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Summary

The distribution of fitness effects (DFE) for new mutations is fundamental for many aspects

of population and quantitative genetics. In this study, we have inferred the DFE in the 

single-celled alga Chlamydomonas reinhardtii by estimating changes in the frequencies of 

254 spontaneous mutations under experimental evolution and equating the frequency 

changes of linked mutations with their selection coefficients. We generated seven 

populations of recombinant haplotypes by crossing seven independently derived mutation 

accumulation lines carrying an average of 36 mutations in the homozygous state to a 

mutation-free strain of the same genotype. We then allowed the populations to evolve 

under natural selection in the laboratory by serial transfer in liquid culture. We observed 

substantial and repeatable changes in the frequencies of many groups of linked mutations,

and, surprisingly, as many mutations were observed to increase as decrease in frequency. 

We developed a Bayesian Monte Carlo Markov Chain method to infer the DFE. This 

computes the likelihood of the observed distribution of changes of frequency, and obtains 
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the posterior distribution of the selective effects of individual mutations, while assuming a 

two-sided gamma distribution of effects. We infer that the DFE is a highly leptokurtic 

distribution, and that approximately equal proportions of mutations have positive and 

negative effects on fitness. This result is consistent with what we have observed in 

previous work on a different C. reinhardtii strain, and suggests that a high fraction of new 

spontaneously arisen mutations are advantageous in a simple laboratory environment.

Introduction

Understanding the nature of genetic variation for fitness requires an understanding of the 

origin of that variation from mutation. The distribution of fitness effects of mutations (DFE) 

describes the frequencies of mutations with differing magnitudes of effects, and is 

fundamental for many topics in evolutionary genetics, including the maintenance of genetic

variation, the nature of genetic variation for quantitative traits and the genetic basis of 

adaptive evolution. The DFE specifies the relative frequencies of advantageous and 

deleterious mutations and the contributions of mutations with small and large effect sizes 

to fitness change and genetic variation. The DFE appears, for example, in the nearly 

neutral model of molecular evolution (Ohta 1973), which posits that patterns of molecular 

variation and between species change can be explained by mutations that have fitness 

effects close to 1/Ne (where Ne is the effective population size); this is a very small fitness 

effect for species with typically large Ne.

The DFE can be inferred experimentally or by statistical analysis of the frequencies of 

nucleotide variants at polymorphic sites (Eyre-Walker and Keightley, 2007). In the latter 

approach, the DFE for deleterious amino acid-changing mutations can be estimated by 

analysis of the site frequency spectrum (SFS) for nonsynonymous variants under the 

assumption that their distribution of effects follows a pre-specified distribution, such as a 

gamma distribution. When the SFS is combined with divergence data from another 

species the frequency and effects of advantageous nonsynonymous mutations can also be

estimated (Eyre-Walker and Keightley 2009; Tataru et al. 2017). Analysis of the SFS has 

been applied to genomic data from a wide range of taxonomic groups. Estimated DFEs for

deleterious mutations are invariably strongly leptokurtic (L-shaped), the shape of the 

distribution varying between taxonomic groups (Chen et al 2017), and there is usually a 
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strong nearly neutral component. Analysis of the unfolded SFS suggests that at most a few

percent of mutations are advantageous (Keightley et al 2016). Inferring the DFE using 

standing variation within a population is relevant to the fitness effects of mutations in 

nature, but does not capture strongly positively or strongly negatively selected mutations, 

because these tend not contribute to standing nucleotide variation.

Inference of the DFE via experimental manipulation can be applied to mutations 

engineered in specific genes or at random genomic locations. One approach, which has 

similarities to the one described here, estimates the selection coefficients of induced 

mutations by tracking their frequency change over time under experimental evolution. This 

was pioneered by McDonald et al (2016), who used deep sequencing to measure 

frequency changes of newly arisen mutations under experimental evolution in 

Saccharomyces cerevisiae. These frequency changes were used to estimate mutational 

effect sizes for fitness under adaptation, although McDonald et al (2016) did not infer the 

full DFE.  More recently, Flynn et al (2020) used “deep mutational scanning” of yeast 

strains to infer the DFE for mutations in the Hsp90 gene. By competition between strains 

followed by deep sequencing, Flynn et al quantified growth effects of many single codon 

changes encoding amino acid variants under standard environmental conditions and under

five stress conditions. In standard conditions, the DFE is a leptokurtic distribution, 

containing a small proportion of beneficial mutations. However, the proportion of beneficial 

mutations was substantially higher in non-standard or stressful environments, especially 

high temperature and salt.

The DFE can also be inferred for mutations induced at random locations in the genome. 

For example, Johnson et al (2019) estimated the DFE for transposable element mediated 

insertion mutations in yeast by measuring mutation frequency changes under adaptation 

over time. Notably, lines with the highest initial fitness appeared to suffer the greatest 

fitness consequences from de novo insertion mutations.

Previously, we have inferred the DFE for spontaneous mutations in the single-celled green

alga Chlamydomonas reinhardtii using growth rate as a fitness measure (Böndel et al 

2019). We crossed mutation accumulation (MA) lines of the CC-2931 strain that had 

randomly accumulated spontaneous mutations for many generations with a mutation-free 
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ancestral strain. We then measured growth rate and determined the genotypes of many 

recombinant lines carrying random combinations of mutations. We developed a Bayesian 

MCMC approach to estimate parameters of a DFE, which also enabled us to extract the 

estimated effects of individual mutations. This suggested a highly leptokurtic DFE, with  a 

surprisingly high proportion of mutations (about 50%) increasing growth rate.

Here, we cross MA lines of C. reinhardtii of a different strain (CC-2344) to that studied by 

Böndel et al (2019), which had undergone approximately 1,000 generations of 

spontaneous mutation accumulation, with a mutation-free ancestral strain in order to 

generate many recombinants with different combinations of mutations. Rather than 

assaying individual recombinants, as in our previous experiment, we allow pools of 

recombinant haplotypes to compete against one another in an experimental evolution 

setting and measure changes of mutation frequency by deep sequencing. We develop a 

new MCMC approach to infer the DFE based on changes in frequency of linked mutations.

Using this new experimental approach and a different strain, we infer that a surprisingly 

high proportion of mutations increase fitness in the standard laboratory environment.

Materials and Methods

Mutation accumulation lines and compatible ancestor

We studied seven C. reinhardtii MA lines (L06, L09, L10, L12, L13, L14, L15) derived from

strain CC-2344 (isolated in Pennsylvania, USA, in 1988) produced by Morgan et al. (2014)

and sequenced as described by Ness et al. (2015). The MA lines and their ancestral strain

are of the same mating type (mt+) and will not mate with one another, so we first produced

a  “compatible  ancestor”  to  which  the  MA lines  could  be  crossed.  This  was  done  by

backcrossing  CC-2344  to  a  mt-  strain (CC-1691)  for  16  generations  with  the  aim  of

producing  a  strain  nearly  identical  to  CC-2344,  with  the  exception  of  the  region

surrounding  the  mating  type  locus  on  chromosome  6.  Genome  sequencing  of  the

compatible  ancestor  (using  the  method  of  Ness  et  al.  2015)  showed that  this  was

accomplished successfully (Figure S1).

Generation of populations of recombinants
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To produce the starting populations of the experimental evolution experiments (designated

t0), we generated recombinant populations  by mating each MA line  with the compatible

ancestor.  First,  we  grew each MA line  in Bold’s  medium (Bold  1942)  under  standard

conditions (23°C, 60% humidity, constant white light illumination) while shaking at 180 rpm

to obtain a culture of 30 ml.  Three lines  had poor growth (L09, L12, and L15), so this

procedure  was done twice  in  order  to  obtain  sufficient  cell  material.  After  three days,

cultures were transferred to 50 ml falcon tubes, centrifuged at 3250 g for 5 minutes and

the supernatant removed.  Nitrogen-free conditions are required to  trigger  mating in  C.

reinhardtii (Sager and Granick 1954), so we washed each cell pellet with 30 ml nitrogen-

free  Bold’s  medium,  mixed,  centrifuged at  3250  g  for  5  minutes  and  removed  the

supernatant. We then resuspended the washed cell pellet in 45 ml nitrogen-free Bold’s

medium. The same procedure was done for the compatible ancestor.

To carry out the matings, we mixed 15 ml of the resuspended MA line cell culture with 15

ml  of  the  resuspended  compatible  ancestor  cell  culture  in  a  50  ml  falcon  tube.  The

mixtures were then  incubated under standard growth conditions for 7 days in a slanting

position  (in  order  to  increase  the  surface  area)  until  zygote  mats  had  formed  at  the

surface. The remaining 30 ml of each culture served as control to allow the detection of

mating failures (see below). Zygote mats were then transferred to a fresh 50 ml falcon tube

containing 30 ml nitrogen-free Bold’s medium and incubated in the dark under standard

growth conditions for 5 days to allow the zygotes to mature. To kill any vegetative cells still

associated with the zygote mats, we froze the zygote cultures and kept them at -20 °C for

5 hours. After thawing at room temperature for approximately 1 hour, we transferred the

zygote cultures to 500 ml conical flasks and added 30 ml of Bold’s medium containing

twice the standard concentration of  nitrogen and 60 ml  of  standard Bold’s  medium to

obtain a total volume of 120 ml with standard nitrogen concentration. The flask was then

incubated under standard growth conditions while shaking at 250 rpm until zygotes had

germinated  (Figure  1A).  This  germination  cell  culture  was  then  used  to  start  the

experimental evolution experiment. The control cultures were incubated as described for

the zygote cultures and if any growth was visible after the freezing, the respective zygote

culture would  have  been  discarded  and  the  whole  procedure  repeated,  but  no  such

instances were observed.
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Experimental evolution

We grew three replicate cell cultures from each MA line x compatible ancestor cross until

approximately 60 generations had been reached (Figure 1B). We designate this time point

tt. For L06 and L09 this took 42 days and for L10, L12, L13, L14, and L15 this took 46

days. Each replicate was grown in a volume of 120 ml in a 250 ml conical flask under

standard growth conditions while shaking at 250 rpm. We started each replicate with 1.2

ml of the germination cell culture and 118.8 ml Bold’s medium. By using standard Bold’s

medium we ensured that the recombinants could not mate and grew entirely vegetatively.

The remaining cells from the germination cell cultures were collected and frozen at -70°C

for sequencing. We then transferred 1.2 ml of each culture to a fresh flask containing 118.8

ml Bold’s medium on a three or four day cycle, or in the case of transfers 3, 6 and 9, over

seven days in order to maximise biomass for DNA extraction and sequencing. In order to

determine the number of serial transfers at which approximately 60 generations had been

reached, optical density (OD) at 600 nm of the cultures was measured at the end of each

transfer growth period. We then calculated the generation time as follows: t = (log Nt – log

N0) / log 2, where Nt is the measured OD of the culture at the end of the growth period and

N0 the calculated OD after dilution of the previous transfer at the beginning of the growth

period. After  nine  transfers  (approximately  60  generations) we  collected  cells  for

sequencing and froze the pellets as described for the time point 0 samples.
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Figure 1. Schematic overview of the experimental procedure. A) Matings. Cell cultures of
the MA line and the compatible ancestor were mixed in a falcon tube and incubated until
zygote  mats  had  formed (1).  The  zygote  mats  were  transferred  to  new falcon  tubes,
incubated in the dark to allow zygote maturation and then frozen at -20°C to kill off any
vegatative cells (2). The culture with the matured zygote mat was transferred to a conical
flask  and incubated until  zygotes  germinated (3).  B)  Serial  transfers.  The germination
culture was grown up until  it  was dense enough to start the three replicates and have
enough cell material for DNA extraction. The three replicates were started with 1.2 ml of
the original germination culture (4). Every three to four days 1.2 ml were transferred to
fresh conical flasks and 2 ml of the remaining culture was used to measure OD (5). After
nine transfers the end of the experiment was reached and the cells were collected for DNA
extraction (6).

Sequencing and sequence data processing

Genomic DNA was obtained from time point 0 (t0) and from each of the three tt  replicates

for  each  MA line  recombinant  population  by  phenol-chloroform extraction  (Ness  et  al

2012).  DNA samples were sequenced on an Illumina Hiseq4000 platform  by BGI Hong

Kong with 150 bp paired-end reads to an average sequencing depth of 520.7x and 221.6x

for time 0 and  t, respectively. Fastq reads were mapped to the  C. reinhardtii reference

genome (strain CC-503; version 5; Merchant et al. 2007) with bwa-mem (Li and Durbin
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2009) and duplicate reads were removed with MarkDuplicates using picard tools. The four

bam files of each MA line (time 0, and the three replicates of  time t) were merged with

samtools (Li  et  al.  2009) into  a single bam file.  The 1,000-bp regions surrounding the

locations of the mutations of interest (500 bp before and 500 bp after each mutation) were

then realigned with HaplotypeCaller of GATK (McKenna et al. 2010, DePristo et al. 2011)

to  allow more accurate mapping of  the mutations and more accurate allele  frequency

estimation.  The  realigned  bam  files  were  then  split  into  the  individual  samples  with

SplitSamFile  of GATK (McKenna et al. 2010, DePristo et al. 2011). Samtools was then

used to create pileup files from the realigned bam files using the mpileup command. Allele

frequencies for the mutations of interest were then calculated with custom Perl scripts.

Mutations were classified as noncoding, synonymous or nonsynonymous relative to the 

v5.3 reference genome annotation. To assess the functional effects of mutations, SnpEff 

(Cingolani et al. 2012) was run using the pre-build C. reinhardtii annotation and with 

default parameters.

It has recently been suggested that the v5 reference genome contains some 

misassemblies (Salomé & Merchant, 2019; Craig et al. 2021). Since misassemblies could 

introduce incorrect linkage relationships between mutations, we lifted over mutation 

coordinates to the highly contiguous Nanopore-based assembly of the strain CC-1690 

(O’Donnell et al., 2020), which is identical-by-descent >95% of its genome with the original

reference strain (Gallaher et al. 2015). The v5 and CC-1690 assemblies were aligned with 

Cactus (Armstrong et al. 2020) with divergence between the genomes arbitrarily set at 

0.004 and otherwise default parameters. Liftover was then achieved from the resulting 

alignment using halLiftover (Hickey et al. 2013). Lifted over coordinates were used for the 

MCMC analysis described below. 

Repeatability of mutation frequency between replicates

We estimated the repeatability of mutation frequency among the three replicate 

populations by partitioning the total variation in allele frequencies into three components: 

the variance in frequency among different MA line x compatible ancestor crosses (VMA), the

variance in frequency among mutations (VM) and the residual variation due to differences 
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among the three replicate measures for each mutation (VE). Variance components were 

estimated using the Lmer function in R, and repeatability was calculated as VM/(VM + VE).

C. reinhardtii genetic map

A genetic map is required in the MCMC analysis described below, which calculates 

frequency changes of linked mutations. We assume an overall genome-wide average rate 

of recombination, obtained from two published crosses between C. reinhardtii strains 

CC2935 x CC2936 and CC408 x CC2936, which together provide an estimate of 1cM per 

87,000 bases (Liu et al 2018). A third cross reported by Liu et al. (2018) (CC124 x 

CC1010) that has a c.10-fold lower marker density was not included in our calculations.

Our analysis required the location of the individual mutations on a genetic map. Lui et al. 

(2018)’s study does not provide sufficient resolution for this, but higher resolution 

estimates of the rate of recombination are available from a study of linkage disequilibrium 

in natural populations (Hasan and Ness 2020). We used these estimates to adjust for 

variation in the rate of recombination among chromosomes, i.e. assumed a uniform rate of 

recombination per chromosome. Longer chromosomes have lower recombination rates, 

presumably due to a requirement for a minimum of 1 chiasmata per chromosome per 

meiosis (Figure S2).

We used estimates of the population scaled recombination rate from Hasan and Ness 

(2020) to adjust the rate of recombination estimated in the Liu et al. (2018) crossing 

experiment in order that the inverse rate of recombination (yi,  bp/cM) increases linearly by 

0.000616 per 1 base pair increase in chromosome length (xi) (Figure S2), while keeping 

the overall average recombination unchanged, i.e., 

yi = 0.000616xi + k,  (1)

where

k=87,000−0.00616
∑ x i

2 ,

∑ xi
(2)
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(see supplementary text A).

Computation of expected allele frequencies after experimental evolution

In this section we describe the computation of the expected frequencies of the mutations 

after one generation of recombination followed by t generations of experimental evolution, 

which are used in likelihood calculations and Bayesian inference. We assume that allele 

frequencies of each mutation are 0.5 after crosses between MA lines and their ancestor, 

and that changes of allele frequency then occur deterministically and independently 

among chromosomes, but that genetic linkage of mutations on the same chromosome 

leads to non-independent allele frequency changes under selection. Based on the 

assumed genetic map (see above), we first computed the expected frequencies of the n 

possible haplotypes generated by one round of meiosis involving an ancestral 

chromosome and a chromosome from a MA line in the absence of selection. In the model 

of experimental evolution following the cross, mutations have selection coefficients, sj, 

from which the overall fitness (wi) of haplotype i carrying mi mutations can be computed 

under multiplicative selection:

w i=∑
j=1

mi

(1−δ j s j ) , (3)

where δj takes the value 1 or 0 if the haplotype carries the mutant or wild type allele, 

respectively, for mutation j. The selection coefficients (s) are parameters of the model 

whose values are changed during MCMC runs. These and other such parameters are 

listed in Table 1.
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Table 1. Parameters of the model.

Parameter Definition

sj Selective effect of mutation j.

δjk Deviation of the mean frequency of mutation j replicate k about 

its expectation.

α Vector of scale parameters of the distribution of effects of 

mutations, elements 0 and 1 are for positive and negative 

effects, respectively.

β Vector of shape parameters of the distribution of effects of 

mutations.

q Frequency of positive effect mutations.

Let the frequency of haplotype i at generation t = πi,t. We then calculated the expected 

frequency of each haplotype after t generations of natural selection by iterating equation 

(4) for t generations:

πi,t+1 = πi,t wi/wt,  (4)

where wt is the mean fitness of the n haplotypes at generation t. It is then straightforward 

to compute the expected frequencies of the individual mutations (p) at generation t.

Computation of likelihood

The log likelihood was the sum of three terms, the first involving the mutation frequencies 

after selection (p), the second involving mutation effects (s), which were assumed to be 

gamma distributed, and the third involving the total number of negative effect mutations 

(n0) versus the total number of positive effect mutations (n1), which were assumed to be 

sampled from a binomial distribution with mean q (the frequency of positive effect 

mutations, a parameter of the model, Table 1). Likelihood was computed assuming 

independence among the c chromosomes:

(5)
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The log likelihood for the term involving the mutation frequencies on a chromosome (log 

L(p)i) was computed assuming that allele frequencies of each of the r experimental 

evolution replicates are sampled from a log-normal distribution with mean pj and standard 

deviation σδ, and that numbers of mutant and wild type reads for a replicate are sampled 

from a binomial distribution with mean pj + δjk:

(6)

where δjk are variables in the model that allow the allele frequency for each replicate (k) to 

be different from the overall expected frequency under selection for that mutation, and xjk 

and djk are the numbers of mutant reads and the sequencing depth, respectively, for 

mutation j replicate k.

The log likelihood for the term involving the distribution of fitness effects of mutations (log 

L(s)i) on a chromosome was computed assuming that the fitness effects are drawn from 

gamma distributions, which can have different parameters for positive and negative effect 

mutations:

logL ( s )i=∑
j=1

m

log gamma ( y j s j , αδ j , βδ j ) , (7)

where gamma() is the gamma probability density function (PDF), yj takes the value -1 or 1 

if mutation j's fitness effect is negative or positive, respectively, δj is an indexing variable 

that takes the value 0 or 1 if mutation j's fitness effect is negative or positive, respectively, 

and α δ j and βδ j are elements of vectors α and β, both of dimension two, containing the 

scale and shape parameters, respectively, of the gamma distributions of fitness effects. 

Elements 0 and 1 of α and β contain parameters for negative and positive effect 

mutations, respectively. 

Priors
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These were designed to be informative. The prior for fitness effects of mutations was a 

uniform distribution bounded by -1 and +1.  The prior for the frequency of positive-effect 

mutations (q) was uniform in the range 0 and 1. Priors for the shape and scale parameters 

of the gamma distribution of effects of mutations and the parameters related to the log 

normal distribution (σδ and δjk) were uniform in the range 0 to very large values.

MCMC implementation

We used the Metropolis Hastings algorithm to sample from the posterior distributions of 

the parameters (Table 1), based on the product of the log likelihood of the data and priors 

(which were designed to be uninformative, see above). Briefly, there was a burn-in of 109 

iterations followed by sampling every 105 iterations up to iteration 1010. Proposal deviates 

were sampled from normal distributions and added to the current parameter values. During

the burn-in, the variance of a proposal distribution was either increased or decreased by a 

factor of 1.2 each iteration so that the average proportion of accepted proposals for each 

parameter was about 0.234. The mode of the posterior distribution was used as the 

parameter estimate and 95% credible intervals were computed based on ranked posterior 

values. 

Results

Distribution  of  initial  mutation  frequency  before  experimental  evolution

We crossed seven C. reinhardtii MA lines that had been independently derived from strain

CC-2344 to a compatible ancestor of the same genetic background in order to generate

populations of recombinants. In the generation following the cross, mutations are therefore

expected  to  be  at  a  frequency of  0.5.  Recombinant  haplotypes were  then  allowed to

compete with one another in the absence of further recombination in standard laboratory

conditions over the course of nine serial transfers. We sequenced samples from each MA

line cross at the start (designated time 0) and end (designated time  t) of experimental

evolution in order to quantify changes in mutation frequency.

We identified 254 mutations in the seven MA lines, comprising 232 SNPs, 13 insertions

and nine deletions (Table 2). Recombinant populations were sequenced at a high enough

depth at  t0 and  tt to  allow accurate  frequency estimation (Table  2).  Sequencing depth
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varied among the mutations,  but  we did  not  observe a significant  correlation between

sequencing depth and mutation frequency (Figure S3; time t0: r = 0.0741, P = 0.236 and tt:

r = 0.0244, P = 0.498; r = Spearman’s correlation). Therefore, we can discount any effect

of sequencing depth on mutation frequency.

Table 2.  Numbers of mutations in each MA line and sequencing depth statistics at
the  start  and  end  of  experimental  evolution  for  the  corresponding  recombinant
populations.  Average sequencing depth  across all  mutations and replicates  is  shown
along with the standard deviation and range in parenthesis.

Mutation type Sequencing depth

Line SNP INS DEL total Time 0 Time t

L06 21 2 2 25 628.0 (262.5; 47, 1366) 254.9 (117.2; 19, 665)

L09 13 0 2 15 353.6 (154.5; 100, 536) 166.6 (84.1; 30, 306)

L10 45 2 0 47 513.2 (226.8; 41, 1252) 216.4 (101.6; 10, 608)

L12 50 2 0 52 509.6 (253.0; 8, 1767) 204.9 (134.6; 5, 1016)

L13 35 4 2 41 487.1 (170.4; 120, 1011) 227.4 (85.6; 40, 526)

L14 33 1 2 36 580.3 (214.1; 94, 1250) 263.6 (130.4; 23, 723)

L15 35 2 1 38 520.3 (177.1; 92, 1134) 204.5 (71.9; 21, 437)

all 232 13 9 254 520.7 (221.7; 8, 1767) 221.6 (111.0; 5, 1016)

The average mutation frequency at time 0 (p0) was 0.481, which is close to the expected

value  of  0.5.  Initial  frequency  of  the  different  mutations  showed  considerable  scatter,

however,  since  the  standard  deviation  was  0.141,  and  there  were  also  noticeable

differences in the distribution of frequencies between the recombinant populations. Lines

L12 and L13, for example, had a relatively broad range of initial frequencies centering

around 0.5, whereas L9 and L10 had a narrower distribution, with a mean close to 0.5 and

a few mutations with very low frequencies (Figure 2). Unexpectedly, in the majority of lines

there were mutations at frequencies close to zero at time 0, and additionally the frequency

of one mutation L15 was close to 1 at time 0 (Supplementary Figure S4). These extreme

frequencies could be explained by natural selection changing mutation frequency in the

generations  of  growth  prior  to  the  sequencing  of  the  populations  at  time  0.  This  is
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corroborated by the presence of groups of linked mutations having similar frequencies at

time 0 (Supplementary Figure S4).

Figure 2. Mutation frequencies at the start (p0) and the end (pt) of experimental evolution 
of the seven recombinant populations. Mutational types are indicated with symbols: open 
circles - SNPs, closed diamonds - Indels.

Mutation frequencies after experimental evolution

There were substantial changes in the frequencies of many mutations after experimental

evolution  (pt),  but  the  magnitude  and  direction  varied  substantially  among  mutations

(Figure 2). Mutation frequency was highly repeatable between the three replicates (r =

0.96), indicating that selection was the causal agent of frequency change.

The correspondence between mutation frequencies at the start and end of experimental

evolution is shown in Figure 3. As previously mentioned, t0 frequencies are centred around

0.5 (see also Figure 2 and Figure S4), but in some cases t0 frequencies were substantially

different from 0.5. In the majority of these cases, frequency usually became even more

extreme in the same direction by time  t.  This suggests that natural  selection changed

mutation  frequency  in  the  generations  after  the  cross  before  sequencing  at  t0,  and

selection also operated in the same direction under subsequent experimental evolution.

There are exceptions, however, the most extreme of which correspond to points in the top-

left and bottom-right quadrants of Figure 3. These are cases where the allele frequency
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first  moved  down  (top-left  quadrant)  and  then  moved  up  or  vice  versa.  A  possible

explanation for this behaviour is a change in the direction of selection, which would imply

that  the  environmental  conditions  before  and  after  sampling  for  time  0  had  changed.

Notwithstanding  the  unexpected  cases  mentioned  above,  there  are  other  patterns

apparent in the raw allele frequencies (Figure S4). To account for allele frequency variation

among  replicates  (which  are  mostly  very  consistent),  in  the  subsequent  analysis,  we

modelled variance among replicates of the same cross by assuming a lognormal model for

the  environmental  variance  between  replicates  of  the  same  cross.  Linked  mutations

usually moved in frequency in the same direction.
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Figure 3. Mutation frequencies at the start of experimental evolution (p0) versus average
mutation frequencies at the end of experimental evolution (pt). The different recombinant
populations are indicated with different colours and symbols. The dotted lines represent
the frequencies of 0.5.

Estimation of the generation time

The number of  generations over  the course of  experimental  evolution  were  estimated
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based on OD measurements taken at each of the nine transfers. The mean number of

generations across all recombinant populations was 59.8 with a standard deviation of 1.03.

The estimated generation times were highly  consistent  between replicates (Figure S5,

Table S1) and varied only slightly between recombinant populations from the different MA

line  x  compatible  ancestor  crosses  (Table  S1)  where  L06  had  the  lowest  number  of

generations (58.1) and L15 the highest (60.7). 

MCMC analysis to estimate the DFE

We proceeded to carry out the Bayesian MCMC analysis to estimate parameters of the 

DFE described in Methods, assuming that the number of generations of natural selection 

under experimental evolution for each MA line recombinant population t = 60, fitting three 

different two-sided gamma distributions of fitness effects: a distribution with the same 

shape and scale parameters for positive- and negative-effect mutations, a distribution with 

different scale parameters and the same shape parameters for positive- and negative-

effect mutations, and a distribution with different scale and shape parameters for positive- 

and negative-effect mutations. In each case, after a burn-in period, the sampler appeared 

to have converged (Figure S6), and samples were drawn from the chain in order to obtain 

estimates of the posterior distributions of the various parameters.

Model comparison

We used the convention that if BIC(model A)–BIC(model B) < −10, there is strong 

evidence in favour of model A over model B (Raffery 1995). The results (Table 2) therefore 

suggest that more complex models are not strongly favoured over the simplest two-sided 

gamma model, which has the same scale and shape parameters for positive- and 

negative-effect mutations.

Table 2. Models, their numbers of parameters related to the DFE and BIC values.

Model Number of parameters BIC

Two-sided gamma 2 1.6

Two-sided gamma, different

means

3 7.2

Two-sided gamma, different

means and shapes

4 12.3
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Parameter estimates

We obtained estimates of parameter values based on the modes of the posterior 

distributions sampled from the MCMC chains. For the three different models evaluated, the

parameter estimates are highly consistent (Table 3). The estimate of the proportion of 

positive-effect mutations (q) is close to 0.5 for each of the three models, and credible 

intervals are relatively narrow. This result is consistent with the observed bidirectional 

changes of mutation frequency. For each of the three models, estimates of the shape 

parameter of the distribution of effects are close to 0.5. This implies a highly leptokurtic 

distribution of fitness effect, in which the majority of effects cluster around zero, with a long

tail of positive and negative effects. The estimated absolute average effect of a mutation is 

just over 2%, and the inferred DFE is shown in Figure 4.

Table 3. Models, and parameter estimates.

The indices [0] and [1] indicate negative and positive mutation effects, respectively. 95% 

credible intervals are shown in square brackets.

Mean mutation effect, β/α Shape parameter, β

Model [0] [1] [0] [1] q

Two-sided 

gamma

0.022
[0.019, 0.027]

0.53
[0.40, 0.69]

0.50
[0.43, 0.58]

Two-sided 

gamma, 

different 

means

0.023
[0.017, 0.030]

0.041
[0.029, 0.060]

0.53
[0.40, 0.70]

0.51
[0.42, 0.58]

Two-sided 

gamma, 

different 

means and 

shapes

0.023
[0.015, 0.032]

0.023
[0.015, 0.033]

0.53
[0.29, 1.0]

0.69
[0.31, 1.2]

0.49
[0.35, 0.64]
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Figure 4. Inferred DFE, assuming the two-sided gamma distribution of effects with the

same shape and scale parameters for negative- and positive-effect mutations.

Tests for differences between annotated mutations

Using the genome annotation for C. reinhardtii, we tested whether certain annotated types 

of mutations relating to protein-coding gene function have smaller or larger effects than 

others by calculating the difference in mean effect or mean squared effect between them 

(Table S2). All differences are nonsignificant. 

As a complementary analysis, we estimated the effect of mutations on annotated coding 

sequences using SnpEff (Cingolani et al. 2012). Of the ~42% of mutations that could be 

classified using this approach, 35% were estimated to have low impact and 61% moderate

impact. These classifications largely coincided with the synonymous and nonsynonymous 

classifications used above. Only four high impact mutations were predicted, all of which 

were nonsense mutations. 
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Discussion

We have inferred the DFE for a set of spontaneous mutations from a MA experiment in C. 

reinhardtii by tracking their frequencies under natural selection in the laboratory and 

equating the observed frequency changes to the corresponding selection coefficients. The 

analysis of the data is made complicated by the fact that groups of mutations are linked on

the same chromosome, implying that every mutation on a chromosome is expected to 

change in frequency even if only a subset of mutations is subject to selection. We have 

therefore crossed MA lines with an unmutated ancestor to obtain recombinants carrying 

the mutations in all possible combinations and measured frequency changes in the 

resulting recombinant populations after experimental evolution.

We made use of the genetic map of C. reinhardtii for predicting changes of frequency of 

linked mutations on the same chromosome. In our data, frequency is estimated on the 

basis of numbers of sequencing reads, and we have used this information to compute the 

likelihood for a set of predicted frequencies. The likelihood is then used in a Bayesian 

setting to compute the posterior distribution of parameters of the DFE. To our knowledge, 

with the exception of our previous study (Böndel et al 2019), there have been no other 

attempts to fit a parameterized distribution to infer the DFE for new mutations. For 

example, Flynn et al (2020) produced a graphical representation of the DFE based on 

estimates of individual mutation effects, but did not estimate the DFE’s parameters within a

statistical model. This is desirable, because a simple plot of the individual effects of 

mutations will be inflated by sampling variance, as will summary statistics derived from this

distribution.

We observed substantial changes in the frequencies of the majority of mutations, and 

these changes were highly repeatable among replicates starting from the same base 

population. This is consistent with the action of natural selection under experimental 

evolution. The inferred DFE is broadly consistent with that inferred in our previous study on

a different C. reinhardtii strain (Böndel et al 2019) in which we measured growth rate and 

assayed genotypes of many recombinants that emerged from a cross. If we assume a two-

sided gamma DFE with equivalent scale and shape parameters for positive- and negative-
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effect mutations, the estimated proportions of positive-effect mutations are almost identical

between the two studies. The estimated shape parameter in the current study is somewhat

higher than the previous study (β = 0.53 versus 0.32), implying a somewhat less 

leptokurtic distribution, and the mean mutational effect is about four-fold higher (0.022 

versus 0.0049). The biological significance of these differences is unknown.

Our estimated DFE is based on certain assumptions, and there are several potential 

causes of inaccuracy and/or bias. First, the mutations whose frequencies we tracked were 

those detected by Illumina sequencing in a previous study (Ness et al 2015), but there are 

some mutations, including transposable element movements and large scale 

rearrangements, that we do not currently know about. Selection acting on these unknown 

mutations will therefore induce frequency changes at linked sites and generally inflate 

estimates of the strength of selection. Second, the linkage map for the strain we are 

working with may differ from the one that was assumed. Presumably any differences will 

lead to over/underestimation of effects, but not in a systematic way. Third, our analysis 

incorporates changes of frequency that occurred up to time 0 and changes that 

subsequently occurred up to time t. We do not know the number of generations up to time 

0, but it is clear that in several cases mutation frequencies had already changed by then.  

Furthermore we are assuming a certain value for the number of generations of 

experimental evolution, but do not have a precise measure of this.

We infer that there is a high frequency of mutations with positive effects on fitness, which 

we also observed in our previous study in a different C. reinhardtii strain (Böndel et al 

2019). Such a high frequency is a surprising finding, since it has long been argued that the

majority of new mutations are likely to be neutral or deleterious (summarized by Keightley 

and Lynch 2003). Broadly, the majority of nucleotide sites in compact genomes such as in 

C. reinhardtii are at sites that are selectively constrained, and relatively few sites can 

evolve free from the influence of natural selection. In nature, the dominant force of natural 

selection appears to be purifying selection, since fitness in natural populations is likely to 

be close to an adaptive peak and most changes are therefore harmful. Direct evidence for 

this comes from attempts to infer the fraction of advantageous amino acid mutations, 

based on analysis of the site frequency spectrum (e.g., Keightley et al 2016; Tataru et al 

2017). Most studies utilizing mutation accumulation also suggest that the net directional 
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effect of mutations is negative (summarized by Halligan and Keightley 2009).

One possible explanation for the higher than expected frequency of advantageous 

mutations is that there was selection against deleterious mutations and in favour of 

advantageous mutations during the generation of the MA lines. This could have affected 

the strain that was the subject of the current experiment and the strain studied by Böndel 

et al (2019). In the experiment described here, there were approximately 11 generations of

growth between each transfer in the MA experiment, where selection could operate to 

change the frequencies of de novo mutations. To investigate the influence of selection on 

the estimated DFE, we implemented the method recently developed by Wahl and Agashe 

(2021) to predict the extent of under- or over-contribution to the DFE for mutations with 

given selection coefficients, assuming that there is a doubling of cell number for t = 11 

generations during mutation accumulation. Based on equation (2) of Wahl and Agashe 

(2021), and assuming a two-sided gamma distribution with parameters specified in Table 

3, the corrected estimate for the frequency of positive effect mutations is q = 0.46 

(uncorrected = 0.50). This suggests that selection during mutation accumulation had only a

modest impact. Presumably, this is because our inferred DFE is leptokurtic, and most of 

the density is concentrated near zero. Furthermore, the mean absolute selective effect is 

relatively low (0.022), and the 11 generations of growth between transfers in the MA 

experiment were insufficient to lead to substantial frequency changes over the bulk of the 

distribution. The contrast between corrected and uncorrected DFEs (Figure 5) shows only 

a slight downward shift in the corrected distribution.
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Figure 5. Uncorrected DFE assuming the parameters in Table 3 and corrected DFE 

generated by applying the method of Wahl and Agashe (2021).

Although our experimental design attempted to mitigate it, there will also have been 

selection against those colonies that were too small to see at the time of transfer during 

the MA experiment. This would most likely select against strongly deleterious mutations, 

but the effect of this between-colony selection is difficult to quantify.

If selection during mutation accumulation was not the explanation for the high frequency of

positively selected mutations, then we must seek other explanations. Although the strains 

we studied were isolated three decades ago, C. reinhardtii can be maintained for long 

periods without cell division and it is probable that they have passed through insufficient 

generations to adapt to the novel laboratory environment. Fitness is therefore likely to be 

far from an adaptive peak, and therefore the fraction of advantageous mutations is 

expected to be higher than in a natural environment (Orr 1998). Little is known about the 

ecology of C. reinhardtii, but the laboratory clearly represents an extremely artificial 

environment. C. reinhardtii has been isolated from soil and may also be present in 
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freshwater, where the species experiences day/night cycles, fluctuating temperatures and 

resource availability, biotic interactions (predators, pathogens etc.), and so on. Adaptations

to life in the field include a complex metabolism (autotrophy and heterotrophy) and motility 

in response to light and nutrients (Sasso et al. 2018). It is plausible that loss of function 

mutations in genes no longer required in the laboratory are advantageous. Loss of function

mutations have frequently arisen under laboratory conditions, for example certain strains 

have lost the ability to utilise nitrate after culture with an alternative nitrogen source (Harris 

2009; Gallaher et al. 2015), although it is unknown if the underlying mutations in such 

cases were positively selected. 
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Supplementary materials

Supplementary Text A

Calculation of scaled recombination rates per chromosome 

Let yi be the scaled recombination rate for chromosome i, xi be its length, and b the slope 

of the linear relationship between recombination rate and map length, i.e.,

yi = bxi + k (1S)

If n is the number of chromosomes, the mean recombination rate is:

y=
∑
i

n

xi yi

∑
i

n

x i

(2S)

Substituting (1S) into (2S), we obtain:

k= y −b
∑
i

n

xi
2 .

∑
i

n

xi

(3S)
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Table S1. Estimated numbers of generations of experimental evolution.

Recombina
nt 
population

Number of
days of

experiment
al evolution

Number of
generations
replicate 1

Number of
generations
replicate 2

Number of
generations
replicate 3

Mean
number of

generations

SD of
number of

generations

L06 42 58.33 57.92 57.96 58.07 0.2257

L09 42 58.79 58.90 59.15 58.96 0.1879

L10 46 59.95 59.38 60.80 60.05 0.7156

L12 46 61.03 60.60 59.70 60.44 0.6766

L13 46 59.40 60.02 60.94 60.12 0.7739

L14 46 60.61 60.81 60.22 60.55 0.2968

L15 46 60.10 61.32 60.61 60.67 0.6121
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Table S2. Difference in effect sizes and effect sizes squared between annotation 

categories along with P-values obtained from 10,000 bootstraps.

Annotation type
contrast

Mean effect 
difference 
(x1000)

P-value Mean squared 
effect difference 
(x1000)

P-value

Exonic v non-

exonic

-0.00316 0.91 0.000038 0.77

Genic v non-

genic

0.00851 0.89 0.000009 0.78

Nonsynonymous

v synonymous

-0.0110 0.77 0.000594 0.71
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Figure S1: SNP densities along the 17 chromosomes between the compatible ancestor
for  CC-2344  and  its  two  ancestral  strains.  SNP  densities  were  calculated  for  80-kb
windows along the chromosomes between the compatible ancestor and CC-2344 (red)
and between the compatible ancestor and the mating type minus (mt-) donor strain (black).
A SNP density of 0 indicates no genetic differences between the compatible ancestor and
the strain it was compared to.
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Figure S2. Relationship between chromosome length (in bases) and base pairs per cM, 

estimated from pairwise linkage disequilibrium in C. reinhardtii from a natural population 

(data from Hasan and Ness 2020). (Pearson correlation r = 0.56; linear regression: bp/cM 

= 0.00616 x length + 43,900, P = 0.015).
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Figure  S3.  Mutation  frequencies  versus sequencing  depth  at  times  0  and  t.  Mean
sequencing depth for the mutations are 520.7x and 221.6x for times 0 and t, respectively.
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Figure  S4.  Frequencies  of  the  individual  mutations  before  and  after  experimental
evolution. Mutations of each MA line are shown from top to bottom in the order in which
they occur in the genome. Squares denote the mutation frequencies at t0, and stars denote
the mutation frequencies of the three replicates at  tt. The different MA line recombinant
pools are shown in the different panels.
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Figure  S5: Increase of  generations during  the  course  of  the  experiment.  Each  panel
shows the cumulative number of generations of the three replicates of each of the seven
recombinant pools derived from a backcross between MA line and compatible ancestor.
Number of generations was estimated from OD measurements conducted at each transfer.
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Annotation type
contrast

Mean effect 
difference 
(x1000)

P-value Mean squared 
effect difference 
(x1000)

P-value

Figure S6. Output of MCMC sampler for three DFEs.
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