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Abstract—A novel deep learning algorithm is proposed for

hollow heart detection which is an internal tuber defect. Hollow

heart is one of many internal defects that decrease the market

value of potatoes in the fresh market and food processing

sectors. Susceptibility to internal defects like the hollow heart is

influenced by genetic and environmental factors so elimination of

defect-prone material in potato breeding programs is important.

Current methods of evaluation utilize human scoring which is

limiting (only collects binary data) relative to the data collection

capacity afforded by computer vision or are based upon X-

ray transmission techniques that are both expensive and can

be hazardous. Automation of defect classification (e.g. hollow

heart) from data sets collected using inexpensive, consumer-

grade hardware has the potential to increase throughput and

reduce bias in public breeding programs. The proposed algorithm

consists of ResNet50 as the backbone of the model followed by a

shallow fully connected network (FCN). A simple augmentation

technique is performed to increase the number of images in the

data set. The performance of the proposed algorithm is validated

by investigating metrics such as precision and the area under the

curve (AUC).

Index Terms—Solanum tuberosum, hollow heart, CNN, ResNet,
deep learning, optimization

I. INTRODUCTION

Potato (Solanum tuberosum) is the most economically im-
portant vegetable crop in the United States. Over the last
decade, the U.S. has consistently planted over 900, 000 acres
of potato, resulting in the production of over 400 million
CWT of tuber material and an economic value approaching
four billion U.S. dollars [1]. Roughly two-thirds of the crop
is sold to the food processing industry to generate products
like French fries, potato chips, dehydrated potato products,
and canned goods, whereas a quarter is sold as a fresh market
product to consumers in grocery stores and restaurants. Quality
standards for potatoes are rigorous in both the processing
and fresh market industry. Defects can occur during the
growth season (hollow heart, internal browning syndrome,
growth cracks, virus-induced necrotic lesions), harvest (bruise,
cracking, greening), and storage (sprouting, greening); the con-
sequence of which is a financial loss to the grower. Reducing
the propensity of cultivars to express these defects is one major

objective of potato breeding programs. In some cases, genetic
methods can be used to predict and select against offspring
that will be susceptible to defects. Unfortunately, tabulating
the type and severity of tuber defects on the scale needed
to evaluate early-stage breeding populations (> 200 clones;
between 5 to 100 tubers per clone) is not trivial. Challenges
arise as symptomology can be similar between defect type
and time which can be allocated to observe any individual
tuber is very small. The low-cost, high information content,
and rapid acquisition time make digital imaging of tubers an
efficient way to document the properties off-spring in breeding
populations.

With the rapid increase in computation power and big data,
deep learning has shown tremendous success in various image
and signal processing applications such as health care, biology,
anomaly detection [2, 3, 4, 5, 6]. Unlike conventional rule-
based algorithms, in deep learning algorithms suitable dis-
criminatory features for classification/detection are extracted
by the model automatically during the training phase. Hence,
better performance is achievable.

In this report, a novel deep learning approach is proposed for
potato hollow heart detection. Hollow heart is a physiological,
internal tuber defect that can occur when growth in the
perimedullary region of the tuber outpaces growth of the pith
causing the development of lens-, star-, or irregularly-shaped
cavities within the pith tissue [7]. Frequently, expression of
hollow heart is a consequence of water or nutrient fluctuation
during the growth season [7]. Genetics has been demonstrated
to play a role in hollow heart susceptibility [8] and in some
cases susceptibility is likely to be independent of final tuber
size [9].

The presence of the hollow heart is somewhat common and
relatively easy to identify, making it an excellent test case to
evaluate the feasibility of applying deep learning approaches
to defect classification in plant breeding programs. A hollow
heart and non-hollow heart examples are shown in Fig. 1 and
Fig. 2, respectively.
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Fig. 1: Hollow heart.

Fig. 2: Non-hollow heart.

!

Fig. 3: A simple block diagram of the proposed model.

II. METHODS

The data set contains 1610 three-channel RGB images of
potato tuber cut in half lengthwise. Each image is 1900⇥1900
pixels ⇥ pixels, contains a single tuber that is centered on a
black background. The presence of internal tuber defects such
as hollow heart, internal brown spot, bruise, anthocyanin accu-
mulation, and tuber greening was scored manually according
to a USDA visual aid guide provided in [10].

A. Plant material
The subjects are tubers derived from 189 F1 progeny from

the A08241 autotetraploid linkage mapping population. In
2019, both parental lines (Palisade Russet, female; ND02873
2Russ, male) and their progeny were planted in a randomized
complete block design with two replications of eight-hill plots
by scientists at the USDA-ARS Small Grains and Potato
Germplasm Research Unit in Aberdeen, ID.

B. Digital imaging of tubers
Computer vision measurements are acquired by scientists at

the USDA-ARS Temperate Tree Fruit and Vegetable Research
Unit in Prosser, WA. Digital scans of tuber internal charac-
teristics are acquired using a Hewlett Packard HP ColorJet
6200C flatbed scanner (See Supplemental Fig. 1). Each clone
was replicated twice, and each replicate contains five tubers
within the image. Before scanning each tuber is cut in half
lengthwise and an image of each tuber is captured. Both
size and radiometric calibration standards are included in
each image. A blue plastic poker chip (37 mm diameter) is
used as a size standard in all images and scans. An X-Rite
ColorChecker Classic is used as a radiometric standard for
the top-down imaging on the black background whereas an
X-Rite ColorChecker Mini is used as color standards for the
scanner. Python scripts used to control the imaging hardware
can be found at [11]. Individual tubers were labeled by their
position in the image and manually scored for the presence
or absence of internal defects according to the USDA grading
standards visual aid chart.

III. PROPOSED DEEP LEARNING ARCHITECTURE

A. Optimization
The goal of the proposed algorithm is to identify hollow

heart defects in the potato images. This can be sought as a
binary classification task, i.e., hollow heart vs non-hollow heart
classification, and hence deep learning algorithms suitable
for classification applications can be employed. Let’s C0 and
C1 represent the non-hollow heart and hollow heart classes,
respectively, and d an image in the data set. In this case, we
aim to find the probability that the image d is a member
of non-hollow heart P (C0|d) or hollow-heart P (C1|d) sets.
Since there are two discrete outcome, the Bernoulli distribution
function can be derived to express the conditional probability
P (y|x), that is the probability of the the image class is y for
an observation x, as

P (y|x) = ŷy + (1� ŷ)1�y, (1)

where y 2 {0, 1} is the true label and ŷ is the model
prediction for the image x. The log likelihood estimation can
be employed that aims to maximize the log p(y|x). In this
case, the log-likelihood cost-function CLL is defined as

CLL = y log ŷ + (1� y) log(1� ŷ). (2)

It is seen that maximizing the log-likelihood cost-function,i.e.,
maximizing the probability of the correct estimated labels, is
equivalent to minimizing the cross-entropy between true labels
and the estimated labels which is defined as

CCE = � logP (y|x)
= � (y log ŷ + (1� y) log(1� ŷ))

= CLL.

(3)

This ensures the maximization of the correct prediction and
minimization of the incorrect classification. Assuming there
are M independent and identically distributed (iid) images in
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TABLE I: The proposed model architectures.

Model 1 ResNET50 ! (Dense(256),ReLU) ! (Dense(128),ReLU)⇥ 3! (Dense(128), sigmoid) ! (Dense(2), sigmoid)
Model 2 ResNET50 ! (Dense(128), sigmoid) ! (Dense(2), sigmoid)

the training data set, the log-likelihood cost-function for the
training data set is given as

logP (Y |X) = log
MY

i=1

P (y(i)|x(i))

=
MX

i=1

logP (y(i)|x(i))

=
MX

i=1

y(i) log ŷ(i) + (1� y(i)) log(1� ŷ(i))

= �
MX

i=1

CCE(y
(i), ŷ(i)),

(4)

where Y = {y1, y2, · · · , yM} and X = {x1, x2, · · · , xM} are
the sets of all labels and images in the training data sets. By
employing deep learning algorithms, the cross-entropy cost-
function in (4) is parametrized by the weights of the model
⇥ =

�
✓(1),✓(2), . . . ,✓(L)

�
, in which L represents the number

of hidden layers in the model. We represent the output of the
model as f(x(i);⇥) for the i-th image x(i). In this case, the
optimum solution for the weight of the model ⇥, weights that
minimized the cross-entropy cost-function, can be given as

⇥̂ = argmin
⇥

CCE(f(X;⇥), Y )

= argmin
⇥

1

M

MX

i=1

CCE

⇣
f(x(i);⇥), y(i)

⌘

= argmin
⇥

1

M

MX

i=1

 
y(i) log f(x(i);⇥)

+ (1� y(i)) log(1� f(x(i);⇥))

!
.

(5)

To minimize potential overfitting and address the sparsity in
the data set, `2 and `1 regularization are employed, respec-
tively. In this case, the cost-function can be written as

⇥̂ = argmin
⇥

CCE(f(X;⇥), Y ) + � k⇥k2 + � k⇥k1 , (6)

where � and ↵ are regularization coefficients for `2 and `1 reg-
ularization, respectively. Various gradient descent algorithms
can be employed that aim to find the set of In this paper,
adaptive moment estimation (Adam) is used to find the set
of the optimum solution for the weights of the model ⇥. in
(6), in terms of minimizing cross-entropy or maximizing the
log-likelihood [13].

B. Proposed Deep Learning Model
In this paper, we propose two deep learning architectures

that are composed of ResNet50 [12] followed by different

shallow fully connected networks (FCNs). A block diagram
of the proposed architectures is depicted in Figure 3. The
shallow FCN is added to the ResNet50 to decrease the
dimensionality of the last layer of the ResNet50 so that it will
be suitable for binary classification. The proposed architectures
are summarized in Table I. The cross-entropy (CE) loss derived
in (4, the area under the curve, and the precision of the models
are evaluated. Precision of the proposed modes is measured
as

precision =
TP

TP + FP
, (7)

where TP and FP are true positive and false positive respec-
tively. The categorical accuracy of the model is calcualted as

precision =
TP + TN

TP + FP + TN + FN
, (8)

where TN and FN are true negative and false negative,
respectively.

IV. SIMULATION RESULTS

The data set consists of 50 potato images with the hollow
heart defect and 1730 images with no hollow heart. It is
obvious that the data set is unbalanced. Therefore in a prepos-
sessing step, we aim to 1) balance the data set by selecting
randomly only 50 images from the non-hollow heart defect
class and 2) increase the number of the images in the data set
by performing a simple augmentation procedure that is rotating
the images by 90 and 180 degrees and adding additive white
Gaussian noise (AWGN) with µ = 0 and variance �2. After the
prepossessing step, there are 150 potato images with hollow-
heart deficiency and 150 with no hollow heart deficiency in
the training data set. Therefore, in total there are 300 images
in the data set.

There are
�1700

50

�
different permutations for selecting 50

images from total 1700 non-hollow heart images. To increase
the model exposure to more diverse non-hollow cases, a Monte
Carlo approach is employed where the model is trained 120
times independently. The dimension of the potato images
is 1200 ⇥ 1200 pixels ⇥ pixels. The images are resized
to 100 ⇥ 100 pixels ⇥ pixels to reduce the redundancy in
the images and enhance the computational processing speed.
Additionally, since the subject is plotted on a completely
black background in each image and the background will not
influence defect status, a cropping mechanism is employed so
that only the potato portion of the images is considered in
the cropped images and the background is removed from each
image

The cross-entropy loss, the precision, the area under the
curve (AUC), and the categorical accuracy performance of
the proposed algorithms when the variance of the AWGN is
�2 = {0.01, 0.03, 0.05} and for different regularization, values
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Fig. 4: The performance of the proposed models.
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are depicted in Figs. 4. The learning rate, regularization param-
eter, and the batch size are {1e�3, 1e�5, 50}, respectively. As
expected, the performance of the model in the training phase
outperforms the validation performance. Moreover, it is seen
that the model 1 outperforms the model 2. This demonstrates
the effectiveness of the deeper FCN added to the ResNet
model. In other words, as the depth of the FCN increases,
the model can learn more discrepancy features from the input
images and hence the performance of the model improves.
Additionally, for all three metrics, the performance of the
models improves as the variance of the AWGN decreases.
This is because, in lower variance, the model can learn better
discrepancy features from the images, and hence, better perfor-
mance can be achieved. Surprisingly, however, it is seen that
the performance of the models degrade when regularization is
added to the models. One hypothesis for this anomaly behavior
is that since the number of images in the training data set is
small, hence, the added regularization terms behave restrictive
for the model weights that are set to be trained. It is also
seen that the categorical accuracy performance is identical to
the precision. This is because the model is balanced. That is,
its ability to correctly classify hollow heart (positive) samples
is same as its ability to correctly classify non-hollow heart
(negative) samples. The accuracy and precision performance
demonstrate the capacity of the model to detect and identify
the hollow heart (and therefore, non-hollow heart) cases. For
example, after 800 training epochs, the model 1 can achieve
90% accuracy.

V. DISCUSSION

This study suggests that deep learning techniques applied
to image data sets collected using consumer grade hardware
may be sufficient to classify the presence or absence of tuber
defects in breeding populations; so long as the training set
is representative of the classification problem and contains
enough images to train the model. As demonstrated, augmen-
tation of data classes using image rotation and introduction
of additive white Gaussian noise may be used to increase the
size of the training set but caution is advised in application
settings. The model described may not perform as expected
if applied to other data sets, particularly data sets containing
tubers with different shapes and/or flesh colors.

Despite the need for destructive sampling, the hollow heart
classification approach presented in this study offers several
advantages over other commonly used diagnostic methods
described in the literature. The relationship between tuber size
and specific gravity has been used identify and remove poten-
tially affected tubers in bulk grading applications [14, 15, 16].
Unfortunately, manual destructive assessment is still required
to achieve the precision needed for breeding applications.
Although relatively high precision has been achieved using
light transmittance [17], confounding variation associated with
differences in tuber diameter, tuber skin thickness, and tuber
skin quality make the evaluation of the diverse tuber material
encountered in breeding populations challenging. The applica-
tion of non-destructive ultrasonic technologies is fraught with

difficulties due to the high attenuation coefficient of potato
tubers, need for multiple transducers, and frictional noise gen-
erated by the tuber moving along the transducer [21]. Excellent
success of hollow heart detection and sample throughput has
been achieved using non-destructive techniques including X-
ray machines [14, 15, 18, 19] and hyperspectral sensors [20].
Unfortunately, the equipment (X-ray and hyperspectral) and
safety measures (X-ray) required for deployment make these
techniques is cost prohibitive for many potato breeding pro-
grams. X-ray data also lacks colorimetric features which may
be needed to discriminate between different types of internal
defect (bruising, greening, anthocyanin accumulation, internal
brown spot) present within susceptible clones of breeding
populations.

By far the greatest advantages of the technique presented is
the low cost of deployment and potential to develop extensible
models capable of classifying additional defects from the
same data set. The capacity to inexpensively perform semi-
automated, high resolution data collection, and downstream
defect classification within potato breeding populations will
enhance our ability to understand of how defect susceptibility
is inherited and improve our ability to select productive,
blemish free potato cultivars.

VI. CONCLUSION

In this paper, a novel deep learning algorithm was pro-
posed for potato hollow heart and non-hollow heart classifi-
cation/detection. The performance of the proposed model was
evaluated by investigating various metrics such as precision
and the AUC. The results demonstrated the effectiveness of
the model in different AWGN regions. As the next step, we
aim to classify additional features (defects) from potato tubers.
Many human scorable potato characteristics (sprouting, fun-
gal/bacterial growth, bruising, and necrotic lesions) have the
potential to be quantified using CNN classification algorithms.
For future research, we aim to extend the proposed algorithms
to detect and classify other potato defects such as internal
brown spots, bruising, greening, and anthocyanin accumulation
simultaneously. This requires constructing a potato data set
that includes large numbers of each potato defect type. There-
fore, additional data collection efforts are underway and we
aim to determine if the proposed algorithms can be extended
to classify these features.
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