373251 5373251 0.75 OR51B6 Olfactory Receptor Family 4 49 
 

18 11609727 11610121 0.65 SLC35G4 Solute carrier family 2 10 
 

6 33037080 33037082 0.65 HLA-DPA1 Major Histocompatibility Complex, Class II 3 47 
 

20 1895889 1896100 0.64 SIRPA Signal regulatory protein 2 14 
 

1 158725194 158725194 0.63 OR6K6 Olfactory Receptor Family 4 26 
 

11 4790671 4790671 0.59 OR51F1 Olfactory Receptor Family 2 38 
 

13 93969248 93969473 0.52 GPC6 Glypican 0 3 
 

6 31379773 31379795 0.51 MICA Major Histocompatibility Complex, Class I 3 81 
 

22 22869123 22869218 0.49 ZNF280A Zinc Finger Protein 4 12 
 

11 7817852 7817959 0.47 OR5P2 Olfactory Receptor Family 2 19 

AMR 20 1895963 1895963 1.00 SIRPA Signal regulatory protein 2 14 
 

6 31237802 31237802 0.91 HLA-C Major Histocompatibility Complex, Class I 2 73 
 

11 5443887 5443887 0.73 OR51B5,OR51Q1 Olfactory Receptor Family 5 48 
 

11 7817852 7817856 0.71 OR5P2 Olfactory Receptor Family 2 19 
 

6 33037412 33037424 0.66 HLA-DPA1 Major Histocompatibility Complex, Class II 3 47 
 

3 75786737 75786737 0.57 ZNF717 Zinc Finger Protein 2 8 
 

19 41386420 41386420 0.57 CYP2A7 Cytochrome P450 proteins  4 33 
 

1 24201448 24201448 0.57 CNR2 Cannabinoid receptor 3 24 
 

22 22869123 22869218 0.56 ZNF280A Zinc Finger Protein 4 12 
 

13 93969248 93969473 0.55 GPC6 Glypican 0 3 

EAS 20 1895889 1896060 0.42 SIRPA Signal regulatory protein 2 14 
 

6 33037412 33037412 0.37 HLA-DPA1 Major Histocompatibility Complex, Class II 3 47 
 

6 31237802 31237802 0.30 HLA-C Major Histocompatibility Complex, Class I 2 73 
 

11 5443887 5443887 0.27 OR51B5,OR51Q1 Olfactory Receptor Family 5 48 
 

1 248525328 248525330 0.26 OR2T4 Olfactory Receptor Family 5 37 
 

1 89652071 89652090 0.24 GBP4 Guanylate-binding proteins 2 16 
 

22 22869123 22869218 0.24 ZNF280A Zinc Finger Protein 4 12 
 

14 105418234 105418235 0.23 AHNAK2 PDZ domain containing 3 27 
 

1 24201448 24201448 0.23 CNR2 Cannabinoid receptor 3 24 
 

6 159654994 159654994 0.22 FNDC1 fibronectin type III domain containing 1 1 13 

EUR 20 1895990 1895990 4.20 SIRPA Signal regulatory protein 2 14 
 

6 31237876 31237876 3.84 HLA-C Major Histocompatibility Complex, Class I 2 73 
 

11 5373242 5373242 3.43 OR51B6 Olfactory Receptor Family 4 49 
 

12 11244390 11244390 3.40 PRH1,PRH1-PRR4, 

PRH1-TAS2R14,TAS2R43 

Heterogeneous family of proline-rich salivary glycoproteins, 

taste receptor 

3 31 

 
6 33037419 33037424 3.13 HLA-DPA1 Major Histocompatibility Complex, Class II 3 47 

 
13 93969248 93969473 3.10 GPC6 Glypican 0 3 

 
11 244106 244167 3.05 PSMD13 26S Proteasome, a multicatalytic proteinase 9 36 

 
1 24201448 24201448 3.02 CNR2 Cannabinoid receptor 3 24 

 
11 7817852 7817959 2.94 OR5P2 Olfactory Receptor Family 2 19 

 
19 41386420 41386420 2.92 CYP2A7 Cytochrome P450 proteins  4 33 

SAS 6 33037412 33037424 0.33 HLA-DPA1 Major Histocompatibility Complex, Class II 3 47 
 

20 1895889 1895990 0.30 SIRPA Signal regulatory protein 2 14 
 

12 11244378 11244390 0.24 PRH1,PRH1-PRR4 

,PRH1-TAS2R14,TAS2R43 

Heterogeneous family of proline-rich salivary glycoproteins, 

taste receptor 

3 31 

 
1 248525328 248525330 0.21 OR2T4 Olfactory Receptor Family 5 37 

 
11 5443887 5443887 0.20 OR51B5,OR51Q1 Olfactory Receptor Family 5 48 

 
1 24201448 24201448 0.19 CNR2 Cannabinoid receptor 3 24 

 
19 41386136 41386136 0.18 CYP2A7 Cytochrome P450 proteins  4 33 

 
2 234622061 234622110 0.18 UGT1A10,UGT1A5, 

UGT1A6,UGT1A7, 

UGT1A8,UGT1A9 

UDP-glucuronosyltransferase 9 22 

 
22 22869123 22869218 0.17 ZNF280A Zinc Finger Protein 4 12 

 
13 93969248 93969473 0.17 GPC6 Glypican 0 3 
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Pop Chr ID LD-ABF Genes Disease/Trait Sequence Context 

AFR 11 rs5006884 0.77 OR51B6 Fetal hemoglobin levels Missense 

 
6 rs9277354 0.48 HLA-DPB1 Antineutrophil cytoplasmic antibody-associated vasculitis Frameshift 

 
6 rs9277356 0.48 HLA-DPB1 Response to hepatitis B vaccine Missense 

 
6 rs1126506 0.48 HLA Anti-rubella virus IgG levels Splice region 

 
20 rs17855611 0.45 SIRPA Blood protein levels Missense 

 
2 rs4988958 0.40 IL1Rl1, IL1RL2, 

IL18R1 

Asthma (childhood onset) Synonymous 

 
19 rs35534776 0.37 LILRA1 Blood protein levels Missense 

 
6 rs520692 0.31 C4A Feeling worry Missense 

 
6 rs611779 0.31 ADGRF5 Blood protein levels Synonymous 

 
6 rs1042151 0.30 HLA-DPB1 Aspirin exacerbated respiratory disease in asthmatics, Severe aplastic anemia Missense 

 
19 rs602662 0.29 FUT2 Folate pathway vitamin levels, Folate pathway vitamin levels, Pediatric autoimmune dis-

eases, Vitamin B12 levels 

Missense 

 
10 rs2249694 0.27 CYP2E1 Obesity-related traits Intronic 

 
6 rs2858331 0.27 HLA-DQA2 IgE levels, IgE levels Regulatory 

 
6 rs422951 0.25 NOTCH4 Chronic hepatitis B infection Missense 

AMR 11 rs5006884 0.71 OR51B6 Fetal hemoglobin levels Missense 

 
6 rs2894204 0.53 HLA-C Waist-hip ratio Intronic 

 
6 rs1126506 0.53 HLA Anti-rubella virus IgG levels Splice region 

 
6 rs9277354 0.51 HLA-DPB1 Antineutrophil cytoplasmic antibody-associated vasculitis Frameshift 

 
6 rs9277356 0.51 HLA-DPB1 Response to hepatitis B vaccine Missense 

 
20 rs17855611 0.44 SIRPA Blood protein levels Missense 

 
6 rs9264638 0.43 HLA-C Beta-2 microglubulin plasma levels Intronic 

 
2 rs4988958 0.43 IL1Rl1, IL1RL2, 

IL18R1 

Asthma (childhood onset) Synonymous 

 
1 rs4525 0.39 F5 Blood protein levels, Blood protein levels Missense 

 
6 rs1050451 0.38 HLA-B, HLA-C IgG galactosylation phenotypes (multivariate analysis) Missense 

 
6 rs34794906 0.37 HLA-C Reticulocyte count Synonymous 

 
1 rs4524 0.36 F5 Venous thromboembolism, Venous thromboembolism Missense 

 
6 rs2516703 0.33 HCG17 Itch intensity from mosquito bite, Itch intensity from mosquito bite adjusted by bite size Intronic 

 
19 rs602662 0.33 FUT2 Folate pathway vitamin levels, Folate pathway vitamin levels, Pediatric autoimmune dis-

eases, Vitamin B12 levels 

Missense 

 
20 rs3790160 0.32 JAG1 Lumbar spine bone mineral density Intronic 

 
19 rs35534776 0.31 LILRA1 Blood protein levels Missense 

EUR 11 rs5006884 3.44 OR51B6 Fetal hemoglobin levels Missense 

 
2 rs4988958 2.44 IL1Rl1, IL1RL2, 

IL18R1 

Asthma (childhood onset) Synonymous 

 
6 rs9277354 2.32 HLA-DPB1 Antineutrophil cytoplasmic antibody-associated vasculitis Frameshift 

 
6 rs9277356 2.32 HLA-DPB1 Response to hepatitis B vaccine Missense 

 
6 rs1126506 2.31 HLA Anti-rubella virus IgG levels Splice region 

 
6 rs2894204 1.83 HLA-C Waist-hip ratio Intronic 

 
6 rs1050451 1.81 HLA-B, HLA-C IgG galactosylation phenotypes (multivariate analysis) Missense 

 
17 rs1864325 1.80 MAPT Lumbar spine bone mineral density Intronic 

 
17 rs12373142 1.78 SPPL2C Chronic obstructive pulmonary disease Missense 

 
20 rs17855611 1.70 SIRPA Blood protein levels Missense 

 
19 rs602662 1.67 FUT2 Folate pathway vitamin levels, Folate pathway vitamin levels, Pediatric autoimmune dis-

eases, Vitamin B12 levels 

Missense 

 
6 rs9264638 1.66 HLA-C Beta-2 microglubulin plasma levels Intronic 

 
8 rs56117011 1.63 PLEC Post bronchodilator FEV1 Synonymous 

 
6 rs520692 1.62 C4A Feeling worry Missense 

 
8 rs35916068 1.62 PLEC Post bronchodilator FEV1 Synonymous 

 
1 rs4525 1.56 F5 Blood protein levels, Blood protein levels Missense 

Table 3 Top balancing selection signals in clinical samples at GWAS significant SNPs. SNPs that are both found to be 

significantly associated with a phenotype in the GWAS catalog and also have a strong selection signal in the top 0.1%. The results 

for clinical samples in the EUR, AFR, and AMR populations are here with the EAS and SAS populations continued in Supplemental 
Table 2. 
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