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Abstract 

Body size covaries with population dynamics across life’s domains. Theory holds that metabolism imposes 

fundamental constraints on the coevolution of size and demography. However, studies of interspecific 

patterns are confounded by other factors that covary with size and demography, and experimental tests of 

the causal links remain elusive. Here we leverage a 60,000-generation experiment in which Escherichia coli 

populations evolved larger cells to examine intraspecific metabolic scaling and correlations with 

demographic parameters. Metabolic theory successfully predicted the relations among size, metabolism, 

and maximum population density, with strong support for Damuth’s law of energy equivalence in this 

experiment. In contrast, populations of larger cells grew faster than those of smaller cells, contradicting the 

fundamental assumption that costs of production should increase proportionately with size. The finding that 

the costs of production are substantially decoupled from size requires re-examining the evolutionary drivers 

and ecological consequences of biological size more generally. 
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Introduction 

The size of individual organisms drives widespread and repeated patterns across the tree of life1-4. For 

example, Damuth’s Rule holds that larger organisms have lower population densities than smaller 

organisms
5
. Similarly, populations of larger organisms grow slower than populations of smaller organisms

6
. 

Meanwhile, global warming and harvesting are causing declines in body size within many species, from 

phytoplankton to fish7-10. If body size and demography covary within species as they do across species, then 

human-induced changes in body size may have profound consequences for ecosystem function, particularly 

with regards to food security and the global carbon pump
11

. However, our ability to anticipate such changes 

is limited by the dearth of studies examining the within-species covariance of size, energy, and demography.  

Metabolism has long been argued to provide the mechanistic link between size and demography because it 

governs the rate at which organisms transform energy into biological work and growth4-6. Larger species 

have higher absolute metabolic rates than smaller species, but lower metabolic rates relative to their mass. 

In formal terms, absolute metabolism scales hypoallometrically with body size with an exponent of B, 

whereas mass-specific metabolism scales at B – 1. The hypoallometric scaling of size and metabolism 

generates several predictions for how size should affect demography12.  

First, because the ability to perform biological work per unit mass should scale with mass-specific metabolic 

rates, maximum rates of population growth (r) should also scale at B – 1 12,13. For metazoans, B is typically 

~0.75; thus, r should scale around –0.25, which is strongly supported by interspecific comparisons4. This 

prediction has intuitive appeal: mouse populations can grow much faster than elephant populations.  

Second, smaller species should attain higher population densities (K) than larger species, because their 

absolute per capita demands are lower. The resource requirements of organisms depend on their 

metabolism, so populations of larger species should cease growing at lower densities than those of smaller 

species5. However, larger organisms have lower mass-specific metabolic rates (in metazoans, at least), and 

so they require fewer resources per unit mass than smaller organisms. Accordingly, populations of larger 

organisms should have greater total masses at carrying capacity than populations of smaller organisms, with 

the expected scaling at 1 – B 
1
. This relation is known as the theory of energy equivalence

3
. 

Finally, the maximum rate of population productivity (effectively the product of r and K) should scale with 

size at –1 when expressed as the rate of production of individuals, and so it should be size-independent (i.e., 

scaling exponent of 0) in terms of the rate of biomass production2,12. Together these three core predictions 

represent the canonical elements of how size, metabolism, and energy equivalence determine population 

growth and dynamics. Put simply, populations of larger organisms, with lower mass-specific metabolic rates, 

should grow more slowly, but eventually achieve higher biomasses, than populations of smaller organisms4. 

Nonetheless, there remains a fundamental disconnect between theory and evidence: most tests are based 
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on among-species comparisons, making it difficult to attribute metabolism as the underlying driver of such 

patterns. 

Although metabolic theory successfully predicts variation in demography across the domains of life, these 

predictions often falter when applied to narrower groups of taxa
2,12,14,15

. Various explanations have been 

offered for these discrepancies, but a key difficulty lies in inferring causality with respect to size differences 

across species. Mice differ from elephants in ways other than size, but metabolic theories about the relation 

between size and demography ignore these differences, treating them as an error term that is uncorrelated 

with size. We know, however, that many other traits covary with size (e.g., lifespan generally increases with 

size), and these traits also affect population dynamics4,13. Interspecific comparisons of individual size and 

population dynamics therefore confound other species-specific traits that influence demographic variables. 

Consequently, it remains unclear whether size, energy, and population dynamics are invariably related as 

supposed by the canonical scaling theory. Meanwhile, our capacity to predict the consequences of human-

mediated impacts on the size of organisms depends on understanding the causal links between these factors 

within species.  

Intraspecific tests of the relation between body size and demography are challenging. Comparisons among 

individuals of the same species suffer from limited power because they compare a narrower range of sizes 

than comparisons across species. Intraspecific comparisons of individuals at different ontogenetic stages can 

span a greater size range, but this approach also introduces confounding factors and cannot be extended to 

demographic parameters that must integrate across all ontogenetic stages. Ideally, a species that varies 

significantly in size across populations, and that allows the direct parameterisation of population dynamical 

models, would provide valuable evidence of how intraspecific variation in size and metabolic rates affects 

demography. However, such tests are rare2,11, and they have typically relied on temperature manipulations 

or strong artificial selection to generate differences.  

Here we analyse the relations among organismal size, metabolism, and demography in 12 populations of 

Escherichia coli that have evolved and diverged from a common ancestor in the Long-Term Evolution 

Experiment (LTEE) over a period of 60,000 generations
16

. The LTEE populations have been thoroughly 

characterised, including by competitive fitness assays as well as whole-genome and whole-population 

sequencing17,18. Over the duration of the LTEE, each population has steadily increased in fitness, while 

accumulating many mutations. In this study, we measure their population dynamics, metabolism, and cell 

size to determine how these factors covary with each other, thereby allowing us to test whether they 

conform to predictions based on standard metabolic theory. In particular, we examine population growth 

rates and yields and find that the evolution of larger cell sizes has led to ‘Pareto improvements’ whereby 

growth rate has increased but not at the expense of yield
19,20

. 
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Results 

We examined two clones from each of the 12 LTEE populations at the 10,000 and 60,000 generation time 

points. We excluded the 60,000-generation clones from one population (Ara–3) that evolved the ability to 

consume citrate
 21,22

, which is present in the medium as a chelating agent, because it gives cells access to an 

additional resource that confounds the relation between metabolism and demography that we seek to 

understand. In all analyses, we treat the average value of the two clones from the same population and 

generation as a single sample. We also include the two ancestral strains, REL606 and REL607, each of which 

was used to found six populations, and which differ by a genetic marker used in competition assays
16,18,23

. 

Thus, our analyses include a total of 25 samples (2 ancestors, 12 populations at 10,000 generations, and 11 

populations at 60,000 generations). 

Previous studies reported large increases in cell volume in the first 50,000 generations of the LTEE21,22. Our 

measurements confirm the large increases in cell size and show that they have continued to increase, from 

an average of 0.239 fL (i.e., µm
3
) for the ancestors to an average of 0.670 fL for the 60,000-generation 

samples (Figure 1). The 12 lineages followed different size trajectories, but they all show the same trend of 

increasing size.  

We quantified metabolism by measuring oxygen consumption at three initial cell densities, achieved by 

differentially diluting samples. The concentration of the limiting resource, glucose, was the same for all three 

initial densities, and it was insufficient to support one population doubling even at the lowest initial density. 

As a result, the glucose was depleted over the course of our measurements of oxygen consumption, leading 

to a transition into stationary phase and concomitant decline in the per capita respiration rates at the higher 

initial densities. At all three initial cell densities, metabolism scaled with average cell size (volume) sub-

linearly, and the scaling relation was consistent across the three densities (Density x log[Cell size]: F2,69 = 

0.082, P = 0.921; Density: F2,71 = 97.06, P < 0.0001; log[Cell size]: F1,71 45.99, P < 0.0001; Figure 2). The 

estimated scaling exponent for the metabolic rate, B, is 0.38, which differs significantly from interspecies 

comparisons24 that have estimated the scaling exponent to be >1, and from theoretical expectations based 

on surface-area-to-volume ratios of ~0.67 – 1 (depending on cell shape). With our estimate of the 

intraspecific metabolic scaling exponent, we can then use standard metabolic theory to predict how 

population growth rates and maximum population size should scale with cell size (Table 1). 

We measured population growth over 24 h for the 25 samples, each at three different resource levels 

achieved by varying the concentration of glucose in the medium, and with replication of the growth curves 

at each concentration. Populations grew slightly faster at the higher glucose concentrations (Figure 3a). 

However, the scaling of the maximum growth rate, r, was consistent across glucose levels (Glucose x log[Cell 

size]: F2,69 = 0.113, P = 0.893). The scaling exponent of the growth rate was 0.27, which differs significantly 
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from both zero and the exponent (–0.63) predicted by the canonical theory (Table 1). Instead, the scaling of 

the growth rate is much closer to that of the metabolic scaling (0.38 versus 0.27). 

The maximum yield in terms of cell density (Maxcells) showed a negative scaling relation with cell volume, 

with an exponent of –0.45 (Figure 3b), and the confidence interval overlaps the prediction of –0.38 from 

theory (Table 1). The correlation between cell size and maximum cell density was strong; a model including 

glucose level and cell size explained 96% of the variation in maximum cell density. The maximum biovolume 

yield (Maxbiovolume) scaled positively with cell size with an exponent of 0.55 (Figure 3c), again in reasonable 

agreement with the theoretical expectation of 0.64 (Table 1). As expected, populations achieved higher 

biovolumes at higher glucose levels, but the scaling relation was consistent across the three glucose levels 

(glucose: F2,71 = 437.32, P <0.0001; glucose x log[cell size]: F2,69 = 0.257, P = 0.774; Figure 3c).  

Maximum productivity, expressed as the maximum rate of biovolume increase, increased with cell size, with 

an estimated exponent of 0.81 (Table 1). This estimate differs greatly, and significantly, from the canonical 

expectation of zero (Productivitybiovolume: F1,71 = 301.5, P < 0.001). Productivity increased at higher glucose 

levels (glucose: F2,71 = 410.5, P <0.0001; Figure 3d), with no significant interaction between cell size and 

glucose levels (F2,69 = 0.447, P = 0.641).   

Table 1 summarizes our results relative to theoretical expectations. Maximum population size scaled almost 

exactly as metabolic theory would predict, regardless of whether it was measured in terms of cell number 

(Figure 3b) or total biovolume (Figure 3c). In contrast, productivity did not conform to the predictions made 

by the canonical metabolic theory, whether it was measured as the rate of population increase (Figure 3a) or 

the maximum biovolume productivity (Figure 3d). Instead, both productivity exponents were much higher 

than the canonical theory would predict, by values of 0.89 and 0.81, respectively.  

 

Discussion 

The LTEE provides a unique opportunity to study the covariance between size, metabolism. and demography 

within a species. Damuth’s law of energy equivalence successfully predicted the coevolution of cell size with 

maximum cell density
5
. However, our results indicate that a fundamental assumption about how the growth 

and productivity of populations should scale with metabolism and cell size lacks generality and therefore 

requires modification. Our study also indicates the need for more within-species tests of metabolic theory, 

because evolution can evidently lead to Pareto improvements in key size-related parameters—leading to 

trade-ups, rather than trade-offs—that are not anticipated from interspecific comparisons. 

Larger cells have relatively lower metabolic rates than smaller cells 
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Metabolic scaling in these E. coli populations is remarkably low, with an exponent of ~0.38. Among-species 

comparisons of metabolic rate in bacteria have usually reported hyperallometric scaling (B > 1), whereby 

larger cells have disproportionately higher metabolic rates24,25. Instead, we find that the larger cells from 

later generations have much lower mass-specific metabolic rates than smaller cells, such that a 3-fold 

change in size results in only a 1.5-fold increase in metabolism.   

There are several potential explanations for the low scaling exponent that we observe in this experiment 

relative to interspecific comparisons. First, it could be that within-species metabolic scaling is generally 

shallower than interspecific scaling in bacteria; to date, there are too few studies that have measured 

within-species scaling to compare them. In other taxa, metabolic scaling sometimes differs depending on 

whether it is estimated within or among species26,27. Theory predicts that, all else equal, the physics of 

resource limitation in slow-moving fluids should result in metabolic scaling exponents of about 0.33 
28

, which 

is close to our estimate. The cytoplasm of bacterial cells is viscous and densely packed with DNA and other 

macromolecules21,22. It could also be that physical constraints on scaling are more restrictive within- than 

among-species, where cell shape may change along with cell size
28

. It should be noted, however, that the 

aspect ratio (length/width) also varies significantly among the E. coli lineages in this study
22

. 

Second, the fine-tuning of gene regulation and physiological process may have led to the low metabolic 

scaling exponents seen in the LTEE. DeLong et al. suggested that hyperallometric metabolic scaling in 

bacteria emerges from the effect of genome size on metabolic rate24. Larger cells typically have larger 

genomes, and more genes and gene products might drive higher metabolic rates29. Although the average 

haploid genome length has declined slightly during the LTEE owing to some gene deletions
23

, rapidly growing 

bacterial cells typically have multiple copies of their chromosome. Therefore, the faster-growing and larger-

sized evolved bacteria have more total DNA per cell, even if their genome length is slightly smaller.  Among 

prokaryotes, genome length scales with cell size with an exponent of 0.35 24, which is close to the 0.38 

metabolic exponent we observed (Figure 2, Table 1). The bacteria in the LTEE have evolved substantial 

changes in gene expression and regulation30-32. These changes have reduced the expression of functions that 

are no longer useful in the LTEE’s simple conditions, while optimizing the expression of the functions that are 

needed in this predictable environment
33

.  

Metabolic theory predicts maximum population size 

We found strong support for the energy equivalence rule across a range of resource levels5. Because the 

mass-specific metabolic rates of larger cells were so low, the maximum biovolume yields were much higher 

in the evolved samples than in the ancestors (Figure 3c). However, the total metabolic demands of these two 

groups were similar (~4.5 x 10
-3 

J). Thus, the larger cells are metabolically more efficient and attain higher 

population biomass than smaller cells for a given amount of resource. This result conforms with other LTEE 
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studies that found that the evolved cells are larger, more efficient, and attain higher maximum biomass 

yields than the ancestors
20,21

. It seems that metabolic rate can be an excellent predictor of the limits to 

population biomass, both among4 and within species11. In contrast, longstanding metabolic theories, based 

on standard assumptions, failed to predict how individual size and metabolism would impact population 

growth rates and maximum productivity.  

Metabolic theory and population growth rates 

The E. coli samples in this study defy theoretical predictions based on standard assumptions about how 

individual size should affect rates of population growth and production. Despite having lower mass-specific 

metabolic rates, the larger evolved cells had higher intrinsic rates of increase (r) than the smaller ancestral 

cells. Larger cells should require more materials and energy to produce, but relative to their volume, they 

should also have less capacity to power this work relative to smaller cells. Nonetheless, our study, other 

studies of the LTEE populations, and indeed studies on E. coli more generally find that faster growing cells 

are larger than cells growing more slowly
20,21,34-36

. This positive correlation between size and growth rate 

contradicts standard theory, as well as intuition. 

Standard theory predicts that population growth rate should scale with the mass-specific metabolic rate (i.e., 

M
B–1

) 
12,13,37

. This theory works well for among-species comparisons: in multicellular eukaryotes, both mass-

specific metabolic rate and population growth rate scale at ~M–0.25 1,4; and in prokaryotes, both rates scale at 

~1 24,38. However, in the LTEE, population growth rate scales at 0.27, an exponent that is 0.89 higher than 

expected given the mass-specific scaling of –0.62. In fact, the population growth rate exponent is much 

closer to the per capita metabolic exponent of 0.38 than to the mass-specific exponent of –0.62. Why do 

these bacteria show positive scaling of both per capita metabolism and population growth rate with 

individual size, contradicting expectations based on the standard theory? 

Metabolic theory and the costs of biological production 

A crucial, but often overlooked, assumption of standard metabolic theory is that the energy required to 

produce a new individual is directly proportional to its mass6. This assumption seems reasonable and 

intuitive at first glance, but in fact there is little empirical evidence to support it and, in the case of the LTEE, 

some evidence against it. The total cost of producing a cell is the sum of the energy consumed between cell 

divisions (sometimes called maintenance costs) and the energy used to build the new cell itself38. Neither 

component is likely to scale directly with cell volume, for several reasons.  

First, it has been estimated that about half of the energy required by E. coli is used to maintain ion gradients 

across the cell membranes39. Larger cells have smaller surface area relative to mass, and so they should have 

relatively lower maintenance costs than smaller cells. Consistent with this reasoning, total metabolism scales 
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hypoallometrically with cell volume in the LTEE. Second, large cells often have different stoichiometry from 

small cells. Both among and within taxa, large cells tend to have relatively lower carbon content than small 

ones40. In the LTEE specifically, size and carbon density do not scale proportionately, and the stoichiometry 

of cells has evolved over time21,34. In this light, the assumption of equal costs per unit volume of building 

smaller and larger cells is violated. Finally, large cells are relatively cheaper to produce than small cells in 

terms of genome replication. In the LTEE, the larger evolved cells have slightly smaller genomes than the 

smaller ancestral cells23, so that the relative, and even absolute, costs of genome replication are lower for 

the larger cells. Of likely greater importance, the evolved cells have undergone substantial fine-tuning of 

their gene-regulatory networks to the LTEE environment, thus reducing the costly expression of unneeded 

transcripts and proteins30,31,33. 

Relaxing the strict proportionality of production costs to cell size 

Taken together, our results imply that larger cells are cheaper to maintain and build per unit volume, such 

that the scaling of the total cost of production is far less than proportional to cell size. If the assumption of 

proportional cost is relaxed, then the paradox of larger cells having higher growth rates may be resolved. 

Instead of assuming that the costs of production scale with individual cell size with an exponent of 1, we can 

explore a range of possible scaling exponents and compare the resulting predictions with our observations. 

To that end, here is the generalised formula relating cell size to population growth rate: 

r = MB/MC
  (Eq. 1) 

where B is the exponent linking cell mass to metabolic rate, and C is the exponent linking total production 

costs (both maintenance and building) to mass. When the costs are assumed to be directly proportional to 

size (i.e., C = 1), we recover the prediction of classic metabolic theory13:  

r = M
B
/M

1
 = M

B–1
 (Eq. 2) 

At the other extreme, the costs of production are size invariant (i.e., C = 0). That is, the total costs of 

producing smaller and larger cells are the same, and theory instead predicts:  

r = MB/M0 = MB (Eq. 3) 

Of course, any value of C is possible in this more general framework. In the case of the LTEE strains, we find 

that r scales at 0.27, which implies that C = 0.11 (i.e., 0.38 - 0.27 = 0.11). In other words, the costs of 

production increase only weakly with cell size. Specifically, the cells from generation 60,000 are, on average, 

over twice the volume of their ancestors (Figure 1), but they cost only ~10% more to produce than the small 

ancestral cells. If we now set the exponent that links production cost (C) to mass at 0.11, then we predict the 

scaling exponent for the maximum rate of biovolume production seen in our experiments (Table 1). In other 

words, if we assume the per capita cost of producing the larger evolved cells is only slightly more than the 
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cost of the smaller ancestral cells, then we can reconcile our other observations with the classic theoretical 

predictions.  

A recent study of the single-celled eukaryote Dunaliella tertiolecta also found improvements in both 

population growth rate and yield as cells evolved to be larger
2
. These improvements were associated with 

the evolution of significant genomic streamlining41, which likely decoupled some production costs from cell 

size. Thus, it seems that the trade-offs between size and rates of production that seem almost invariant in 

comparisons among species can be circumvented within species when other traits that affect metabolic 

costs also coevolve.  

In conclusion, our results demonstrate the importance of examining the scaling of size, metabolism, and 

population dynamics within species, as well as across species, because these comparisons may differ 

quantitatively and even qualitatively. Such differences occur even though the explanations for these 

patterns at both scales involve the same underlying metabolic processes. Given the importance of the 

scaling of production costs to organismal size in driving our expectations of how size affects population 

growth and productivity4, this issue has received far too little empirical attention. We recommend, 

therefore, that future studies should examine production costs as a function of size, both within and among 

species.  
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Figure 1. Trajectories of cell size in E. coli populations across 60,000 generations of evolution. Black line 

shows the mean trajectory of all populations; grey lines show the 12 independent populations. 
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Figure 2. Scaling relation between average cell volume and per capita metabolic rate. The relation was 

examined across three different total biomasses, achieved by varying the initial cell density (shown by 

different colours). The limiting glucose concentration was the same for all three treatments; the glucose was 

thus depleted faster at the higher initial cell densities, leading to lower per capita metabolic rates at the 

higher densities. Each point shows the mean value for a sample at the generation indicated by the different 

symbols. The resulting overall estimate of the metabolic scaling exponent, B, is 0.38 and constant across 

densities. 
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Figure 3. Scaling relations between average cell volume and a) intrinsic rate of population growth; b) 

maximum population density in terms of cell number; c) maximum population density in terms of total 

biovolume; and d) maximum rate of biovolume productivity. Different colours represent different glucose 

levels, with the lowest level equal to the concentration used in the LTEE. Each point shows the mean value 

for a sample at the generation indicated by the different symbols.  
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Table 1. Summary of predicted and observed scaling of population parameters based on metabolic scaling theory. We estimated the metabolic scaling 

exponent, B, as 0.38 (Figure 2). We show predictions (including confidence intervals in parentheses) based on standard theory, whereby production costs 

are assumed to scale perfectly with size (C = 1); when production costs are assumed to be size invariant (C = 0); and when production costs scale weakly 

with size (C = 0.11). The C value of 0.11 was calculated based on the scaling observed for the intrinsic rate of increase, r.  

Parameter Definition General 

theory 

Prediction 
if C = 1 

Prediction 
if C = 0 

Prediction 

if C = 0.11 

Observed 

scaling 

r Intrinsic rate 

of increase 
M

B–C

 –0.62 (–0.73:–0.51) 0.38 (0.27:0.49) 0.27 (0.16:0.38) 0.27 (0.20:0.34) 

Max
cells

 Maximum cell 

density 
M

–B

 –0.38 (–0.49:–0.27) –0.38 (–0.49:-0.27) –0.38 (–0.49:–0.27) –0.45 (–0.54:–0.37) 

Max
biovolume

 Maximum 

population 

biovolume 

M
1–B

 0.62 (0.51:0.73) 0.62 (0.51:0.73) 0.62 (0.51:0.73) 0.55 (0.46:0.63) 

Biovolume 

productivity 

Maximum 

productivity 
M

(1–B)

x M
(B–C)

 = M
1–C

 0 1 0.89 0.81 (0.72:0.91)  
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Methods 

Experimental Overview 

We measured average cell volumes for 48 E. coli clones (2 ancestral strains, 2 clones isolated from each of 

the 12 LTEE populations at 10,000 generations, and 2 clones from 11 populations at 60,000 generations; 

Table S1). We excluded from our analyses one population at 60,000 generations because it evolved the 

ability to use citrate as an additional source of carbon and energy in the LTEE environment. We measured 

metabolic rates of the same 48 clones at 3 initial cell densities. We monitored the population growth of the 

same 48 clones at each of 3 resource levels, to which we fit growth curves. We averaged the estimates of 

cell size, metabolic rate, and population growth parameters for the two evolved clones from the same 

population and generation. In all analyses, we treat the average value of the two evolved clones as a single 

sample. We also include the two ancestral strains, each of which founded six of the LTEE populations. Thus, 

our statistical analyses reflect a total of 25 samples (2 ancestors, 12 populations at 10,000 generations, and 

11 populations at 60,000 generations) for each assay and, when relevant, for each treatment. 

Evolution Experiment, Strains, and Media 

The E. coli long-term evolution experiment (LTEE) started in 1988 16 and has continued since. Twelve 50-ml 

flasks containing 10 ml of DM25 medium (see below) were seeded with either the “arabinose-negative” 

ancestral strain REL606 (populations Ara–1 to Ara–6) or the “arabinose-positive” ancestor REL607 (Ara+1 to 

Ara+6). The Ara marker causes cells to produce either red (Ara
–
) or white (Ara

+
) colonies on tetrazolium-

arabinose indicator plates, and it serves to differentiate competitors during relative fitness assays. The Ara 

marker is selectively neutral in the LTEE conditions42. The 12 populations are propagated daily with 100-fold 

dilutions at 37°C while shaking at 120 rpm for mixing and aeration. The dilutions and regrowth allow log2 100 

≅ 6.6 cell generations per day. The stationary-phase (i.e., end of day) population density is ~5×107 cells/mL 

for the ancestral strains
16

. In 11 populations, the stationary-phase density declined as the individual cells 

became larger; in the case of population Ara–3, however, the cell density increased several-fold after cells 

evolved the new capacity to use the citrate in DM25 as an additional source of carbon and energy43. Samples 

(including whole populations and isolated clones) are periodically stored with glycerol (as a cryoprotectant) 

at –80°C, where the cells remain viable and available for further analyses.  

Our analyses used the two ancestors, plus two clones sampled from each population at 10,000 and 60,000 

generations (except for Ara–3 at 60,000 generations, which we excluded owing to its access to citrate as an 

additional substrate for growth). The isolation of the 10,000-generation clones was described previously23. 

For this study, we plated each 60,000-generation population sample on Lysogeny Broth (LB) agar and picked 

two clones at random, which we then stored as glycerol stocks.  
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The culture medium used in the LTEE and in this study is Davis Mingioli (DM) minimal medium [7 g/L 

potassium phosphate (dibasic trihydrate), 2 g/L potassium phosphate (monobasic anhydrous), 1 g/L 

ammonium sulfate, 0.5 g/L disodium citrate, 1 mL/L 10% magnesium sulfate, and 1 mL/L 0.2% thiamine 

(vitamin B1)] supplemented with a specified amount of glucose16. The concentration of glucose added to the 

medium is indicated by a suffix (e.g., DM25 has 25 mg/L glucose). MG agar plates were used for counting 

colonies; in addition to the ingredients of DM media, it contains 4g/L of glucose and 16g/L agar. LB broth 

[NaCl (10 g/L), tryptone (10 g/L), and yeast extract (5 g/L)] was used for the initial recovery of bacteria from 

thawed glycerol stocks for the haemocytometer count assay; LB plates were made by adding 20 g/L agar.  

Population Growth Measurements 

Each clone was revived from the frozen stocks and then grown in 3 mL of DM25 at 37°C with orbital shaking 

for 24 h to acclimate the bacteria to that medium. The next day, we measured the optical density (OD) of 

each culture, and the density was normalised to match the culture with the lowest OD. The resulting cultures 

were diluted 100-fold into 96-well microplates containing DM25, DM50, or DM100 media. Each clone was 

replicated 4 times in each medium, for a total of 600 growth curves (50 clones x 3 media x 4 replicates, 

including the two clones from population Ara–3 at generation 60,000 that were subsequently excluded). The 

clones were randomly assigned to wells for each medium over 20 microplates to minimize position effects. 

We measured OD at 600 nm wavelength every 10 min for 24 h using an ELx808 Incubating Absorbance 

Microplate Reader (BioTek Instruments, USA) set to its maximum shaking speed and 37°C. 

A complete description of the methods that we used to estimate demographic parameters is provided in 

Malerba et al.
44

. Briefly, OD serves as a proxy for population biomass, and we loge-transformed OD values to 

reduce heteroscedasticity. We then fit a four-parameter logistic-type sinusoidal growth model of the 

following form: 

log� ����� ~ ����� �
	����� 
 ������

1 � 
	 �����
�����
 

(Eq. 4) 

where ����� is the minimum population biomass, �����  is the maximum population biomass, ���� is the 

time to the inflection point, and μ quantifies the curve’s steepness. The following demographic parameters 

were extracted for each trajectory: the maximum predicted value for OD600 (�; unit: OD600); the maximum 

rate of biomass increase (�; unit: min-1); and the maximum rate of biomass production (unit: OD600 min-1).  

Metabolic Assays 

We measured metabolic rates, based on oxygen consumption, as follows. The clones were revived from the 

frozen stocks by plating on LB agar. Single colonies were used to inoculate 2 mL of DM800 medium, and the 
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cultures were incubated at 37°C with orbital shaking for 24 h. The next day, the cells were pelleted by 

centrifugation, washed with DM0 medium (i.e., DM without added glucose) to remove any residual glucose 

and extracellular by-products. The pellets were resuspended in 2 mL of DM0, and the cultures were then 

adjusted to OD600 values of 0.15, 0.3, and 0.6 and a final volume of 5 mL each using DM0.  

Oxygen consumption was measured in a temperature-controlled room at 37°C using 4 x 24-channel PreSens 

Sensor Dish Reader (SDR; AS-1 Scientific Wellington, New Zealand), using methods adopted from Malerba et 

al.27. Before the experiment, the equipment was kept overnight in the 37°C room, and each SDR plate was 

calibrated using air-saturated (AS) DM800 medium (100% AS) and DM800 medium containing 2% sodium 

sulphite (0% AS).  We monitored a total of 192 cultures that included the 2 ancestral and 48 evolved clones 

(including the two 60,000-generation clones from population Ara–3 that were later excluded) at each of the 

three initial cell densities, plus an additional 21 replicates of ancestral strain REL606 and 21 blanks without 

any cells. The additional ancestral replicates meant that each 24-well plate included this reference strain at 

all three cell densities, allowing us to detect possible plate-level anomalies; however, we encountered no 

such problems. The cultures were otherwise randomly distributed across two consecutive days of data 

collection. Each culture was carefully placed in a 5-mL vial to avoid creating any air pockets. At least two vials 

per plate were filled with sterile medium that served as blanks. Before starting the trials, all cultures were 

acclimated to 37°C for an hour. We added 0.4 µL of 10% glucose solution to each 5-mL sample prior to the 

start of the assays, which brought the glucose concentration to 8 mg/L (about one-third of the concentration 

in the standard LTEE medium, DM25). Moreover, even the lowest initial density (OD600 = 0.15) is higher than 

the final density the bacteria reach when they have depleted the glucose in DM25. Thus, the glucose supply 

was quickly exhausted during these metabolic assays, with the depletion occurring faster at the higher cell 

densities. This effect led to different estimates of metabolic rates across the three cell density treatments; 

however, the scaling exponent between cell volume and metabolic rate was unaffected by the treatment 

(Figure 2). The assays began after the SDR channels were fully loaded and the samples were well-mixed. The 

non-consumptive O2 sensors then monitored the oxygen in each vial every minute until it was consumed by 

the bacteria. 

After the assays ended, the rate of change in oxygen saturation (VO2) was quantified from the linear part of 

each time-series (Figure S1). Energy rates were calculated with the following model: 

��2 �
�� 
 ��

100
���� (Eq. 5) 

where �� is the rate of change in each sample (% min-1), �� is the mean rate of change for the blanks in 

each plate (% min
-1

), � is the water volume (0.005 L), and ��� is the oxygen capacity of air-saturated water 
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at 37°C and zero salinity (210 µmol O2 L
-1). Finally, the rates were converted to energy units, assuming a 

calorific energy of 0.512 J (µmol O2)
-1

 from Malerba et al.
27

. 

Calibration Curves for OD and Cell Density 

Calibration curves were required to convert oxygen consumption (VO2) and carrying capacity (K) from units 

of OD600 to units of cells per mL, and thereby express metabolism and productivity on a per capita basis. To 

this end, we measured cell densities, using two approaches. The first approach used a Neubauer Improved 

haemocytometer (Bright-line double ruled, Pacific Lab) to estimate cell densities for calculating per capita 

respiration rates. The bacteria were growing, at least briefly, during the respiration measurements, and 

therefore these calibrations used growing cultures. Clones were revived from glycerol stocks by inoculation 

into 1 mL LB medium and grown overnight. Cells were washed 3 times in 1 X PBS and then diluted 1000-fold 

in 3 mL of DM100 medium, where they grew at 37°C with orbital shaking for 24 h. The next day, the cultures 

were diluted 20-fold into 200 μL of DM400 medium in a 96-well microplate. We immediately measured an 

initial OD600 value for each well using the same ELx808 Incubating Absorbance Microplate Reader as for the 

population growth measurements. We then placed the plate in a Thermo Scientific plate shaker at 37°C and 

750 rpm for 2 h. We recorded another set of OD600 readings, and then took a 20-μL sample from each well 

and diluted it to a final concentration of 5% formaldehyde to fix the cells. We returned the plate to the 

shaker at 37°C. Every hour, we recorded OD600 readings and took and fixed 20-μL samples for 

haemocytometer cell counts until 5 h had elapsed. Three to four replicate cultures were analysed for each 

clone, with a blinded set of clones used for measurements, which were conducted over 20 days. We rarely 

measured replicates from the same clone on a given day. Fixed cells were mixed by pipetting up and down, 

and we transferred 10 μL into the Neubauer chamber. We used a light microscope to count the cells. We ran 

a linear regression to convert optical density into haemocytometer-based cell densities for each sample, and 

the resulting values were used to convert oxygen consumption to per capita metabolic rates.  

Maximum OD values typically occurred in our population-growth experiments when the cells had depleted 

the glucose and begun to enter stationary phase. Bacterial cells are smaller, on average, in stationary phase 

than while growing, including in the LTEE populations
22

. Therefore, the above calibrations could not be used 

to directly estimate maximum cell density (Maxcells). Instead, we estimated the stationary-phase cell density 

after 24 h of each clone by plating cells on MG agar plates. Clones were revived from frozen stocks and 

grown in DM25. Aliquots of these cultures were distributed at random over multiple 96-well microplates to 

minimize position effects. After 24 h at 37°C on a plate shaker, each culture was diluted 1:100 in DM25, 

DM50, and DM100 (2 μL of culture in 200 μL of medium) and incubated again for 24 h on the plate shaker. 

These cultures were diluted 10,000-fold and spread on MG agar plates, and colonies were counted after 
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incubating the plates for 24 h. We used these counts to calibrate stationary-phase cell densities based on 

colony-forming units at 24 h (NCFU) and cell densities inferred from OD values and haemocytometer counts of 

growing cells (NOD), which yielded the following equation:  log10[NCFU] = 0.92 x log10[NOD] + 1.35 (see Figure 

S2). We then used this equation to estimate Maxcells as the cell density corresponding to the maximum OD 

reading (ODmax) from each growth curve. The 60,000-generation sample from population Ara+3 appeared to 

be an outlier when calibrating the relation between cell numbers based on OD and CFU values (Figure S2). 

(Note: This outlier is not the Ara–3 sample that was excluded from all of our analyses because the cells can 

grow on citrate). We therefore recalculated all the scaling exponents in this work while excluding the outlier 

sample, but none of the values changed substantively (Table S2). 

Cell Size Measurements 

We measured the mean cell volume for each clone in stationary phase using the side-scatter of a flow 

cytometer (Flow-Core, BD LSRII, BD Biosciences, San Jose, CA, USA); beads of four diameters (0.2, 0.5, 1, and 

2 μm, Invitrogen by Thermo Fisher Scientific) served as standards. The clones were revived from frozen 

stocks and grown in DM25 at 37°C with orbital shaking for 24 h. The next day, these acclimated cells were 

diluted 100-fold in fresh DM25 medium in 96-well microplates. We had four replicates per clone, and the 

clones were randomly placed across four plates. The plates were incubated at 37°C and 750 rpm for another 

24 h, at which time samples were taken for flow cytometry.  

 

Statistical Analyses 

Metabolic rates and growth models were calculated using R 
45

 and the packages nlme 
46

, lme4 
47

, and plyr 
48

 

for model fitting. ANCOVA and multiple regression models were performed to examine the scaling relations 

between average log-transformed cell volume and the various log-transformed metabolic and population 

dynamics metrics, respectively; initial cell density (in the case of metabolism) and glucose level (in the case 

of population dynamics) were additional covariates or fixed factors. In all cases, we calculated mean values 

across technical replicates for a given clone, and we then averaged the values for the two clones sampled 

from each LTEE population at either 10,000 or 60,000 generations. 
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Figure S1. We monitored changes in oxygen saturation over time to estimate rates of energy use from the 

linear part of each time series (blue dots). Each panel shows a bacterial culture in which its initial biomass 

was standardized to a specific optical density and the oxygen was then monitored every 15 sec until it was 

largely or entirely depleted. Here we display the trajectories for 18 of the 192 time series in the full dataset 

(171 with cell cultures and 21 blanks). 
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Figure S2. Relation between maximum cell density of each sample estimated based on the optical density 

of growing cultures and colony forming units at stationary phase. Growing cells are usually larger than cells

in stationary phase, leading to lower estimates of the maximum cell density from the OD method and using 

this calibration. Each point shows the mean value for a sample (two clones from the same generation for the

evolving populations), and symbols identify the different generations. The grey arrow indicates an apparent 

outlier (population Ara+3 at 60,000 generations), which had unusually low maximum densities using the CFU

method. However, including or excluding this outlier has little effect on estimated scaling exponents (Table 

S1). 
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Table S1. E. coli ancestors and evolved clones used in this study. 

Clone ID Population ID Generation Notes 

REL606 NA 0 Ara
–
 ancestor 

REL607 NA 0 Ara
+
 ancestor 

REL4536A NA 10,000 Clone A from Ara–1 population at 10,000 generations 

REL4536B NA 10,000 Clone B from Ara–1 population at 10,000 generations 

REL4537A NA 10,000 Clone A from Ara–2 population at 10,000 generations 

REL4537B NA 10,000 Clone B from Ara–2 population at 10,000 generations 

REL4538A NA 10,000 Clone A from Ara–3 population at 10,000 generations 

ZDB429 NA 10,000 Clone B from Ara–3 population at 10,000 generations 

REL4539A NA 10,000 Clone A from Ara–4 population at 10,000 generations 

REL4539B NA 10,000 Clone B from Ara–4 population at 10,000 generations 

REL4540A NA 10,000 Clone A from Ara–5 population at 10,000 generations 

REL4540B NA 10,000 Clone B from Ara–5 population at 10,000 generations 

REL4541A NA 10,000 Clone A from Ara–6 population at 10,000 generations 

REL4541B NA 10,000 Clone B from Ara–6 population at 10,000 generations 

REL4530A NA 10,000 Clone A from Ara+1 population at 10,000 generations 

REL4530B NA 10,000 Clone B from Ara+1 population at 10,000 generations 

REL4531A NA 10,000 Clone A from Ara+2 population at 10,000 generations 

REL4531B NA 10,000 Clone B from Ara+2 population at 10,000 generations 

REL4532A NA 10,000 Clone A from Ara+3 population at 10,000 generations 

REL4532B NA 10,000 Clone B from Ara+3 population at 10,000 generations 

REL4533A NA 10,000 Clone A from Ara+4 population at 10,000 generations 

REL4533B NA 10,000 Clone B from Ara+4 population at 10,000 generations 

REL4534A NA 10,000 Clone A from Ara+5 population at 10,000 generations 

REL4534B NA 10,000 Clone B from Ara+5 population at 10,000 generations 

REL4535A NA 10,000 Clone A from Ara+6 population at 10,000 generations 

REL4535B NA 10,000 Clone B from Ara+6 population at 10,000 generations 

MJM 631 REL 11678 60,000 Clone A from Ara–1 population at 60,000 generations 

MJM 632 REL 11678 60,000 Clone B from Ara–1 population at 60,000 generations 

MJM 633 REL 11679 60,000 Clone A from Ara–2 population at 60,000 generations 

MJM 634 REL 11679 60,000 Clone B from Ara–2 population at 60,000 generations 

MJM 637 REL 11681 60,000 Clone A from Ara–4 population at 60,000 generations 

MJM 638 REL 11681 60,000 Clone B from Ara–4 population at 60,000 generations 

MJM 639 REL 11682 60,000 Clone A from Ara–5 population at 60,000 generations 

MJM 640 REL 11682 60,000 Clone B from Ara–5 population at 60,000 generations 

MJM 641 REL 11763 60,000 Clone A from Ara–6 population at 60,000 generations 

MJM 642 REL 11763 60,000 Clone B from Ara–6 population at 60,000 generations 

MJM 643 REL 11765 60,000 Clone A from Ara+1 population at 60,000 generations 

MJM 644 REL 11765 60,000 Clone B from Ara+1 population at 60,000 generations 

MJM 645 REL 11686 60,000 Clone A from Ara+2 population at 60,000 generations 

MJM 646 REL 11686 60,000 Clone B from Ara+2 population at 60,000 generations 

MJM 647 REL 11687 60,000 Clone A from Ara+3 population at 60,000 generations 

MJM 648 REL 11687 60,000 Clone B from Ara+3 population at 60,000 generations 

MJM 649 REL 11688 60,000 Clone A from Ara+4 population at 60,000 generations 

MJM 650 REL 11688 60,000 Clone B from Ara+4 population at 60,000 generations 

MJM 651 REL 11723 60,000 Clone A from Ara+5 population at 60,000 generations 

MJM 652 REL 11723 60,000 Clone B from Ara+5 population at 60,000 generations 

MJM 653 REL 11724 60,000 Clone A from Ara+6 population at 60,000 generations 

MJM 654 REL 11724 60,000 Clone B from Ara+6 population at 60,000 generations 
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Table S2. Modified version of Table 1 from the main text. As shown in Figure S2, one sample was an outlier 

in the calibration of maximum cell densities based on optical densities and colony forming units. Here we 

show that including or excluding that outlier has no meaningful effects on the observed scaling exponents.  

Parameter 
Prediction 

if C = 0.11 

Observed scaling 

(including outlier) 

Observed scaling 

(excluding outlier) 

r 0.27 0.27 0.27 

Max
cells

 –0.38 –0.45 –0.42 

Max
biovolume

 0.62 0.55 0.58 

Biovolume 

productivity 

0.89 0.81 0.85 
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