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ABSTRACT

The repertoire of T cell receptors encodes various
types of immunological information. Machine
learning is indispensable for decoding such
information from repertoire datasets measured
by next-generation sequencing. In particular, the
classification of repertoires is the most basic
task, which is relevant for a variety of scientific
and clinical problems. Supported by the recent
appearance of large datasets, efficient but data-
expensive methods have been proposed. However,
it is unclear whether they can work efficiently when
the available sample size is severely restricted
as in practical situations. In this study, we
demonstrate that the their performances are
impaired catastrophically below critical sample
sizes. To overcome this, we propose MotifBoost,
which exploits the information of short motifs of
TCRs. MotifBoost can perform the classification
as efficiently as a deep learning method on large
datasets while providing more stable and reliable
results on small datasets. We also clarify that the
robustness of MotifBoost can be attributed to the
efficiency of motifs as representation features of
repertoires. Finally, by comparing predictions of
these methods, we show that the whole sequence
identity and sequence motifs encode partially
different information and that a combination of such
complementary information is necessary for further
development of repertoire analysis.

INTRODUCTION

T and B lymphocytes play a central role in the adaptive
immunity of vertebrates, including human beings.
Through the somatic recombination process called V(D)J
recombination, T/B cells acquire diversities of T/B cell
receptors (TCR/BCR) (1). These diversities are called
the TCR/BCR repertoires. Clonal expansion of T/B cells,
in response to infections of various pathogens, alters the
repertoires (2). In particular, T cells are integral as the control
center of the immune system to regulate other immune
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cells, including B cells. The development of NGS enables
quantitative measurements of the somatically recombined
regions of T cells’ genome, which encode the TCR, for
cells collected from a wide range of tissues and conditions.
NGS drives the progress of research on TCR repertoire from
various aspects (3).

In basic immunology, public TCRs, T-cell receptors with
identical or very close sequences shared across multiple
individuals, have been studied intensively (4, 5). Before
NGS, public TCRs were thought to be the result of multiple
recombination events converging on the same amino acid
sequences (6). However, recent studies based on NGS have
revealed that the selection of antigen-specific or self-reactive
TCRs may also contribute to the emergence of public TCRs
(7, 8, 9).

In applied immunology, quantitative measurements of T
cell repertoire have already been employed for practical and
clinical purposes. For example, the FDA approved a test kit
for micro residual disease, a type of leukemia (10).

The importance of bioinformatics and machine learning
methods in processing and analyzing the sequenced repertoire
data is increasing in both basic and applied immunology.
For bioinformatics applications, several software tools (e.g.,
IMGT/HighV-QUEST (11), IgBLAST (12), MiXCR (13),
etc.) have been developed to extract quantitative repertoire
information from NGS data, and modeling of the dynamics of
T cell repertoire generation and selection is also being actively
studied (14, 15, 16, 17). For example, a mathematical model of
recombination successfully classifies public and private TCRs
(18).

For machine learning applications, repertoire classification
tasks have been widely studied in the context of disease
detection. As a result, various methods were proposed and
have gradually evolved to exploit the complex information in
the repertoire dataset: First, summary statistics of abundance
distribution, such as Shannon’s Entropy, were used for
classifying and clustering the infection status and properties
of repertoires. These statistics are scalar-valued and can
be calculated only from the abundance distribution of
sequences in a repertoire (19, 20). Similarly, distance-based
methods were employed (21, 22). These methods classify or
cluster repertoires based on distances between two repertoire
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distributions defined by the metrics like the Morisita-Horn
Similarity Index, which is frequently used in ecology. A new
similarity index tailored to TCR has also been proposed (23).

These methods can be interpreted as unsupervised learning
for the repertoire classification task, using only the abundance
information of sequences and ignoring the sequence itself.
Since these methods only use such limited information, they
can produce relatively robust results regardless of the number
of samples. However, they abandon a large portion of potential
information in the repertoire. They consider sequences as just
independent labels regardless of their similarity. However,
similar TCRs are experimentally known to behave similarly
against antigens. Thus, analysis based on abundance alone
inevitably has limitations. In addition, methods reducing a
repertoire to a few parameters like those described above
cannot capture the complex mechanism of generation and
maintenance of repertoires in vivo.

In order to address these problems, supervised learning
frameworks have recently been employed and the increase
of available repertoire datasets also boosts their development.
Emerson et al. published the largest repertoire dataset
(hereafter called “Emerson dataset”) at that time from
766 CMV-infected and uninfected individuals (24). They
employed the Fisher Exact Test to find the CMV-related subset
of TCRs that appeared significantly more in the infected
samples than in the non-infected ones. A binary classifier is
then constructed, which uses the number of occurrences of
the CMV-related TCRs in a given repertoire. Although this
method also refers only to abundance information and discards
sequence information, it achieves a high level of accuracy
because the dataset is large enough to identify the significant
fraction of TCRs. We call this method “the burden test,” by
following the preceding literature (25).

Natural language processing methods have also been
applied to utilize receptor sequence information. Repertoire
data is essentially a collection of many short sequences for
each subject (typically, about 105–106 sequences are obtained
for each subject), and the repertoire classification problem is to
assign a label to each of these collections. The number of the
sequences being determinant of the label is few compared with
the whole sequences in the repertoire. Therefore, it is essential
to identify the determinant TCRs from a labeled training
dataset. This kind of problem is called “Multiple Instance
Learning” (MIL). In Widrich et al. (25), a neural network
(NN) is trained iteratively on small subsampled repertoires
to predict the label of the original repertoire. The NN uses
a technique called Attention to find patterns of sequences
associated with the repertoire label. Hereinafter, this method
is referred to as ”DeepRC.”

These studies achieve good performance over the Emerson
dataset of 786 subjects. However, the sample sizes in typical
repertoire measurements are about an order of magnitude
smaller than this dataset. In fact, according to TCRdb (26) as
of April 2021, the largest database of repertoire sequencing
data, 114 of 130 projects (88%) have less than 100 samples
(Supplementary Table S1). Whether these methods will work
on datasets smaller than the Emerson dataset or not has yet to
be tested. The burden test requires finding the TCRs observed
significantly more frequently in the CMV positives than in
the negatives via the Fisher Exact Test. When the sample size
is small, it is difficult to find significant differences by such

statistical tests. DeepRC employs a Transformer-like deep
learning architecture, whose performance is also believed to
depend significantly on the amount of available training data
(27).

In this study, by investigating how these preceding methods
behave in response to the change in the effective size of
a dataset, we show that the performance of both methods
deteriorates rapidly when the dataset size becomes smaller
than a certain size. In order to compensate for the drawback
of these methods, we also propose a new method (hereafter
called the “MotifBoost“) that works robustly on smaller
datasets. For small to medium-sized datasets, a method is
preferable to have slow degradation in performance with
respect to the decrease in data size. Additionally, if the
method can achieve high performance comparable to the
existing methods for sufficiently large datasets, it can be
widely used regardless of the size of the datasets. We show
that our proposed method satisfies both of these properties.
MotifBoost adopts a k-mer based feature, which can exploit
both sequence and abundance information without relying on
strong but data-expensive representation learning conducted
in deep learning (27, 28). We use Gradient Boosting Decision
Tree (GBDT) as a classifier (29), because of its performance
on small datasets (30, 31). We show that the performance
of MotifBoost depends loosely on the dataset size and can
achieve the comparative performance as DeepRC on the
large Emerson dataset. To further investigate why MotifBoost
performs so well despite its simplicity, we visualized and
examined the k-mer feature space. The result shows that
repertoire classification is possible in the k-mer feature space
at decent performance without any supervision, confirming
that the conventional k-mer feature representation is encoding
and representing relevant information to the task. Finally, by
scrutinizing the label predictions by all the three methods,
we argue that there is a difference in the latent information
of a repertoire employed between the burden test and either
DeepRC or our MotifBoost. This could hint at how we can
integrate the best of those for further development.

This paper is organized as follows: In Materials and
Methods, we provide an overview of our proposed method
and the framework of the performance benchmark with two
preceding methods. Then, in Results, we show how the
performance of the three methods changes as the sample size
changes. We also examine the stability of the performance
with respect to variations in the training datasets. Next, we
investigate the nature of the k-mer feature extraction in order
to explain the low variance of the performance of MotifBoost.
Finally, after mentioning a potential difference in the three
methods, future directions are discussed.

MATERIALS AND METHODS

MotifBoost
Our MotifBoost is inspired by the following two properties
of TCRs. First, identical or similar TCRs may exhibit
similar immune responses to antigens even across individuals.
Various research supports this property. For example, even
though TCRs are generated by the highly random V(D)J
recombination process, there are public TCRs, a subset of
TCRs with identical or very close sequences shared across
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multiple individuals (4, 5). It is reported that patients with
the same infection history have such public TCRs in common
(32). The success of the burden test, which uses the shared
TCRs across individuals, also evidences the relevance of
public TCRs to infections. Second, the response of TCRs to
antigens is sometimes strongly influenced by ”motifs,” short
sequences of a few amino-acid lengths (33). One possible
explanation for this property is that the presence of a particular
motif affects the structure of the TCR antigen-binding site
(34, 35).

Based on these observations, we employed the k-mer
abundance distribution for the feature representation. All k
consecutive characters in the sequences of a repertoire are
listed to calculate their abundance distribution, which is to
be used as the feature vector for the repertoire. Compared
to the burden test, our approach treats a sequence as a set of
motifs instead of a single sequence. This allows us to exploit
sequence similarity information through the combinations
of motifs. As our feature representation is a fixed-sized
vector for a specific value of k regardless of the number
of sequences or the sequence length, we can employ data-
inexpensive models for classification, instead of complex deep
learning architectures such as Transformer-like DeepRC (36).
It should be noted that k-mer based approaches have been
employed for the repertoire classification problem already.
Sun et al. (37) adopted a sparse model (LPBoost) for the k-
mer representation (k=3); Ostmeyer et al. (38) formulated
MIL by transforming the k-mer representation (k=4) into
various physicochemical information and performing linear
regression and max-pooling operation on it.

As for the value of k, k=3 or k=4 has been widely
used in previous studies like those mentioned above. In
the case of k=4, the number of dimensions of the feature
vector is about 160,000, which is the number of patterns
of four consecutive residues composed of 20 human amino
acids. This number is clearly too large for the repertoire
classification task, as their sample size is 102 at most.
While Ostmeyer et al. adopted k=4, they also performed a
dimensionality reduction. Every amino acid is represented as
a five-dimensional biophysicochemical dense vector and any
k-mer pattern is represented as a combination of those vectors.
Therefore, we selected k=3 in this study. Each sample is
represented by a multinomial distribution of k-mer abundance
over 213=9,261 dimensions, as we have 20 human amino
acids and a symbol representing the edge.

The studies mentioned above have selected classification
methods so that they can identify the important motifs. As
we do not impose such a restriction in this study, we can
adopt a more flexible algorithm. In order to achieve high
classification performance, we chose GBDT. It is much harder
to interpret the output since it is an ensemble of decision
trees (29), but it can handle nonlinear correlations of motifs.
For its data efficiency compared to complex deep learning
architectures, it is widely used for tasks with limited data
(30, 31). The property is important because the repertoire
classification problem is also severely data-limited as we saw
earlier.

In order to improve the performance, we additionally
employed the following techniques. First, we applied a data
augmentation technique to increase the robustness of the
model when trained on a small amount of data. Observed

repertoire sequences from a subject can be seen as a
sampling trial from the subject’s in vivo TCR distribution.
By resampling the sequences from the observed data, we can
simulate this sampling process and generate pseudo training
data, which may contribute to the model’s ability to deal with
the variance of the dataset. Second, the hyperparameter tuning
is performed, since the performance of GBDT is known to
depend strongly on the hyperparameters. The details of the
tuning are described later.

Performance Measurement
We compare the performance of our proposed MotifBoost
with two previously proposed supervised learning based
methods, burden test and DeepRC. We use the Emerson
dataset introduced earlier because the dataset is the one on
which the other methods are validated and also because it
is still one of the largest datasets being publicly available.
To investigate the relationship between the dataset size and
the performance of each method, we repeatedly sampled
subsets of the dataset in different sizes and trained each
method on each sampled subset. Then we performed a binary
classification on the CMV infection status for each method.
By following both papers of burden test and DeepRC, we
measured the correctness of the classification result by ROC-
AUC.

The Emerson dataset consists of two cohorts, ”Cohort 1”
and ”Cohort 2”, sampled at different medical facilities. They
include 640 samples (CMV+: 289, CMV-: 351) and 120
samples (CMV+: 51, CMV-: 69), respectively. Cohort 1 in
the original paper included 666 samples, but 25 samples are
excluded due to the missing CMV infection status and one
sample is not available in the published data.

In this study, Cohort 1 was used for training the models,
and Cohort 2 was used for testing them. Hyperparameter
tuning was also performed using only Cohort 1. This cohort-
based train/test split is to avoid an undesired behavior called
“shortcut learning,” in which a model learns to exploit
undesirable information to predict the label (39). Because
Cohort 1 and 2 are sampled at different medical facilities,
such undesirable information like batch effects may not be
shared between them. Therefore, the possibility of “shortcut
learning” is reduced under our setup compared to the mixed
setup used in the original paper of DeepRC. Emerson et al.
also employed the same setup as ours, and it is generally
considered to be more appropriate for evaluating disease
detection tasks than random train/test split of the mixed dataset
(40).

By performing subsampling on this dataset, we can simulate
small datasets. Hereinafter, repertoire sequence data from a
single subject is referred to as a “sample,” and the entire
640 samples of Cohort 1 are referred to as the ”full training
dataset.” Subsampling is conducted as follows:

For a given dataset size N , we select N samples randomly
without replacement from the 640 samples of the full training
dataset. Because of no replacement, the subsampled dataset
with N=640 is identical to the full training set. To maintain
the comparability of the performance assessment, stratified
sampling was performed so that the proportions of CMV
positive/negative samples of subsampled datasets match that
of the full training dataset as closely as possible. This is also a
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realistic setup. In the original training data, the proportions of
positive and negative samples are controlled to be comparable.
This level of control also can be expected even for other
experimental situations with smaller sample sizes. A subset
of the full training dataset generated by the above procedure is
referred to as a “subsampled training dataset.”

Subsampled training datasets are created for N=25, 50,
100, 250 and 400. The performance of each method can
depend on a certain choice of the subsampled samples, which
mimics the situation that we happen to have a good or bad set
of samples in an actual experiment. To evaluate the sample-
dependent statistical variation of performance of the methods,
for each N , we generated 50 independent subsampled training
datasets. Then each method was statistically evaluated by
measuring its performance with these 50 different subsampled
datasets for each N . Training a method on one of the 50
subsampled datasets and measuring its mean performance is
hereafter referred to as a “learning trial.” Thus, we performed
50 learning trials for each method and for each N .

All samples in Cohort 2 were used as the test dataset
regardless of the training dataset size and of the classification
method. All methods have no access to Cohort 2 samples
during training.

Detailed implementation and the parameters of each model
are as follows: For MotifBoost, we employed LightGBM
(41) as an implementation of GBDT and optimized its
hyperparameters with the Bayesian optimization library
Optuna (42). Optuna was run by its default parameters. The
hyperparameter search was performed for each learning trial
based on the cross-validated ROC-AUC score.

Data augmentation was also performed as follows: First, we
randomly selected sequences from a sample with replacement
to create an augmented sample. This is repeated until the
number of sequences in the augmented sample becomes half
of the original one. Note that the sampling probability for
each sequence is weighted by its observation count to utilize
abundance information. Second, this sampling was repeated
five times for every training sample.

For the burden test, we implemented its algorithm
by ourselves because the code is not available. The
hyperparameter tuning is also performed as in the original
paper, but we conducted a broader search than the original
paper (Supplementary Table S2). The hyperparameter search
was performed for each learning trial based on the cross-
validated ROC-AUC score. The Fisher’s exact test is
implemented based on scipy and compiled by the JIT
compiler library numba for faster execution. The classifier is
implemented based on immuneML (43).

For DeepRC, we adopted the author’s implementation
and its default hyperparameters. In the original paper, the
performance measurements were performed on a mixed
Cohort dataset. We have patched the implementation so as to
train it on Cohort 1 and test it on Cohort 2.

All numerical experiments were run on a machine operated
by Ubuntu and equipped with an Intel Core i7-8700 CPU and
128 GB RAM. An NVIDIA RTX2080Ti GPU was installed
to run DeepRC. All experiments of MotifBoost and burden
test were conducted with Python 3.8.5, LightGBM 3.2.1.99,
immuneML 1.2.1, Optuna 2.8.0, scipy 1.6.2, numpy 1.20.2,
and numba 0.50.1. Those of DeepRC were conducted with
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Figure 1. Performance change of each method in response to the change in
the sample size of the training dataset. The box-and-whisker plot shows the
median and lower and upper quartile of the ROC-AUC of each method. Note
that the subsampling procedure is not performed for N=640.

Python 3.6.9 and PyTorch 1.3.1, the same environment as that
of the original paper.

Visualization of the feature space
To investigate the feature space of MotifBoost, we
employed an unsupervised dimensionality reduction
algorithm called Gaussian Process Latent Variable Model
(GPLVM) to visualize the feature vectors (44). GPy 1.9.9
(https://github.com/SheffieldML/GPy) was used to implement
the model.

RESULTS

The performance of the previously proposed methods
deteriorates catastrophically below certain sample sizes.
We measured the classification performance of the three
methods by ROC-AUC score with varying N , the number of
training samples (Fig. 1).

Being trained on the full training dataset (640 samples),
the burden test achieved the best performance with the mean
ROC-AUC score of 0.889 (as we will see later, the burden
test is deterministic, therefore we do not show confidence
intervals.). On the other hand, the mean ROC-AUC score of
DeepRC is 0.80±0.03 and that of MotifBoost is 0.78±0.01.
As the sample size N was reduced to N=400, the mean
ROC-AUC score of the burden test decreased with a large
variance of the scores among learning trials. When N=250
or less, the burden test can no longer learn. The performance
of DeepRC was maintained even when the sample size N was
reduced to 400. However, again, the same instability and rapid
deterioration of performance were observed when N=250.
DeepRC also cannot learn at N=100 or less.

MotifBoost performs better than the other methods at
small sample sizes.
Trained on the full training dataset, MotifBoost achieved the
equivalent level of the mean ROC-AUC score as DeepRC,
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with a difference of only 0.012, which falls within the
confidence interval of DeepRC’s score. The performance of
MotifBoost declines slowly as the sample size N decreases
(Fig. 1). The performance degrades only by 0.069 even if N
is reduced to 25, i.e., the sample size is 96% reduced from
the full training dataset (640 samples). When the sample size
is 640 or 400, DeepRC shows slightly higher performance
on average than MotifBoost. However, as discussed below,
DeepRC has a large variance in performance. The mean
performance difference between MotifBoost and DeepRC
falls within this variation.

The average performance of all methods can be summarized
as follows: Trained on the full training dataset (640
samples), the burden test shows the best performance, and
the DeepRC and MotifBoost work equivalently. When the
sample size is 400, they outperform the burden test because
of its catastrophic breakdown. When the sample size is
reduced further below 250, only MotifBoost could maintain
performance stably.

In addition, MotifBoost requires less powerful hardware
than the other methods. DeepRC uses deep learning and
requires dedicated hardware such as GPUs. The burden test
repeats the computationally expensive Fisher exact test, which
is further burdened by the hyperparameter search. It also
requires keeping the count of all sequences in the sample,
which consumes bigger RAM in a naive implementation, but
an efficient implementation has not yet been proposed.

In our implementation and Python environment, DeepRC
on GPU took 1.5 hours to train the full training dataset, the
burden test with parameter search on CPU took about six
hours using about 100GB of memory, and MotifBoost on CPU
took about three hours using about 50GB of memory. Note that
MotifBoost can be further accelerated by using GPUs.

MotifBoost gives reproducible results for different
datasets if its size is comparable.
The average performance of MotifBoost gradually increases
with the increase in the number of samples, which is
accompanied by a steady decrease in the performance
variance. This property manifests the stability of learning.
In contrast, for the other methods, the performance jumps
abruptly at a certain sample size at which the variance also
increases significantly. In addition, DeepRC also shows a
greater variance than MotifBoost in the performance even
beyond the critical sample size. This suggests that the result
of the burden test and DeepRC can vary depending on the
differences of samples involved in the training dataset or on
the stochastic nature of the method, especially near the critical
sample size.

To further investigate the sources of the variances, for each
dataset used for the first trials, we conducted the second
learning trial on the same training dataset. For this experiment,
we chose the subsampled training datasets of 250 samples
at which the variances of both the DeepRC and the burden
test were relatively large (Fig. 1). We performed the second
learning trial of each method on each of the 50 subsampled
datasets (The first learning trials are those shown in Fig. 1).
Then we compared the results of the first and the second
learning trial of each subsampled dataset as shown in Fig. 2.

The burden test showed no variation in the ROC-AUC
score between the two learning trials because its algorithm is
almost deterministic except for the initial value of the Newton
method. To choose the initial value, we employed a commonly
used algorithm, the method of moments, with which the
initial value is deterministically obtained based on the average
and variance of the training samples. Because a pair of the
first and the second learning trials use the same subsampled
dataset (one out of the 50 subsampled sets), the burden test is
completely deterministic in this study. This indicates that, for
the burden test, the large variation of the ROC-AUC score at
N=400 in Fig. 1 is exclusively attributed to the difference of
samples involved in each subsampled training dataset.

In contrast, Fig. 2 shows that the performance of DeepRC
can vary significantly between learning trials even if being
trained with the same subsampled training dataset. The
training process of DeepRC includes repeated random
samplings of sequences in the training samples. The variability
of performance indicated in Fig. 2 is due to this stochastic
nature of DeepRC.

In addition, we found that the ROC-AUC scores of DeepRC
are almost always low for some samples, which suggests
the sample-dependent variation of performance. To confirm
that, we performed another three learning trials for the four
subsampled training datasets for which the ROC-AUC score
of DeepRC was less than 0.6 in both the first and the second
learning trials. For the two samples, the ROC-AUC score was
less than 0.5 five times in a row. This implies that even though
the size of the datasets is the same, the performance of the
DeepRC can also vary greatly due to the difference of samples
involved in the training dataset like the burden test.

The potential instability of learning, originating from
either sample-dependence or stochasticity of training, is not
desirable for practical use because it hampers us to derive a
statistically confident conclusion from data, especially when
the prediction from the methods cannot be validated in some
other ways (we could spot the instability because the test
dataset is labeled by CMV infection, but this is not the case
in the usual situation of infection prediction). Compared with
the other two methods, MotifBoost is also stochastic as it
employs data augmentation and GBDT, but it balances high
performance and small variance between trials (Fig.2).

In addition, the performance is also less sensitive to
the differences of samples in the dataset (Fig.1), and it
achieves the maximum ROC-AUC score of over 0.7 for any
subsampled training dataset. Thus, MotifBoost has desirable
reproducibility and stability to all the variations due to
samples, training processes, and the size of samples.

Strong feature extraction of MotifBoost
We observed the stability and data efficiency of MotifBoost.
However, their source is still elusive. One possibility is that
the k-mer representation itself is already a good feature for the
repertoire classification task. To investigate the feature space
of MotifBoost, we employed GPLVM (44), an unsupervised
dimensionality reduction method, to visualize the k-mer
feature vectors of the Emerson dataset in the two-dimensional
space (Fig. 3).
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Figure 2. The variation in the ROC-AUC score between two learning trials
trained on each subsampled dataset. The ROC-AUC scores of two trials
(circles) are plotted against the index of the 50 subsampled datasets. The index
is sorted by the maximum ROC-AUC score of the motif method.
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Figure 3. A scatter plot of the latent space of the 3-mer feature vectors
(9,261 dimensions) of each sample in the Emerson dataset obtained by an
unsupervised learning method, GPLVM. Each point represents each sample
color-coded according to its CMV infection status and whether it belongs
to either Cohort 1 or 2. The probability distributions shown on each axis
represent the projections of data points of each class onto each axis.

We found that it is possible to classify repertoires by the
Cohort and by the CMV infection status using only the k-mer
features without any supervised learning (Table 1).

In Fig. 3, the infection status of CMV was correlated
mainly with the X-axis, whereas the Cohort was correlated
moderately with Y-axis and weakly with X-axis. We also

Table 1. ROC-AUC scores of the linear separation in the latent space
of GPLVM in Fig. 3. The optimized axis was numerically obtained by
maximizing the ROC-AUC score. Each sample was projected onto the
optimized axis and the position on the axis is used to calculate the score.

X axis Y axis Optimized axis

CMV Classification 0.68 0.53 0.70 (y=408.5x)
Cohort Classification 0.70 0.87 0.87 (y=0.26x)

The scores that are significant (p<0.05) in the sense of Spearman correlation coefficient
are shown in bold.

found that the ROC-AUC score of 0.87 for Cohort and that
of 0.70 for CMV could be achieved by linear separation on
the dimensionality-reduced k-mer feature space. These results
indicate that various information at least being relevant to the
repertoire classification task is appropriately embedded and
represented in the k-mer-based features. Thus, the stability of
MotifBoost may be attributed to the effectiveness of k-mer
representation of a repertoire.

Analysis of the latent information employed by each
method
Finally, we compared the prediction profiles of the three
methods to examine the similarities and differences in the
latent information used by the methods. The profiles show
that the predictions by MotifBoost and DeepRC are similar
whereas that of the burden test differs from the others (Fig. 4).

The similar prediction profiles and ROC-AUC scores of
MotifBoost and DeepRC suggest that the two methods employ
similar information despite the differences of underlying
algorithms. DeepRC might be learning the features from
scratch that contain similar information to k-mer features, and
its failure might be related to the collapse of the performance
at the critical sample size.

On the other hand, the prediction profile of the burden
test differs from those of MotifBoost and DeepRC in many
aspects: some samples are successfully predicted only by the
burden test, while others are successfully predicted only by
MotifBoost or DeepRC. This result implies that the burden
test, at least partially, exploits different information from
MotifBoost or DeepRC and that the gap between their average
performances at N=640 might stem from this difference.
Further improvement, which balances the best of all the
methods, may be possible by scrutinizing such differences in
the exploited latent information rather than just by focusing on
their performance scores alone.

SUMMARY AND DISCUSSION

In this study, we have systematically investigated the
performance of the repertoire classification methods with
different principles, by focusing on the impact of the
dataset size. We evaluated three methods: the burden test
comprehensively tests the significance of each sequence based
on its frequency in CMV positive and negative samples
and uses only the significant sequences as features for
classification; DeepRC uses a Transformer-like deep learning
architecture to learn both relevant features and classification
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Figure 4. Visualization of the correlations of the prediction profiles between
the three methods trained on the full training dataset. In the off-diagonal plots,
each axis represents the normalized rank of prediction scores of all training
samples by the designated method. The sample with 1.0/0.0 means that the
designated method gives the highest/lowest prediction score of CMV positive
state to the sample. The color of each point indicates the CMV status of
that point: positive (red) or negative (green). The ρ indicates the Spearman
correlation. All correlations were significant (p<0.05). Each diagonal plot
shows the histograms of the predicted score for CMV positive (red) and
negative (green) samples obtained by each method.

from data; MotifBoost proposed in this work employs the
k-mer feature representation and GBDT for classification.

We found that the burden test and DeepRC can suffer from
learning instability and the resultant catastrophic performance
degradation when the number of samples drops below a
certain critical size.

In contrast, MotifBoost not only performs as well as
DeepRC on average when trained on a large dataset, but also
achieves stable learning with small performance degradation
even when being trained on a small dataset.

MotifBoost is useful as a first step in tackling the
repertoire classification problem.
In academic research of repertoires, as discussed in
Introduction, datasets with less than 100 samples account
for 88% of all datasets. MotifBoost can perform stably
and efficiently even under this small to medium sample
size conditions. Therefore, MotifBoost is more versatile and
applicable to a wider range of problems than the burden test
and DeepRC.

In the Emerson dataset, the burden test outperforms
DeepRC and MotifBoost in the repertoire classification task if
being fed with all the 640 samples for training. However, the
sufficient number of samples for training may depend strongly
on the difficulty of the classification task and on the quality
of the data, which is not easy to estimate in advance when
designing an experiment. In addition, as shown in Fig. 2, the
performance of the data-expensive methods is highly volatile

if sufficient data is not supplied. Therefore, it is risky to rely
only on these unstable methods for practical use.

On the other hand, the performance and variance of
MotifBoost depend weakly on data size even if it is lower
than 100. Therefore, it is always beneficial to use MotifBoost
together with the data-expensive ones so as to avoid the case
that we fail to detect the potential information in repertoires
due to failures of learning.

A stable method like MotifBoost is also preferable from
the viewpoint of reproducibility because the performance is
relatively steady even if the sample size of the datasets is
changed. The other methods, especially the burden test, have
a larger variance in the performance. For example, the ROC-
AUC score spans from below 0.5 to around 0.8 at 400 samples.
Note that any of two subsampled datasets at N=400 share at
least 160 samples, because both are subsampled from the full
training dataset (640 samples). Even trained on such similar
datasets, the performance of the burden method varies greatly.
This implies that, if the samples are obtained independently,
for example by another researcher to reproduce the reported
result, the performance could vary even more. In addition,
MotifBoost does not require high-end hardware. Even for the
full training dataset of N=640, the computation takes about
3 hours on a consumer CPU (Core i7 8700) with about 50GB
RAM.

In conclusion, our proposed MotifBoost can be used as a
standard and complementary method to the data-expensive
ones for the repertoire classification task because of the
following three points: 1) high performance on the small
samples; 2) low variance in results and high reproducibility;
3) low hardware requirements

We released an application on Github (https://xxxx/xxx)
(to be published upon publication of this paper) to apply
this method easily on the existing RepSeq data formats
(e.g., immuneACCESS) and output classification results.
Our implementation will be a drop-in replacement for the
implementation of the other methods.

Potential information encoded in repertoires and its
representations
We also showed that feature extraction by k-mer and
unsupervised learning alone can separate CMV infection
status to some extent. This suggests that the k-mer
representation has suitable properties for extracting important
features of repertoires.

Even though deep learning methods trained on large-
scale datasets attract a surge of interest these days, as
demonstrated in this work, they do not necessarily replace
the conventional ones developed based on biological domain
knowledge. If a relevant data representation like k-mer
features is known beforehand, there is little need to acquire
a similar representation through representation learning. One
possible explanation of the performance discrepancy on small
datasets between MotifBoost and DeepRC is that DeepRC
must perform an extra step of learning the (k-mer like)
representation, which fails at a small data size.

On the other hand, the existence of a performance
gap between the burden test and the others trained on a
sufficiently large dataset (640 samples) indicates that the
full-length sequence identity, which is utilized only in the
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burden test, has some special information, which neither
DeepRC nor MotifBoost could capture. This possibility is also
supported by the fact that the burden test alone succeeded
in classification for some samples. However, at the same
time, there are also other samples that the burden method
could not correctly classify while the others could. Therefore,
these methods may focus on, at least partially, different latent
information of the repertoires.

The next computational challenge in the repertoire
classification task would be the integration of the full-
length sequence identity information and the sequence motif
information to improve and balance the performance on large
datasets and the stability on small ones. Such an attempt would
also deepen our biological understanding of how various
immunological information is encoded in repertoires.
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and Imberti, L. (2009) Identification of a public CDR3 motif and a biased
utilization of T-cell receptor V beta and J beta chains in HLA-A2/Melan-
A-specific T-cell clonotypes of melanoma patients. J. Trans. Med., 7(1),
1–14.

34. Chen, G., Yang, X., Ko, A., Sun, X., Gao, M., Zhang, Y., Shi, A.,
Mariuzza, R. A., and Weng, N. P. (2017) Sequence and Structural
Analyses Reveal Distinct and Highly Diverse Human CD8+ TCR
Repertoires to Immunodominant Viral Antigens. Cell Rep., 19(3), 569–
583.

35. Glanville, J., Huang, H., Nau, A., Hatton, O., Wagar, L. E., Rubelt, F., Ji,
X., Han, A., Krams, S. M., Pettus, C., et al. (2017) Identifying specificity
groups in the T cell receptor repertoire. Nature, 547(7661), 94–98.

36. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, I. (2017) Attention is All you Need.
Adv. Neural Inf. Process. Syst., 30.

37. Sun, Y., Best, K., Cinelli, M., Heather, J. M., Reich-Zeliger, S., Shifrut, E.,

Friedman, N., Shawe-Taylor, J., and Chain, B. (2017) Specificity, Privacy,
and Degeneracy in the CD4 T Cell Receptor Repertoire Following
Immunization. Front. Immunol., 0(APR), 430.

38. Ostmeyer, J., Christley, S., Toby, I. T., and Cowell, L. G. (2019)
Biophysicochemical motifs in T-cell receptor sequences distinguish
repertoires from tumor-infiltrating lymphocyte and adjacent healthy
tissue. Cancer Res., 79(7), 1671–1680.

39. Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W.,
Bethge, M., and Wichmann, F. A. (2020) Shortcut learning in deep neural
networks. Nat. Mach. Intell., 2(11), 665–673.

40. Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Titano, J. J.,
and Oermann, E. K. (2018) Variable generalization performance of
a deep learning model to detect pneumonia in chest radiographs: A
cross-sectional study. PLOS Med., 15(11), e1002683.

41. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu,
T.-Y. (2017) LightGBM: A Highly Efficient Gradient Boosting Decision
Tree. Adv. Neural Inf. Process. Syst., 30.

42. Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019)
Optuna: A Next-Generation Hyperparameter Optimization Framework.
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2623–2631.
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