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Abstract 
Membrane trafficking is essential for sculpting neuronal morphology. The GARP and 
EARP complexes are conserved tethers that regulate vesicle trafficking in the secretory 
and endolysosomal pathways, respectively. Both complexes contain the Vps51, Vps52, 
and Vps53 proteins, and a complex-specific protein: Vps54 in GARP and Vps50 in EARP. 
In Drosophila, we find that both complexes are required for dendrite morphogenesis 
during developmental remodeling of multidendritic class IV da (c4da) neurons. Having 
found that sterol accumulates at the trans-Golgi network (TGN) in Vps54KO/KO neurons, 
we investigated genes that regulate sterols and related lipids at the TGN. Overexpression 
of oxysterol binding protein (Osbp) or knockdown of the PI4K four wheel drive (fwd) 
exacerbates the Vps54KO/KO phenotype, whereas eliminating one allele of Osbp rescues 
it, suggesting that excess sterol accumulation at the TGN is, in part, responsible for 
inhibiting dendrite regrowth. These findings distinguish the GARP and EARP complexes 
in neurodevelopment and implicate vesicle trafficking and lipid transfer pathways in 
dendrite morphogenesis. 
 
 
Introduction 

Proper wiring of the nervous system depends on the development and 
maintenance of complex polarized neuronal morphologies. Neurons initially establish 
their architectures during embryogenesis, which is followed by an extended post-
embryonic period during which excess branches are pruned and remodeled into their 
mature states (Stiles and Jernigan, 2010). Membrane trafficking pathways are essential 
to establishing and sculpting neuronal morphology during development (Winkle and 
Gupton, 2016). Secretory vesicles are essential sources of membrane for neurite 
outgrowth (Vega and Hsu, 2001) and dendrite development is particularly sensitive to 
inhibition of secretory trafficking (Ye et al., 2007). Endocytosis and recycling pathways 
are also required for growth factor-mediated branching of dendrites (Lazo et al., 2013) 
and axons (Ascano et al., 2009). Both the secretory (Wang et al., 2017; Wang, et al., 
2018) and endocytic (Kanamori et al., 2015; Krämer, et al. 2019) pathways also play 
important roles during developmental pruning and remodeling of dendrites. Numerous 
mutations in regulators of membrane trafficking are associated with neurodevelopmental 
disorders (Ouyang et al., 2013; Ivanova et al., 2017; Marin-Valencia et al., 2017; 
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Passemard et al., 2017), highlighting the importance of these pathways in proper nervous 
system development.  

The closely related GARP (Golgi-Associated Retrograde Protein) and EARP 
(Endosome-Associated Recycling Protein) complexes are conserved membrane tethers 
that function in the secretory and endolysosomal pathways. They share the common 
subunits Vps51, Vps52 and Vps53 (Vps for vacuolar protein sorting) (Fig. 1a). This core 
interacts with either Vps54 to form the GARP complex (Conibear and Stevens, 2000; 
Siniossoglou and Pelham, 2002; Reggiori et al., 2003) or Vps50 to form the EARP 
complex (Schindler et al., 2015). The GARP complex primarily localizes to the trans-Golgi 
network (TGN) where it tethers endosomes and facilitates SNARE complex formation for 
the retrograde delivery of cargo to the Golgi (Perez-Victoria and Bonifacino, 2009). The 
GARP complex is required for proper sorting of various cargos, including the lysosomal 
hydrolases (Pérez-Victoria et al. 2008), and for secretion of GPI-linked proteins (Hirata et 
al., 2015). The more recently described EARP complex associates with early endosomes 
and facilitates Rab4-dependent cargo recycling (Gillingham et al., 2014; Schindler et al., 
2015), as well as Rab2-dependent sorting into dense-core vesicles (Topalidou et al., 
2016).  
 Several neurodevelopmental disorders are associated with mutations in GARP 
and EARP subunits. Mutations in the core components Vps51 (Gershlick et al., 2018) and 
Vps53 (Feinstein et al., 2014; Hady-Cohen et al., 2018) have been identified in patients 
who suffer from profound developmental delays and progressive postnatal microcephaly. 
Mutations in Vps50 have been linked to neural tube defects (Shi et al., 2019). These 
studies underscore the importance of the GARP and EARP complexes in neurons, 
prompting our study to examine their function during neuronal development. The dendritic 
arborization (da) sensory neurons in Drosophila melanogaster are a well characterized 
model to study dendrite morphogenesis (Grueber, et al., 2002). The c4da neurons 
establish complex larval dendritic arbors, which then undergo developmental pruning and 
regrowth to their mature adult forms during pupation (Kuo, et al., 2005; Williams and 
Truman, 2005; Shimono et al., 2009), making them amenable to study various aspects of 
neurodevelopment. 

Cholesterol is an important component of cellular membranes, regulating 
membrane fluidity and protein sorting (Ikonen, 2008; Lippincott-Schwartz and Phair, 
2010). While most cells can either synthesize endogenous sterols or obtain them from 
dietary sources, Drosophila melanogaster is a sterol auxotroph – they lack the ability to 
synthesize sterols – and must obtain sterols entirely from dietary sources (Clayton, 1964). 
Drosophila is therefore an excellent model to study the uptake and transport of sterol 
between organelles. Dietary sterols packaged with low-density lipoproteins (LDL) are 
endocytosed after binding the LDL receptor. The Niemann Pick proteins NPC1 and 2 then 
coordinate the non-vesicular transfer of sterols from the endolysosomal lumen to the ER 
through interorganelle contact sites (Infante et al., 2008; Höglinger et al., 2019). Both 
yeast and mammalian cells lacking the core GARP/EARP components accumulate sterol 
in lysosomes due to missorting of NPC2 (Fröhlich et al., 2015; Wei et al., 2017). Once in 
the secretory pathway, sterols are tightly regulated as the flow of cargo through the Golgi 
is particularly sensitive to sterol levels. Sterol depletion inhibits secretory vesicle budding 
from the TGN (Wang, Thiele and Huttner, 2000), while sterol overload strongly inhibits 
transport of the model secretory cargo VSV-G (Stüven et al., 2003). During neuronal 
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development, either depletion or overload of sterols can decrease dendrite and axonal 
branching (Fan et al., 2002; Ko et al., 2005). 

In this study, we generated CRISPR knockout flies for shared and complex-specific 
genes of the GARP and EARP complexes and demonstrate a role for both complexes in 
the development of adult c4da neuron arbors. Sterol accumulates in neurons lacking the 
GARP (Vps54KO/KO), but not EARP (Vps50KO/KO), complex during regrowth after 
developmental pruning. Unexpectedly, we find sterol accumulating at the TGN rather than 
lysosomes in GARP-deficient neurons. Altering the transport or availability of sterol and 
related lipids at the TGN modulates GARP null phenotypes. In particular, overexpressing 
oxysterol binding protein (Osbp) or knocking down the PI4P kinase, four wheel drive 
(fwd), exacerbates the dendrite regrowth phenotype in Vps54KO/KO neurons, while 
haploinsufficiency of Osbp rescues it. 
 
 
Results 
Reduced lifespan of GARP knockout flies 

In mice, homozygous null mutants of Vps52 and Vps54 are lethal at early 
embryonic stages (Schmitt-John et al., 2005; Sugimoto et al., 2012), limiting the study of 
the GARP and EARP complexes in these models. To overcome these challenges, we 
made use of the genetic toolbox available in Drosophila. To study the role of the GARP 
and EARP complexes, we generated knockouts (KO) of the EARP-specific Vps50, the 
shared core component Vps53, and the GARP-specific Vps54 (also known as scattered 
in flies), by using CRISPR/Cas9 gene editing to replace the entire coding sequences of 
each gene (see Fig. S1 for schematic and genotyping). We confirmed by RT-PCR that 
expression of each gene targeted for KO was eliminated (Fig. 1 b). While we could not 
find antibodies to determine Vps50 or Vps53 protein levels in Drosophila, we were able 
to confirm that Vps54 protein was absent from Vps54KO/KO larvae (Fig. S1 h). 

In flies, homozygous knockouts of Vps53 (Vps53KO/KO) survived the larval stages 
but died during pupation. Ubiquitous expression of UAS-Vps53 using either tubulin-Gal4 
or daughterless-Gal4 allowed for survival of Vps53KO/KO flies to adulthood. In contrast to 
mice, homozygous knockout flies of the complex-specific components, Vps50KO/KO or 
Vps54KO/KO, were viable to adulthood. Loss of the GARP-specific Vps54 (Vps54KO/KO) 
reduced lifespan in both males and females (Fig. 1, c–f). Control males lived an average 
of 46.7 ± 0.9 days and a maximum of 82 days, whereas Vps54KO/KO male flies lived on 
average only 24.6 ± 0.6 days and a maximum of 46 days. Control female flies lived an 
average of 47.6 ± 1.2 days and a maximum age of 82 days, whereas Vps54KO/KO females 
lived an average of only 23.7 ± 0.6 days and a maximum age of 49 days. We confirmed 
these results by crossing Vps54KO flies to a chromosomal deficiency (Df(2L)Exel8022). 
Loss of the EARP-specific component Vps50 did not consistently reduce lifespan across 
genotypes. 

The GARP complex has also been implicated in spermiogenesis in both mice and 
flies (Castrillon et al., 1993; Schmitt-John et al., 2005). In fact, the name for the Drosophila 
homolog of Vps54, scattered, refers to the disorganized, scattered organization of nuclei 
in developing spermatids. To further characterize these knockouts, we therefore also 
tested fertility of male files. Vps54KO/KO and Vps54K/Df males, like the scat1/1 null males 
were sterile. In contrast, Vps50KO/KO and Vps50KO/Df males were fertile. 
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Loss of either the EARP or GARP complex impairs arborization of adult neurons  
 To determine how knockout of the EARP and GARP complexes may affect neuron 
development, we first examined the overall morphology of c4da neurons in adult pharate 
flies. To circumvent difficulties owing to the adult lethality of Vps53KO/KO, we used MARCM 
(mosaic analysis with a repressible cell marker) (Lee and Luo, 1999) to generate 
homozygous knockout clones in the viable heterozygous flies, to evaluate the role of 
Vps53 in neuronal morphology.  Dendrite arbors in Vps53KO/KO clones were only about a 
third of the total length of controls (Fig. 2, a and b), revealing a cell autonomous 
requirement of Vps53 for dendritic morphology. The arbors of Vps53KO/KO clones were 
also less complex and contained fewer total branches (Fig. 2, c and d). The cell-
autonomous involvement of Vps53 was validated by showing that the dendrite branch 
length and number in the Vps53KO/KO clones can be rescued by using the class IV specific 
ppk-Gal4 to drive expression of wildtype Vps53 protein. 

Given that loss of Vps53 disrupts both the EARP and GARP complexes, we next 
analyzed neuronal morphology in knockouts targeting the complex-specific components, 
Vps50 and Vps54, respectively (Fig. 3, a–d). Whole body knockout of either Vps50 or 
Vps54 reduced the total dendritic length and branch number as compared to controls. For 
both parameters, the GARP-specific Vps54KO had a stronger effect than Vps50KO. These 
dendrite morphology defects can be rescued by expression of the respective wildtype 
protein in neurons via the ppk-Gal4, suggesting that the GARP and EARP complexes 
function cell autonomously to regulate dendrite morphogenesis. RNAi knockdown of 
EARP and GARP complex components in c4da neurons further confirmed the cell-
autonomous function of these complexes on adult dendrite arborization (Fig. S2 a). 

C4da neurons establish dendritic arbors initially in the larval stage. Early in 
pupation, the dendrites are extensively pruned and these neurons subsequently regrow 
a remodeled adult arbor (Kuo, et al., 2005; Williams and Truman, 2005; Shimono et al., 
2009). To gain a better understanding of when the EARP and GARP complexes are 
required during this dynamic period of development, we analyzed dendrite morphology in 
both larvae and pupae. C4da neurons in Vps50KO/KO, Vps53KO/KO or Vps54KO/KO larvae 
were relatively spared (Fig. S2 b). There does not appear to be any significant effect of 
maternally contributed Vsp50 or Vps54 to dendrite growth, as neurons in larvae from 
homozygous knock-out mothers grew arbors comparable in size to controls. However, 
while regrowth of the adult arbor during pupation began normally in knockout flies, it 
ultimately stalled (Fig. 3 e). The Vps54KO/KO neurons stopped growing just before eclosion 
by 96 hrs after puparium formation (APF), while the Vps50KO/KO phenotype emerged 
slightly later in 1 day old adults. 
 In order to determine if the knockout phenotype was limited to dendrites, we also 
examined overall axon morphology. The c4da neurons project to the ventral nerve cord 
(VNC), where they form synapses with second order sensory neurons (Tsubouchi et al., 
2017). We did not observe any gross changes in axon morphology in newly-eclosed 1 
day old Vps50KO/KO or Vps54KO/KO adults, suggesting that the dendritic phenotype is 
related to regrowth of the arbor rather than axon retraction or growth factor withdrawal.  
 
Complex specific defects in secretory and endosomal organelles 
 Given the role of the EARP and GARP complexes in regulating specific steps in 
membrane trafficking, we examined various markers of the endolysosomal and secretory 
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pathways in 1 day old adults, when knockouts of both complexes exhibited dendrite 
phenotypes. The number of Rab5+ early endosomes was increased in the soma of 
Vps50KO/KO but not Vps54KO/KO neurons (Fig. 4, a and b), consistent with the fact that the 
EARP complex facilitates cargo sorting from early endosomes to Rab4+ recycling 
endosomes (Schindler et al., 2015). In proximal dendrites, we did not observe a similar 
increase in the number of early endosomes in Vps50KO/KO neurons (Fig. S3 a). The 
number of Rab7+ late endosomes was increased in the soma of Vps54KO/KO but not 
Vps50KO/KO neurons (Fig. 4, c and d), indicative of complex-specific defects in endosome 
populations. Dendrites are devoid of degradative lysosomes, and therefore endosomal 
cargo destined for degradation must be trafficked to the soma (Yap et al., 2018). We did 
not observe any significant change in Rab7+ positive endosomes in the dendrites of 
Vps54KO/KO neurons (Fig. S3 b), suggesting their trafficking was not affected. These 
changes in endosomal populations did not occur in larval neurons (Fig. S3, c and d), 
supporting the notion that these complexes are dispensable for larval neurodevelopment. 

We also examined the lysosomal marker spin-RFP and observed an expansion of 
this compartment in the soma of Vps54KO/KO, but not Vps50KO/KO, neurons. Lysosomal 
expansion can be a result of impaired cargo degradation by the resident acid hydrolases 
such as cathepsins. Immature forms of acid hydrolases are trafficked from the secretory 
pathway to lysosomes in a GARP-dependent manner (Pérez-Victoria et al. 2008). Upon 
reaching the acidic environment of the lysosome, hydrolases are processed into their 
mature, active forms. Therefore, we also examined the processing of cathepsin L (catL) 
by western blot in head lysates.  We did not observe any difference in catL processing in 
young adult flies in Vps54KO/KO or Vps50KO/KO neurons (Fig. S3, e–g), suggesting that catL 
is successfully trafficked to acidic lysosomes in both knockout lines. Further, these results 
suggest that the inability of neurons to regrow their adult arbors during pupation may be 
independent of their lysosomal degradative capacity.  
 Because the GARP complex regulates retrograde traffic to the TGN, we also 
examined this compartment by staining for Golgin245.  The number of Golgin245 puncta 
was increased in both the soma and proximal dendrites of Vps54KO/KO but not Vps50KO/KO 
neurons (Fig. 5, a, b, and d). If the increase in puncta number were due to fragmentation 
of the Golgi, we would expect the puncta to be smaller in size. However, we did not 
observe a significant difference in the size of Golgin245 puncta (Fig. 5, c and e), 
suggesting the increase in puncta number is not a result of Golgi fragmentation. 
 
Sterols accumulate at the TGN rather than endolysosomes in GARP KO neurons 
 Previous studies have reported accumulation of sterols in cells lacking the GARP 
complex (Fröhlich et al., 2015; Wei et al., 2017). We therefore sought to examine sterol 
levels and localization in knockout neurons. Filipin is a widely used fluorescent stain that 
binds to free sterols. Vps54KO/KO neurons exhibited strong internal filipin staining 
compared to controls, which was rescued by expression of wildtype Vps54 (Fig. 6, a and 
b).  Sterol accumulation in GARP deficient neurons appeared to be transient and to 
correlate with the emergence of the dendrite morphology defect in Vps54KO/KO neurons 
(Fig. 6 c). Filipin staining was comparable between Vps54KO/KO and control neurons in 3rd 
instar larvae but increased in the Vps54KO/KO neurons during pupation, peaking at 96 hrs 
APF. Vps50KO/KO neurons, however, showed filipin staining comparable to controls (Fig. 
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6 b and Fig. S4 a), indicating that the GARP, but not EARP complex, plays a role in sterol 
processing. 

A previous study in mammalian cells determined that sterols accumulate in the late 
endosomal/lysosomal compartment in Vps52-deficient cells due to missorting of NPC2 
(Wei et al., 2017). Surprisingly, we did not observe any significant accumulation of sterols 
in endolysosomes labeled with either Rab7 or Spinster-RFP (Fig. 6, f and g). While we 
observed a strong filipin signal in the ER as indicated by the marker Sec61β, we did not 
find any differences in filipin intensity between genotypes in this organelle (Fig. S4, b and 
c). Of the organelle markers we examined, we only found a significant increase in filipin 
staining in the Golgin245-positive compartment corresponding to the TGN (Fig. 6, d and 
e). It thus appears that in GARP-deficient neurons, sterols are capable of exiting the 
endolysosomal pathway but aberrantly accumulate in the secretory pathway instead. 
 
Targeting specific lipid regulators at the TGN modulates GARP KO phenotypes 
 To gain a better understanding of how sterols may be accumulating at the TGN in 
the Vps54KO/KO, we examined genetic interactions between Vps54 and various sterol and 
lipid regulatory proteins. Oxysterol binding protein (Osbp) regulates transport of sterols 
across several interorganelle contact sites. At contacts between the ER and TGN, Osbp 
interacts with the ER-localized protein VAP-A to facilitate the transfer of sterol from the 
ER in exchange for PI4P (Mesmin et al., 2017). We therefore made crosses to bring either 
a null Osbp allele (Osbp1) (Ma, Liu and Huang, 2010) or UAS-Osbp into the Vps54KO/KO 
background to decrease or increase Osbp levels, respectively. Removal of one functional 
Osbp allele (Vps54KO/KO; Osbp1/+) rescued the dendrite morphology defect in Vps54KO/KO 

neurons, while Osbp overexpression (Vps54KO/KO; ppk>Osbp) dramatically exacerbated 
it (Fig. 7, a and b). To evaluate the contribution of Osbp acting at TGN/ER contact sites, 
we next targeted the PI4-kinase that phosphorylates phosphatidylinositol to generate 
PI4P, the kinase known as four wheel drive (fwd) (Polevoy et al., 2009) in Drosophila. We 
reasoned that if Osbp-mediated exchange of sterol for PI4P between the ER and TGN 
was responsible for the accumulation of sterol at the TGN in Vps54KO/KO neurons, then 
fwd knockdown should rescue the Vps54KO/KO dendrite morphology defect. However, 
expressing a fwd RNAi in Vps54KO/KO neurons exacerbated the Vps54KO/KO phenotype 
(Fig. 7, a and b). To further look into the possibility that TGN/ER contacts were 
responsible for the sterol accumulation in Vps54KO/KO neurons, we examined interactions 
between Vps54 and the single Drosophila homolog of VAP-A/B, Vap33 (Pennetta et al., 
2002). Neither knockdown nor overexpression of Vap33 had any effect on the Vps54KO/KO 
phenotype (Fig. S5). Taken together, these results suggest that TGN/ER contacts are 
unlikely the source for sterol accumulation at the TGN in Vps54KO/KO neurons. 

We also examined the effect of targeting Osbp and fwd on filipin staining in 
Vps54KO/KO neurons (Fig 7, c and d).  Both total and TGN-associated filipin levels were 
decreased to control levels when Osbp levels were decreased in Vps54KO/KO neurons 
(Vps54KO/KO; Osbp1/+), as compared to Vps54KO/KO alone. Unexpectedly, overexpression 
of Osbp in the Vps54KO/KO background also decreased both total and TGN-associated 
filipin levels, despite exacerbating the dendritic phenotype. When fwd was knocked down 
(Vps54KO/KO; fwd RNAi), total and TGN-associated filipin levels remained elevated and 
were not significantly different from those in Vps54KO/KO neurons. These data together 
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suggest that Osbp-dependent sterol transfer sites(s) other than the sterol/PI4P exchange 
cycle between the TGN and ER must contribute to the elevated sterol levels at the TGN. 

To further investigate the ability of a single Osbp1 allele to rescue the Vps54KO/KO 
phenotypes, we also examined organelle morphology. Osbp1 heterozygosity rescued the 
number of Golgin245 puncta, but not the number of Rab7+ late endosomes in Vps54KO/KO 
neurons (Vps54KO/KO; Osbp1/+) (Fig 8). These results further support the notion that the 
inability of dendrites to regrow in Vps54KO/KO neurons is due to perturbations at the TGN, 
and not to impaired endolysosomal trafficking. 
 
 
Discussion 
GARP and EARP in neurodevelopment 
 Despite their links to neurodevelopmental disease, our understanding of how the 
GARP and EARP complexes function in neurons remains limited. Studies of these 
complexes have been hampered by the early embryonic lethality of mice lacking 
components of these complexes (Schmitt-John et al., 2005; Sugimoto et al., 2012). In our 
Drosophila mutant studies, we show that Vps50, Vps53 or Vps54 is dispensable for larval 
development. Loss of Vps53 resulted in pupal lethality, while Vps54 knockouts had a 
reduced lifespan as adults. Both the GARP and EARP complexes are required for 
dendrite regrowth in c4da neurons after developmental pruning in pupae. The emergence 
of this phenotype only at later developmental stages is reminiscent of the secondary 
microcephaly that emerges postnatally in patients with GARP/EARP complex mutations 
(Feinstein et al., 2014; Gershlick et al., 2018; Hady-Cohen et al., 2018).  

We did not detect gross morphological changes in axon projections, but we cannot 
rule out finer structural changes, or later degeneration that may occur as a result of 
GARP/EARP complex deficiency. Given that we observed a reduced lifespan in the 
Vps54KO/KO flies, it will be of interest to examine in future studies whether age-dependent 
changes in neuronal morphology or function may occur in addition to the developmental 
phenotypes characterized in this study. Studies in the wobbler mouse, bearing a 
spontaneous point mutation in Vps54, reveal degeneration of multiple brain regions and 
motor neurons in adult mice (Schmitt-John et al., 2005; Schmitt-John, 2015). The motor 
neuron phenotype in mice is distinct from that observed in Drosophila mutants harboring 
the Vps54 null allele, scat1, which exhibit overgrowth of the larval neuromuscular junction 
(Patel et al., 2020). Taken together with our study, these findings suggest that the effect 
of GARP/EARP deficiency may be somewhat context or cell-type-dependent. What is 
clear is that neurons are sensitive to the loss of these protein complexes. 

 
Appearance of endolysosomal phenotypes only in later developmental stages 
 At the subcellular level, loss of either the GARP or EARP complexes results in 
distinct effects on the endolysosomal system. Knockout of Vps50 specifically affects early 
endosomes, while knockout of Vps54 specifically affects late endosomes and lysosomes. 
Previous studies have shown that the GARP complex is essential for the proper sorting 
of lysosomal hydrolases. Despite an enlargement of the lysosomal population, we 
detected no changes in expression or maturation of the hydrolase cathepsin L in head 
lysates from 1 day old knockout flies. This is consistent with a report on the retromer 
complex, which functions upstream of the GARP complex in hydrolase sorting. In that 
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study (Ye et al., 2020), changes in cathepsin L processing are observed in 30 day old, 
but not 1 day old, Vps29 mutant flies. The authors of that study suggest that there must 
be compensatory mechanisms that facilitate proper lysosomal hydrolase sorting during 
earlier stages of development. Our results showing that cathepsin L processing is intact 
in young adult flies, as well as the dispensable role of the GARP/EARP complexes for 
overall larval development further support this notion.    
 
GARP in sterol transport in neurons 

In Saccharomyces cerevisiae, Vps53Δ or Vps54Δ cells accumulate sterol 
intracellularly (Fröhlich et al., 2015). As yeast lack the EARP complex, this was assumed 
to be a function of the GARP complex. In mammalian cells, knockdown of the shared 
component Vps52 results in mis-sorting of NPC2 (Wei et al., 2017), leading to sterol 
accumulation in lysosomes. This study, however, did not target the complex specific 
components of the GARP and EARP complexes. We find that sterol accumulates in 
neurons of Vps54KO/KO but not Vps50KO/KO Drosophila, suggesting that the EARP complex 
may not be involved sterol transport. To our surprise, we observed accumulation of sterol 
in the Vps54KO/KO neurons at the TGN, not in lysosomes. Osbp likely facilitates sterol 
transport to the TGN in Vps54KO/KO neurons, as reducing Osbp levels with a single null 
allele (Vps54KO/KO; Osbp 1/+) rescued sterol levels, TGN morphology, and the dendritic 
phenotype of GARP deficient neurons. Strikingly, Osbp1/+ heterozygosity did not rescue 
the observed defects in endolysosomal morphology, indicating that these changes are 
still permissive to dendrite regrowth. Taken together with the data showing no impairment 
of cathepsin L maturation in Vps54KO/KO lysates, our results suggest that perturbed 
dynamics at the TGN, but not in endolysosomes, contributes in part to the impaired 
dendrite regrowth. 

Our results showing that overexpression of Osbp in Vps54KO/KO neurons also 
decreased filipin levels at the TGN while exacerbating the dendritic phenotype suggests 
that this manipulation may disturb the balance of sterol transport at several interorganelle 
contact sites. For example, it is possible that the decrease in TGN-associated filipin 
staining upon Osbp overexpression may be an indirect effect of increased transport of 
sterol out of the secretory pathway through ER-endolysosome contacts (Dong et al., 
2016). Additionally, Osbp functions that are independent of sterol transport may be 
influence dendrite morphology. This is supported by our data showing that 
overexpression of Osbp in the wildtype background decreased total dendrite length 
without affecting sterol levels. In this context, Osbp overexpression may alter signaling 
pathways that act in parallel to regulate dendrite morphology. For example, Osbp creates 
a scaffold for protein phosphatases, including protein phosphatase 2a (PP2A)(Wang, 
2005), which is essential for proper dendrite pruning and cytoskeletal dynamics in c4da 
neurons (Rui et al., 2020; Wolterhoff et al., 2020).  

Because Osbp regulates sterol transport through multiple interorganelle contact 
sites, further study is required to identify the precise sites involved in the transport of sterol 
to the TGN in GARP deficient neurons. Our genetic interaction studies with Vap33 
indicate that interorganelle contact sites other than the ER-TGN contact sites mediated 
by Osbp may be responsible for the accumulation of sterol at the TGN. One site of interest 
is the TGN-Rab11+ recycling endosome contact site. At these sites, Osbp binds the 
Rab11 interacting protein RELCH (Sobajima et al., 2018). This study demonstrated that 
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knockdown of Osbp, Rab11 or RELCH decreased sterol transport to the TGN. Whether 
these contact sites exist in Drosophila is not yet clear as there is no obvious RELCH 
homolog. However, Rab11 has been shown to colocalize with TGN markers and to 
facilitate post-Golgi trafficking during photoreceptor development in flies (Satoh et al., 
2005). Further, fwd can bind to Rab11, thereby localizing recycling endosomes with Golgi 
structures during cytokinesis (Polevoy et al., 2009), though it is not clear if this interaction 
permits sterol transfer. These studies suggest an intriguing hypothesis that an increase 
in TGN-Rab11+ recycling endosome contacts in Vps54KO/KO neurons may lead to sterol 
overloading, and further, that these interactions may disrupt post-Golgi secretory 
trafficking necessary for dendrite regrowth. 

As sterol auxotrophs, Drosophila may utilize multiple pathways to transfer sterol 
from endolysosomes to the secretory pathway as they are unable to synthesize sterols 
endogenously. However, beyond the coordinated function of Npc1 and 2, other routes for 
sterol egress from endolysosomes remain poorly understood. Several recent studies in 
mammalian cells have focused on identifying mechanisms for sterol metabolism, and 
sterol transport specifically, in control cells and/or in cells in which Npc1 is either 
genetically or pharmacologically inhibited (Scott et al., 2015; Trinh et al., 2020; van den 
Boomen et al., 2020; Lu et al., 2021). We suggest that, given their unique reliance on 
dietary sterol, Drosophila is an ideal model in which to study mechanisms of sterol egress 
from the endolysosomal pathway. It will be important to conduct future studies to identify 
the mechanisms of sterol uptake and transport to the TGN in the absence of the GARP 
complex.  

 
 

Methods 
Fly stocks 
Flies were reared at 25°C in density-controlled vials containing standard cornmeal-
molasses food. Transgenic fly stocks used in this study: C4da neurons were visualized 
using the ppk-Gal4, UAS-CD4-tdTomato or UAS-CD4-tdGFP lines (Han, Jan and Jan, 
2011). The following fly lines were purchased from the Bloomington Stock Center: 
Chromosomal deficiencies deleting regions around the genes of interest: stock# 24372 
(Vps50 Df: Df(2R)BSC348/CyO); stock# 7895 (Vps51 Df: Df(2R)Exel7158/CyO); stock# 
27381 (Vps52 Df: Df(2L)BSC810/SM6a); stock# 23680 (Vps53 Df: Df(2L)BSC295); and 
stock# 7813 (Vps54 Df: Df(2L)Exel8022. RNAi lines: stock# 35787 (RNAi control UAS-
mCherry in the VALIUM10 vector), stock# 50548 (Vps51 RNAi), stock# 27985 (Vps52 
RNAi), stock# 38267 (Vps53 RNAi), stock# 38994 (Vps54 RNAi), stock# 35257 (fwd 
RNAi), stock# 27312 (Vap33 RNAi). Other mutant and UAS lines: stock# 26693 (UAS-
Vap-33-1), stock# 57348 (Osbp1), stock# 57346 (UAS-Osbp), stock# 42716 (UAS-
spinster-RFP), stock# 64747 20XUAS-tdTomato-sec61β. The following RNAi lines were 
purchased from the Vienna Drosophila Resource Center: stock #60200 (KK RNAi 
control), stock 108290 (Vps50 RNAi).  
 
Molecular cloning 

To generate the UAS-Vps50-3xHA line, Vps50 cDNA was amplified from DGRC 
clone FI23003. Restriction sites and a C-terminal 3xHA tag were added during 
amplification (primers listed in Supplemental Methods Table S1). The resulting 
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amplification product was cloned into the Not and Kpn restriction sites in the pACU 
backbone. To generate the UAS-Vps53-3xHA line, Vps53 cDNA was amplified from 
DGRC clone clone FI1784. AttB sites were added during amplification. The amplification 
product was subsequently cloned in the pDONR-221 entry vector using BP-Clonase II 
(Invitrogen) and subsequently transferred to the pTWH vector (DGRC clone 1100 ) using 
LR-Clonase II (Invitrogen). The UAS-Scat line was generated using the expression ready 
pDNR-Dual-UAS-Scattered-Flag-HA plasmid (DGRC clone FMO06004).  

The UAS-Vps50 plasmid was injected into the VK20 attP docking for φC-31-
mediated integration (Bateman, Lee and Wu, 2006) site by Genetivision. The UAS-Vps53 
and UAS-Scat plasmids were injected into Bloomington stock 24866 (M{vas-int.Dm}ZH-
2A, PBac{y[+]-attP-9A}VK00019) by Rainbow Transgenics. 
 
Generation of knockout flies by CRISPR 

Knockout flies were generated by CRISPR/CAS9 homology-dependent repair in 
which the gene of interest was replaced by an eye-specific dsRed cassette. (See Fig S1 
for schematic). Guide RNA sequences were designed using the Fly CRISPR target finder 
(http://flycrispr.molbio.wisc.edu/tools). Selected sequences were in the 5’UTR and 3’UTR 
of the gene of interest. Each guide RNA was cloned into the pU6-BbsI-chiRNA. Guide 
RNA sequences and genotyping primers can be found in Table S1. 

The donor template was generated by cloning homology arms (~1kB upstream of 
the 5’ guide RNA sequence and ~1kB downstream of the 3’ guide RNA sequence, see 
Table S1 for primer sequences) into the pHD-dsRed-attB plasmid. For Vps50 and Vps53, 
5’ homology arms were cloned into the NotI site, while 3’ homology arms were cloned into 
the SpeI site. For Vps54 (scat), the 5’ homology arm was cloned into the AarI site, while 
3’ homology arm was cloned into the SapI site. 

Guide RNA plasmids and donor plasmids were injected into isogenized vasa-cas9 
flies (Rainbow Transgenics). DsRed+ flies were selected and crossed to balancers. DNA 
isolated from homozygous DsRed+ flies was used for initial genotyping. To generate a 
control line, the isogenized vasa-cas9 flies were treated in the same manner as DsRed+ 
flies. The resultant line was used as the control (+/+) unless otherwise indicated. 
 After initial screening, the DsRed cassette was removed by crossing to flies 
expressing Cre recombinase (specific line). DsRed- offspring from this cross were mated 
to a second chromosome balancer line. Homozygous progeny were used for genotyping 
to confirm the absence of the gene of interest (Fig S1). 
 
RT-PCR 
Total RNA was isolated from wandering third instar larvae by TRIzol/chloroform extraction 
and treated with the TURBO DNA-free reagent (ThermoFisher) to remove genomic DNA. 
The High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) was used for 
cDNA synthesis. Primer sequences for Vps50, Vps53, Vps54 and three internal controls 
can be found in Table S1. PCR reactions were performed on equal amounts of cDNA in 
a with SYBR Green PCR Master Mix (Applied Biosystems). PCR products were run on 
1% agarose gels with the GeneRuler 1kb Plus DNA Ladder (ThermoFisher).  
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Lifespan analysis 
Lifespan analysis was conducted at 25°C. Groups of 10 age-matched flies were collected 
as they eclosed and transferred to yeasted vials containing standard cornmeal-molasses 
food. Every 3-4 days, surviving flies were transferred to fresh vials and the number of 
dead and surviving flies were recorded. Flies were excluded from the study if they 
escaped, were accidentally crushed or were stuck in food while still alive. Kaplan-Meier 
curves were generated in Prism (GraphPad) and analyzed by Mantel-Cox log rank test 
with Bonferroni correction for multiple comparisons.  
 
Antibodies 
The following antibodies were used in this study: anti-rab7 hybridoma supernatant (1:5) 
and anti-golgin245 (both developed by S. Munroe and obtained from the Developmental 
Studies Hybridoma Bank). Anti-rab5 (1: 250, Abcam Ab21261). Anti-tdTomato (1:500, 
Kerafast EST203). Anti-cathepsin L antibody (1:500, R&D Systems MAB22591). The 
Anti-tubulin antibody (1:2000, Sigma T9026). The anti-scattered (Vps54) antibody was 
generated by and obtained from R. Sinka (Fári et al., 2016) (1:400). Secondary antibodies 
for immunohistochemistry were anti-mouse, goat, or rabbit labeled by Alexa 488, 555, or 
647 (1:1000, ThermoFisher). Secondary antibodies for western blot were anti-mouse 
HRP (1:1000, Jackson 115-035-146), anti-guinea pig HRP (1:500, Sigma A5545) or anti-
mouse IR-Dye 680 LT (1:20000, LI-COR). 
 
Western blotting 
10-20 whole larvae or 30-40 heads from 1 day old flies were homogenized in 50mM Tris-
HCl pH 7.4, 150mM NaCl, 1% Triton X-100, 5mM EDTA, 1mM PMSF and 1x complete 
protease inhibitor (Roche) using a pestle. Samples were then centrifuged for 10 min at 
12,000 x  g. Samples for gel electrophoresis were prepared 2x Laemmli Buffer (Bio-Rad 
1610737) with 5% β-mercaptoethanol. Lysates were heated at 95°C for 10 min, followed 
by pulse centrifugation. Samples were loaded on 4-12% Bolt Bis-Tris Plus 
(ThermoFisher) and run in NuPage MES buffer (ThermoFisher). Proteins were then 
transferred to Immobilon-FL PVDF membrane (Millipore), blocked in 5% milk in TBST 
(Tris-buffered saline + 0.1% Tween-20). Primary antibodies were diluted in blocking 
solution and incubated overnight at 4°C. After washing with TBST, membranes were 
incubated with secondary antibodies for 2hrs at room temperature. Membranes were then 
again washed before detection. Vps54/scat protein was detected using HRP secondary 
antibodies with the SuperSignal West Pico ECL chemiluminescent substrate 
(ThermoFisher 34580) and scanned on a C-DiGit blot scanner. Cathepsin L western blots 
were detected using LI-COR secondaries and scanned on the LI-COR Odyssey CLx. 
 
Imaging dendrite morphology 

For larval and pupal imaging, staged embryo collections were performed on 
yeasted grape agar plates at 25°C. Third instar larvae (96hrs AEL) were anesthetized in 
ether and whole mounted in glycerol. Staged pupae (72 or 96hrs APF) were dissected 
from the pupae case and mounted on a custom acrylic disc (de Vault et al., 2018) without 
any anesthesia. For adult imaging, flies that eclosed within an 8hr time window were 
collected as age-matched adults. Flies were aged at 25°C in yeasted vials and were 
transferred to fresh vials every 3-4 days. Flies were anesthetized with CO2 and whole 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.462255doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462255
http://creativecommons.org/licenses/by/4.0/


 12 

mounted in glycerol. Z-stacks for dendrite morphology were collected with a 0.5μm z-step 
on a Leica SP5 laser-scanning confocal microscope equipped with a 20x oil immersion 
objective and the LAS X acquisition software. 
 
Immunohistochemistry and filipin staining 

Larvae, pupae or adults were filleted and fixed in 4% paraformaldehyde for 20 min 
followed by permeabilization using 0.5% triton X. Fillet preps were blocked in 10% serum 
and then incubated with primary antibody while rotating overnight at 4C. After primary 
antibody was washed away, fillets were incubated with secondary antibody for two hours 
while rotating at room temperature. Fillets were mounted in Diamond ProLong Anti-fade 
mounting reagent and imaged on Z-stacks for analysis of organelles or filipin staining 
were collected with a 0.25μm z-step on a Leica SP8 laser-scanning inverted confocal 
microscope equipped with a 63x oil immersion objective, 3-6x zoom digital zoom, and the 
LAS X acquisition software. For information on antibody sources and dilutions used, see 
Supplemental Methods Table S2. Samples to be stained with filipin were first fixed and 
then stained with 5μg/mL filipin in PBS for 2hrs at room temperature without 
permeabilization. If filipin-stained samples were also to be stained with antibodies, 
samples were then permeabilized and stained using the same procedure described 
above. 
 
Image analysis 

All image analysis was performed in ImageJ Fiji (http://fiji.sc). Morphological 
analysis of dendrite arbors was performed on maximum projections of z-stacks. Arbors 
were reconstructed using the Simple Neurite Tracer (Longair et al. 2011). Total dendrite 
branch length is the summed length of all dendrite branches from a single neuron 
reconstruction. Sholl Analysis was performed using the built-in Sholl Analysis function. 
 For organelle analysis, masks were generated from z-stacks of the tdTomato or 
tdGFP neuronal membrane marker and applied to z-stacks of organelle staining to isolate 
organelles in neurons from background (neuronal organelle image). Maximum projections 
of organelle staining were further processed as 8-bit binary images to create ROI around 
organelles using the Analyze Particles function. ROIs were then transferred to neuronal 
organelle maximum intensity projection, and used measure puncta number, area, and 
mean fluorescence intensity. To measure filipin levels in organelles, a mask was created 
on the organelle marker z-stack and then applied to z-stacks of filipin staining. Filipin 
intensity levels were then measured on maximum projections of the masked images. 
 
Statistical analysis 
Statistical analyses were performed in GraphPad Prism software. Survival curves were 
analyzed by Log-Rank Mantel-Cox test with Bonferroni multiple comparisons correction. 
Comparison of two genotypes was done by t test, comparison of three or more genotypes 
was done by one-way ANOVA with Tukey’s multiple comparison’s test. Analysis of two 
genotypes over time was done by two-way ANOVA with Šidák’s multiple comparison’s 
correction. 
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Figure 1 Reduced lifespan of GARP knockout flies  
A) Cartoon depicting the GARP and EARP complexes. B) RT-PCR from control (+/+) and 
KOs. RNA was extracted from whole larvae, reverse transcribed, and equal amounts of 
cDNA were used for RT-PCR. RP49 is used as a reference gene. C) Survival curves and 
D) average age at death ± SEM for male flies of the indicated genotypes. N > 
200/genotype. Survival curves were analyzed by Log-Rank Mantel-Cox test with 
Bonferroni multiple comparisons correction. ****p < 0.0001 for all genotypes compared to 
control except Vps50KO/Df (not significant – n.s.). Average age at death analyzed by one-
way ANOVA. **** p < 0.0001. E) Survival curves and F) average age at death ± SEM for 
female flies of the indicated genotypes. N > 188/genotype. Survival curves were analyzed 
by Log-Rank Mantel-Cox test with Bonferroni multiple comparisons correction. ****p < 
0.0001 for all genotypes compared to control except Vps50KO/Df (n.s.). N > 188/genotype. 
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Figure 2 Neuron-specific knockout of Vps53 results in smaller dendritic arbors 
A) Representative maximum z-projections of MARCM control FRT40A, Vps53KO/KO, and 
Vps53KO/KO; ppk>Vps53 class IV da neuron clones. Images were collected from 7 day old 
male pharate adults. Yellow arrows point to the soma. Scale bar = 50μm.  B) 
Quantification of total dendrite branch length and C) total branch number presented as 
mean ± standard deviation. Both total dendrite branch length and number were analyzed 
by one-way ANOVA with Tukey’s post-test. **** p <0.0001. D) Sholl analysis. MARCM 
control FRT40A n = 8; Vps53KO/KO n = 13; and Vps53KO/KO; ppk>Vps53 n = 11.  
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Figure 3: Both the GARP and EARP complexes are necessary for dendrite 
arborization A) Representative maximum z-projections of class IV da neurons from 7 
day old male pharate adults. Yellow arrows point to the soma. Scale bar = 50 μm. B) 
Quantification of total dendrite length and C) total dendrite branch number. Both total 
dendrite branch length and number were analyzed by one-way ANOVA with Tukey’s post-
test. * p < 0.05, ** p<0.01 **** p <0.0001. D) Sholl analysis. For B-D, n = 7-12/genotype. 
E) Quantification of total dendrite branch length over development, +/+ n = 10/timepoint; 
Vps50KO/KO n = 9-11/timepoint; Vps54KO/KO n = 10-12/timepoint. Analyzed by two-way 
ANOVA with Tukey’s post-test. * p < 0.05, ** p<0.01 **** p <0.0001. 
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Figure 4 Complex-specific impairments in endosome populations  
A) Maximum intensity projections of endogenous Rab5 staining in neurons from 1 day old 
flies. Dashed lines indicate soma area. B) Quantification of the number of Rab5 
puncta/soma, n = 7-12/genotype. C) Maximum intensity projections of endogenous Rab7 
staining. D) Quantification of the number of Rab7 puncta/soma, n = 8-16/genotype. E) 
Maximum intensity projections of spinster-RFP. F) Quantification of spin-RFP puncta 
area, n = 9-12/genotype. Scale bar = 2.5μm. Puncta number were analyzed by one-way 
ANOVA with Tukey’s post-test. * p<0.05, *** p<0.001. 
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Figure 5 Expansion of the TGN in GARP-deficient neurons 
A) Maximum intensity projections of endogenous Golgin245 staining in neurons from 1-
day old flies. Top: soma, bottom: proximal dendrites. Dashed lines indicate soma area. 
Quantification of B) puncta/soma and C) average puncta area in soma. Quantification of 
D) puncta/10μm of dendrite length and E) average puncta area in dendrites. Scale bar for 
soma = 2.5μm. Scale bar for dendrites = 5μm. Puncta number were analyzed by one-way 
ANOVA with Tukey’s post-test. * p<0.05, ** p<0.01. 
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Figure 6 Accumulation of free sterol at the TGN during dendrite regrowth in GARP 
deficient neurons A) Maximum intensity projections showing filipin staining in +/+, 
Vps50KO/KO, Vps54KO/KO, and Vps54KO/KO; ppk>Vps54 neurons at 96hrs APF. Scale bar = 
2.5μm. B) Quantification of filipin fluorescence intensity at 96hrs APF, n = 7-11/genotype. 
Data normalized to average control value for each experiment to account for inter-
experimental differences in filipin intensity. Analyzed by one-way ANOVA with Tukey’s 
post-test. C) Quantification of filipin fluorescence intensity in +/+ and Vps54KO/KO neurons 
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across development. Analyzed by two-way ANOVA with Šidák’s multiple comparison’s 
correction. ** p< 0.001 for comparison of +/+ to Vps54KO/KO. ΔΔΔ p < 0.001, ΔΔΔΔ p < 
0.0001 for comparison of Vps54KO/KO over time. D). Single plane confocal images of 
Golgin245 (top) and filipin staining (bottom). Scale bar = 1μm. Quantification of E) TGN-
associated, F) late endosomal-associated, and G) lysosomal-associated filipin.  
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.462255doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462255
http://creativecommons.org/licenses/by/4.0/


 26 

 

 
 

Figure 7 Targeting specific lipid regulators at the TGN modulates GARP KO 
phenotypes A) Representative maximum z-projections of class IV da neurons from 7 day 
old males. Scale bar = 2.5μm Yellow arrows point to the soma. B) Quantification of total 
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dendrite branch length, n > 10 except RNAi control (n = 8), +/+ and Vps54KO/KO (both n = 
6). Quantification of C) total filipin fluorescence intensity and D) TGN-associated filipin 
levels at 96hrs APF. For C & D, n > 10 neurons. Analyzed by one-way ANOVA with 
Tukey’s post-test. * indicates a significant difference from +/+, Δ indicates a significant 
difference from Vp54KO/KO, and + indicates a significant difference from RNAi control. Not 
all pairwise comparisons shown. 
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Figure 8 Depletion of Osbp rescues TGN but not late endosomal morphology in 
GARP KO neurons Quantification of the number of A) Golgin245 puncta and B) Rab7 
puncta per soma in neurons at 96hrs APF. Analyzed by one-way ANOVA with Tukey’s 
post-test. * p<0.05, ** p<0.01, *** p< 0.001. 
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