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Abstract

Cancer is a complex disease with a large financial and healthcare burden on society. One
hallmark of the disease is the uncontrolled growth and proliferation of malignant cells. Unlike
Mendelian diseases which may be explained by a few genomic loci, a deeper molecular and
mechanistic understanding of the development of cancer is needed. Such an endeavor
requires the integration of tens of thousands of molecular features across multiple layers of
information encoded in the cells. In practical terms, this implies integration of multi omics
information from the genome, transcriptome, epigenome, proteome, metabolome, and even
micro-environmental factors such as the microbiome. Finding mechanistic insights and
biomarkers in such a high dimensional space is a challenging task. Therefore, efficient
machine learning techniques are needed to reduce the dimensionality of the data while
simultaneously discovering complex but meaningful biomarkers. These markers then can
lead to testable hypotheses in research and clinical applications. In this study, we applied
advanced deep learning methods to uncover multi-omic fingerprints that are associated with
a wide range of clinical and molecular features of tumor samples. Using these fingerprints,
we can accurately classify different cancer types, and their subtypes. Non-linear multi-omic
fingerprints can uncover clinical features associated with patient survival and response to
treatment, ranging from chemotherapy to immunotherapy. In addition, multi-omic fingerprints
may be deconvoluted into a meaningful subset of genes and genomic alterations to support
clinically relevant decisions.

Keywords: pan-cancer, multi-omics, deep learning, variational auto-encoders, precision
oncology, cancer subtypes, survival analysis, drug response.
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Multi-omic fingerprints detected by
MAUI are useful for a wide spectrum
of precision oncology applications

Introduction

Cancer is a disease of the genome which is characterized by abnormal cell growth, invasive
proliferation, and tissue dysfunction. It affected 19M people in 2020, and was the cause of
9.5M deaths in 2020 alone [1]. The underlying cause of the abnormal phenotype of cancer
cells is, in most cases, acquired genetic defects that help cells circumvent safeguarding
mechanisms. However, cancer cells must gain several cooperating hallmark features such
as resisting cell death, avoiding immune system, tissue invasion, evading growth
suppressors, and maintaining signaling for proliferation [2].

As opposed to rare diseases with Mendelian inheritance patterns, which are caused by few
genomic variants that usually affect the protein sequence and structure, complex diseases
such as cancer necessitate a deeper understanding of the combinatorial interplay between
multiple cellular regulatory layers. This implies integration of data extracted from the omics
layers such transcriptome, epigenome, proteome, genome, metabolome, and microbiome
[3]. Genome-informed diagnostics, for instance, through the detection of disease-causing
variants via exome sequencing, is already available in the clinic [4,5]. However, it is
impossible to capture the complexity of most cancer types through the characterization of a
few genomic markers. Multi-omics profiling of patients is a promising step towards such
understanding, not only for cancer [6,7], but also for other complex diseases such as
cardiovascular [8] or neurological diseases [9]. Proof-of-concept studies have already
demonstrated the value of multi-omics profiling of patients for health monitoring [10] and
treatment decision making [11]. Also underway are recent efforts of longitudinal clinical
studies of cancer [12] comparing the impact of multi-omics guided clinical decision making in
comparison to standard of care. In fact, large international consortia recognised the need for
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multi-omics and produced multi-omic databases such as The Cancer Genome Atlas (TCGA),
Cancer Cell Line Encyclopedia (CCLE) [13], TracerX [14] for deeper molecular profiling of
the tumors and disease models.

While multi-omics profiling shows promise for cancer research and precision oncology, due
to the high-throughput nature of the generated data, the integration of multi-omics datasets
is a challenging procedure [15]. The inherent high dimensionality of multiomics datasets,
combined with the heterogeneity of the collected data necessitates the application of
specialized machine learning and deep learning methods. To this end, various multi-omics
integration methods have been developed [15,16]. There are multiple strategies of
integrating multi-omics data with regards to the order in which layers get integrated. While
some earlier multi-omics integration studies have opted for a sequential integration
approach, where each omics layer is analysed one after the other, more recently developed
sophisticated methods have enabled /ate, and joint integration of different omics layers. With
a late integration strategy, each omic data type is analyzed separately, and the results are
integrated. Late integration schemes [17,18] excel at capturing patterns which are
reproducible between the omics data types, but can be blind to cross-modality patterns. An
alternative strategy is joint integration and dimensionality reduction, whereby the different
data modalities are jointly analysed from the start [16,19-24]. Such joint integration and
dimension reduction methods construct a common latent space representation from the
different omics data types. The latent space representation is constructed in a way that it
reproduces important patterns from the different omics types with a much lower
dimensionality than the combined multi-omics feature space. The dimensions of the latent
space are called latent factors, and each latent factor is a combination of multi-omic input
features. Latent factors therefore capture the complex interactions between the multi-omic
variables.

An important factor to take into consideration when modeling complex diseases such as
cancer is that integration methods need to capture non-linear associations both within and
between the different omics layers. Current methods for joint dimension reduction are not
designed to address this task. To remedy this problem, we and others have developed deep
neural network based approaches. The most commonly used deep neural network
architectures for latent factor modeling of multi-omics datasets are autoencoders. Different
variants of auto-encoder architectures have been used for the analysis of multi-omics
datasets [23,25,26]. However, these studies have demonstrated the usefulness of the
methods on only selected cancer types and have not extensively and comprehensively
tested their methods on a variety of use cases.

In this study, we demonstrate the utility of our deep learning framework MAUI, which is a
stacked beta-variational auto-encoder [23], for modeling clinical and molecular features of
tumor samples across a spectrum of cancer types. The high dimensional multi-omic feature
datasets are first reduced via MAUI into low dimensional latent factors. In order to distinguish
the nonlinear and combinatorial nature of the MAUI-based latent factors from the latent
factors generated by linear modelling approaches, we refer to MAUI latent factors as
“multi-omic fingerprints”. We demonstrate that MAUI-based multi-omic fingerprints enable us
to capture sources of biological variation among the tumor samples, which is reflected in the
heterogeneous omics profiles across the selected 21 TCGA cohorts and can be used to
learn features associated with survival outcomes. Moreover, we show that they can be used
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to predict and further characterise molecular subtypes of cancer, for instance, MSI status of
pan-gastrointestinal cancers or histological subtypes for non-small-cell lung cancers. We
also show that multi-omic fingerprints can be distilled further to simple decision trees for
interpretability and practical purposes. Finallyy, we demonstrate how the multi-omic
fingerprints can be informative in capturing features of response to the anti-PD-L1
immunotherapy in a metastatic urothelial cancer cohort, and how such fingerprints can be
utilized to uncover well established biomarkers of chemotherapy resistance in a cohort of
Glioblastoma Multiforme patients. Altogether, these use cases including benchmarking
experiments against a select set of popular joint multi-omics integration tools demonstrate
the clinically relevant applicability of deep learning-based multi-omic fingerprints for precision
medicine approaches.
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Results

Multi-omic fingerprints computed for a given cohort of patient samples can be seen as
abstract molecular patterns. They contain combinatorial contributions from various data
modalities (as shown in Fig 1B). Here, we demonstrate that the fingerprints learned by MAUI
contain clinically meaningful information that can be utilized in a variety of use cases for
precision/personalized medical applications.

Multi-omic fingerprints can be used to precisely classify cancer
types

We wanted to investigate whether the multi-omic fingerprints obtained using MAUI show any
utility in distinguishing biologically distinct entities (tumors from different organs/tissues). We
trained MAUI in a pan-cancer setting on 6775 samples from 21 cancer types (each cancer
type containing at least 100 samples). We included only samples profiled with all four omics
platforms (gene expression, methylation, copy number variation, and somatic mutations).
The t-SNE [27] representation of the pan-cancer multi-omic fingerprints demonstrates that
the samples mainly cluster by the cancer type and tissue of origin (Fig. 1A). In order to
quantify how well MAUI separates samples from different cancer types, we trained an Elastic
Net classifier on multi-omic fingerprints using 60% of the samples in a multi-class prediction.
The classifier yielded a 92% mean-balanced accuracy on the testing dataset with a
comparable performance to other multi-omics integration methods (Supp. Fig. 1A). The
confusion matrix (Supp. Fig. 1B) of the predicted and the real cancer type labels of the
samples shows that the majority of misclassified samples actually belong to the same organ
system, for instance, the colon cancer (TCGA-COAD) and rectal cancer (TCGA-READ).
Plotting the top multi-omic fingerprints predictive of each cancer type, we observed that
multi-omic fingerprints show cancer-specific patterns with almost a one-to-one relationship
(Supp. Fig. 1C). Moreover, top input features with the highest contribution to the
cancer-predictive multi-omic fingerprints showed a variable distribution of data types, which
was mostly dominated by DNA methylation (Fig 1B). This suggests that multi-omic
fingerprints capture and summarize relevant multimodal information and integrate the most
predictive value of individual omics layers into a single composite biomarker that can be
used to precisely classify cancer types.

Unsupervised clustering of samples wusing multi-omic
fingerprints yields homogeneous and stable clusters

In the absence of sample-specific labels, the validity of clusters can be determined using
statistical measures [28]. To evaluate the validity of the obtained sample clusters, we
measured the Silhouette index (for cluster homogeneity) and the average proportion of
non-overlap (APN) that measures cluster stability, separately for each TCGA cohort.
Maximisation of within-cluster homogeneity together with inter-cluster heterogeneity serves
the purpose of being able to detect cluster specific features, while cluster stability serves the
purpose of the reproducibility of the biological conclusions drawn for each cluster. We
clustered each cancer cohort with a selection of matrix factorization methods, and compared
the performance of each tool against our multi-omic fingerprints obtained from MAUI. We
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observed that samples clustered using MAUI-based multi-omic fingerprints yield more
homogeneous (Fig 1C) and more stable (Fig 1D) clusters in comparison to other methods.

Multi-omic fingerprints capture meaningful clinical features

In a given cohort of patients with a common cancer diagnosis, the heterogeneity of the
patient samples observed at the molecular level can be associated with the underlying
biological variability of the samples. Sample-specific factors such as the tumor stage,
localisation, histological subtype, or donor-specific factors such as the age, gender, and
lifestyle habits (e.g. alcohol consumption or smoking) can all contribute to the heterogeneity
observed in the omics profiles of each tumor sample. Latent factors derived from the
multi-omics profiles should ideally reflect such known sources of variation. Moreover, these
factors should also capture other unknown sources of variation, which when combined with
known factors, should be useful in predictive tasks such as the survival outcomes of the
donor or potential response of the donor to a specific treatment.

In order to demonstrate that multi-omic fingerprints can capture known sources of variation,
we associated multi-omic fingerprints for each TCGA cohort to known clinical parameters.
We looked for fingerprints that show differential distribution for a subgroup of samples
compared to the rest of the samples (e.g. samples of female gender versus the rest). For 20
out of 21 cancers, we could find at least one multi-omic fingerprint associated with at least
one basic clinical factor such as tumor stage, gender, histological type (with an adjusted
p-value threshold of 0.05) (Fig 2A). For instance, the Lower Grade Glioma (LGG) is a
heterogeneous set of diseases, which comprises strikingly different entities and MAUI
effectively captures Oligodendrogliomas in fingerprint LF45 and histological grade Ill in LF45
(both p-value < 0.0001, Wilcoxon Rank sum Test; Fig 2B). Of note, LGG donors of male
gender were enriched for MAUI fingerprint LF54 compared to females, which reflects the
mild gender association observable in the metadata.

Secondly, we evaluated the power of the multi-omic fingerprints in combination with known
clinical factors for predicting survival outcomes (progression-free interval). In comparison to
the baseline survival outcome prediction accuracy (attained using only the clinical factors
such as tumor stage, age, and gender), we demonstrated that adding the multi-omic
fingerprints on top of such clinical factors improved the survival outcome predictions (Fig.
2B). We also demonstrated that our multi-omic fingerprints can be used along with basic
clinical factors to prognostically stratify the patients (Supp. Fig. 2).

One further major source of variation between tumor samples is the composition of the
tumor microenvironment. The tumor sample that is extracted for multi-omics profiling does
not only contain cancer cells, but also other cell types such as the immune cells, fibroblasts,
endothelial cells, and other non-cancerous cell types [29]. Tumor purity is a measure of the
proportion of the cancer cells found in a tumor. The level of tumor purity for a given tumor
sample can be a result of both the underlying biological mechanisms that lead to tumor
growth and the technical protocol that is followed in surgically removing the tumor sample,
which in either case has an impact on the multi-omics profiles obtained from samples [30].
Therefore, the tumor purity is an important confounding variable that needs to be estimated.
Tumor purity estimates for the TCGA samples are already made available, which are based
on either immunohistochemistry (IHC) or computational methods that are based on the
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analysis of somatic DNA alterations [31], gene expression [32], and leukocyte
un-methylation [30]. These estimates are further assembled to obtain consensus tumor
purity estimates (CPE) [30]. In order to evaluate the predictive power of MAUI multi-omic
fingerprints for tumor purity estimates, we built Elastic Net regression models (using five-fold
repeated cross-validation) on 60% of the samples for each TCGA cohort, where tumor purity
estimates were available (14 TCGA cancer types out of the 21 studied cancer types). Then,
we evaluated the models on the remaining 40% of the samples with respect to the
correlation between the predicted tumor purity values and the reported tumor purity
estimates by IHC or CPE. We obtained an average Pearson correlation coefficient of 0.30
across TCGA cohorts for IHC measurements (Supp. Fig 3A). For comparison, the average
correlation between IHC values and estimates of other computational models are 0.31 for
ABSOLUTE, 0.24 for ESTIMATE, and 0.21 for LUMP (Supp. Fig 3B). MAUI multi-omic
fingerprints are also highly predictive of the consensus purity estimates (CPE) annotated for
the TCGA samples for these cohorts with an average correlation of 0.74 across 14 TCGA
cancer types (Supp. Fig. 3C). Example scatter plots of the MAUI predictions with respect to
the annotated IHC and CPE values can be seen in Supp. Fig. 3D. These results suggest that
MAUI multi-omic fingerprints can also reasonably capture the impact of non-cancerous cells
in the tumor microenvironment on bulk multi-omics profiles, which are well expected
confounding factors but also simple features discriminating otherwise similar biopsies.

Multi-omic fingerprints can be used to classify and characterize
molecular subtypes of cancers

MSI status in Pan-Gastrointestinal Cancers

Microsatellite Instability (MSI) is a molecular phenotype that is characterized by a high
mutational load due to deficient DNA mismatch repair capacity [33]. A high level of MSI
(MSI-H) is often observed in gastrointestinal cancers [34,35]. More importantly, MSI-H status
has been proposed as a predictive biomarker for immune checkpoint blockade therapies
[36—38]. Therefore, delineation of samples with MSI-H status is a clinically relevant objective
for immunotherapy guidance. We trained MAUI on 867 pan-gastrointestinal samples using
multi-omics features. To observe if MAUI LFs are predictive of MSI-H status of the
gastrointestinal tumors we used the MSI status annotations from [35] as a dependent
variable. The MSI status was quantified using a MSI-Mono-Dinucleotide Assay that
examines mono/di-nucleotide repeat loci [35]. In comparison to other tools, MAUI multi-omic
fingerprints were more strongly associated with the MSI status sub-groups (Fig. 3A). We also
trained an Elastic Net [39] model with 5-fold cross-validation on 60% of the samples and
reported the test set AUC values for the prediction accuracy. We observed that MAUI LFs
are highly predictive of MSI-H status (AUC = 0.93) (Fig 3B). Later, we computed a reduced
representation of the samples using a subset of learned MAUI multi-omic fingerprints, which
are most predictive of MSI status. The tSNE plot of the samples colored by MSI status (Fig
3C) and the top predictive fingerprints (Fig 3D) demonstrates how well the specific fingerprint
score correlates with the MSI-H status and can be used to distinguish samples with MSI-H
from those with stable/low MSI status (Fig 3E). We inspected the top features that contribute
to this specific multi-omic fingerprint and observed that top features predictive of MSI-H
status are mostly populated by mutations and methylation sites (Fig 3F).


https://paperpile.com/c/1FBnx9/rmDO
https://paperpile.com/c/1FBnx9/olGm
https://paperpile.com/c/1FBnx9/gJVd
https://paperpile.com/c/1FBnx9/gJVd
https://paperpile.com/c/1FBnx9/GFne
https://paperpile.com/c/1FBnx9/pLz1+KqGa
https://paperpile.com/c/1FBnx9/lMC7+YRug+pcaR
https://paperpile.com/c/1FBnx9/KqGa
https://paperpile.com/c/1FBnx9/KqGa
https://paperpile.com/c/1FBnx9/5vQi
https://doi.org/10.1101/2021.09.29.462364
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.29.462364; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Classification of Non-Small-Cell Lung Cancers: LUAD vs LUSC

Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC) are two
histological subtypes of non-small-cell lung cancers (NSCLC). The treatment strategies for
the NSCLC patients are mainly guided by the tumor stage rather than the histological
subtypes. However, these subtypes display distinct pathway activities and cancer states
[40—42]. Moreover, prognostic molecular predictors of disease recurrence are different
between LUAD and LUSC subtypes [42]. Therefore, it is important to distinguish and
characterize molecular features of these two types of non-small-cell lung cancers.

We trained MAUI on 800 NSCLC samples (441 LUAD samples, 359 LUSC samples) from
the TCGA database. 5-fold cross-validated training of an Elastic Net model using the MAUI
multi-omic fingerprints on the 60% of the dataset yielded a balanced AUC score of 0.98, a
highly accurate classification performance on the test data (40% of the dataset) (Fig 4A-B).
We confirmed that the activation scores of the best predictors for both LUAD (Fig 4C) and
LUSC (Fig 4D) display the expected subtype specific activity.

Although multi-omic fingerprints are highly predictive of the molecular subtypes, they might
not be as clinically actionable as the input omics features. To increase the interpretability of
the fingerprint-based classification, we extracted the top features associated with each of the
fingerprints. We first computed top contributors (top 10 omics features per multi-omic
fingerprint) to top subtype-specific fingerprints (top 5 per each subtype). We used these
features to build an initial conditional inference tree. From this initial model, we picked the
most important features and built a final decision tree that could be used as biomarkers of
lung cancer subtyping (Fig. 4E). The single decision tree built in Fig. 4E, yielded a
classification accuracy of 92%, however, when using these top 10 biomarkers in a more
sophisticated classifier such as a Random Forest model, we obtained a classification
accuracy of 98%, which is as good as what was achieved by the multi-omic fingerprints. This
result suggests that multi-omic fingerprints can be used as exploratory tools to detect omics
markers. Furthermore, the top detected biomarkers reflect the fact that MAUI fingerprints can
capture interactions between different omics layers (copy number variation, methylation, and
gene expression).

Multi-omic fingerprints can be used to model treatment
response

Predicting anti-PD-L1 treatment response in metastatic urothelial
cancers

Despite the promise of precision oncology for guiding treatment decisions [43], only a
minority of patients benefit from precision therapy based on the genetic information [44]. One
of the most important breakthrough developments in precision medicine in the last decade,
the cancer immunotherapy [45], could be made more efficient by recruiting the subset of
patients that are more likely to respond to the specific kind of immunotherapy treatments. An
example of such immunotherapy drugs is the anti-PD-L1 immune-checkpoint inhibitors,
which has been recently studied in a cohort of patients (N=348) with metastatic urothelial
cancers, who were profiled at whole transcriptome level before the start of the treatment and
the patients were categorised based on their responses to the treatment [46]. We could
detect MAUI fingerprints (in this case based on a single omics layer) associated with both
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responders (p value < 0.0001, Wilcoxon Ranksum Test) and non-responders to therapy (p
value < 0.0001, Wilcoxon Ranksum Test) (Fig 5A). Moreover, we could detect MAUI
fingerprints significantly associated with immune desert phenotype (p value < 0.0001,
Wilcoxon Ranksum Test) (Fig 5B) and positively correlated with tumor mutation burden (r =
0.3) (Fig 5C), both of which are markers associated with immunotherapy responses that are
proposed to be relevant for treatment decisions. Various MAUI fingerprints were found to be
associated with response/non-response to therapy (Fig. 5D) and the fingerprint with the
strongest association to response could be shown also as a strong predictor of
progression-free survival outcomes (Fig 5E). Next, we built separate models to predict
anti-PD-L1 responders using MAUI LFs alone or in combination with candidate biomarkers
for immune checkpoint inhibitors (ICl) response such as tumor mutational burden (TMB),
CD8+ T-cell effector gene signature, and pan-fibroblast TGF-beta response signature
(F-TGBS) [46]. Whereas TMB has been linked to response to ICI in specific contexts [47],
we show that MAUI fingerprints significantly add predictive power to established biomarkers,
including but not limited to TMB (AUC = 0.82; Fig 5F). This suggests that MAUI may help to
identify combinatorial biomarkers.

Uncovering features of Temozolomide resistance in Glioblastoma
Multiforme (GBM)

Temozolomide (TMZ) is a chemotherapeutic agent that is commonly given to patients with
Glioblastoma Multiforme (GBM) [48]. TMZ alkylates/methylates DNA, which causes DNA
damage, eventually leading to apoptosis. Whereas all patients present intrinsic resistance to
TMZ or quickly develop resistance, overall survival is associated with sensitivity to this
chemotherapy. Reversal of TMZ-driven alkylates prevents the activation of a DNA damage
response and leads to resistance. Tumors with high expression levels of O6-alkylguanine
DNA alkyltransferase (AGT), an enzyme which is able to repair the damaging methylation,
are more likely to develop resistance to TMZ. In fact, epigenetic silencing through canonical
DNA CpG methylation at the promoter of O6-methylguanine-DNA methyltransferase
(MGMT), the gene which codes for AGT, is the only available biomarker for TMZ resistance
in brain tumors. However, mechanisms to bypass promoter methylation exist, such as
MGMT fusion [49] and loss of DNA mismatch repair (MMR), rendering these tumors
insensitive to alkylating damage, and thus resistant to TMZ [50].

Thus, MGMT promoter methylation and AGT expression have limited predictive power.
Several genome-wide functional screens identified MSI and the Fanconi anemia pathway as
critical regulators of response to TMZ. Here, we investigated the ability of MAUI-based
multi-omic fingerprints to uncover biomarkers for TMZ resistance directly in GBM biopsies,
and to highlight the genes discovered this way. We trained MAUI on 150 samples from the
TCGA-GBM cohort [51] for which both mutation and gene expression data were available.
Resistant or partially responding tumors were defined as those which experienced tumor
progression during the course of treatment with TMZ or in the following six months, while
tumors which had six progression free months following the treatment were defined as
responders (as has been done for ovarian cancer in [52]) (Fig 6C). Of the 45 patients treated
with TMZ, 20 were classified as responding to the treatment, and 25 were classified as non-
or partial responders. Using the resulting multi-omic fingerprints, we predicted
response/non-response to TMZ using the Lasso with 5-fold cross-validation. Next, we
computed the area under the ROC curve (AUC) to quantify each method’s ability to predict
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TMZ resistance. MAUI fingerprints (AUC=0.88) significantly outperformed both AGT
expression (AUC=0.60) and MGMT promoter methylation (AUC=0.68) at this task, but the
best performance was obtained by combining MAUI fingerprints with MGMT expression
(AUC=0.96) (Fig. 6A). UMAP visualisation based on predictive fingerprints suggest that
non-responders sharing the same UMAP space share molecular similarities (Fig. 6B). The
difference in AUC is also reflected in statistical significance of progression-free interval
differences between the predicted responders and non-responders; stratification based on
MAUI fingerprints combined with MGMT expression (log-rank test, p=0.0018, Fig. 6D)
outperforms both stratification based on MGMT expression (log-rank test, p=0.23, Fig 6E)
and MGMT promoter methylation (log-rank test, p=0.17, Fig. 6F). This demonstrates that
MAUI fingerprints capture an additional signal with additional predictive power over MGMT
expression or promoter methylation alone.

Whereas IDH mutations are strong predictive biomarkers for glioma patients stratification
and response to therapy [53], these are not common in GBM. Accordingly, there were only
two IDH1 mutants in the TMZ cohort, one of which responded, the other did not. Thus, IDH
mutants do not account for MAUI stratification. In order to identify simple biomarkers for this
response, we picked the multi-omic fingerprints with nonzero Lasso coefficients, and pulled
out the gene coefficients associated with those, multiplied by their lasso coefficients. In the
top 100 genes, two features associated with MMR were present (a mutation in MLH1, and
the expression levels of PMS2). These two genes have previously been shown to be
implicated in TMZ resistance in GBM tumors [54] (Supp. Fig. 4). In addition, many other
genes previously shown to be related to TMZ resistance in GBM tumors are flagged (Table
1). The rest of the genes in the list offer a potentially interesting startpoint for further studies
into resistance to TMZ, which may be associated with hereto unknown mechanisms of
resistance to TMZ, possibly in vivo. Thus, MAUI is able to capture relevant features
genetically associated with response to TMZ in brain tumors (e.g. MMR, FA pathways
alterations), and may be similarly exploited to investigate response to targeted treatments as
mutiomics on these become available.

Table 1: Top detected TMZ-resistance related biomarkers that are not members of the MMR
pathway, but supported by evidence from the literature.

Gene Reference | Remarks

EEA1 [55] Related to increase in overall vesicle production in
resistant cell lines

FANCI [56] Interacts with MMR

BIRC3 [57] Resistance mediated by inhibition of apoptosis

TNFRSF11B [58] Involved in methylation regulation

C1RL [59] Expression predicted resistance in GBM

KEAP1 [60] Reduction of keap1 by using retinoic acid increases
sensitivity to TMZ

OTUD4 [61] Involved in alkylating damage repair
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CLK1 [62] Also associated with response to cisplatin treatment

SOD2 [63] Inhibition of SOD2 led to retrieval of drug effect

HOXA11 [64] When HOXA11 was suppressed in the GBM cell lines, the
anticancer effect of temozolomide declined
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Discussion

In this work, we aimed to demonstrate the applicability and performance of MAUI in its
capacity to model the complex interplay between multiple layers of regulatory information in
a variety of cancer types for a variety of use cases. This included modelling of clinical
parameters, predicting and characterisation of molecular cancer subtypes, prognostic
stratification of patients based on survival outcomes, and response or resistance to cancer
treatments.

MAUI is a type of autoencoder (a general class of deep learning architectures), specifically a
stacked beta-variational auto-encoder. We have utilized MAUI as a tool for joint
dimensionality reduction and integration of multi-omics datasets, which is achieved by
passing the input multi-omics layers through a "bottleneck layer" of the desired lower
dimensionality. Autoencoders consist of an encoder network, which transforms the input data
to its latent space representation (found in the bottleneck layer), and a decoder, which
reconstructs the input from the latent space representation. The encoder and decoder are
trained in tandem, so that the constructed latent space representation can be used to
reconstruct the input as faithfully as possible. In doing so, it will capture the essential
patterns among the different input features, both within and across different omics
modalities. Each neuron in the bottleneck layer represents a single dimension in the latent
space, or a single latent factor. Each latent factor is a nonlinear combination of input
features, and often corresponds to known cellular molecular structures (i.e. pathways or
biological processes). When the multi-omics data comes from a tumor, these patterns have
the potential to capture important cancer-related processes: oncogenic mechanisms of
action, patient strata markers, predictors of response to therapy, and risk group indicators.
Thus, these latent factors represent true multi-omics signatures for biological processes
along with technical sources of variation such as batch effects that may have systemic
effects on the multi-omics measurements. In this study, we termed the deep learning-based
non-linear and combinatorial latent factors “multi-omic fingerprints”.

The multi-omics biomarkers represented by multi-omic fingerprints need not be black-box;
rather, they readily lend themselves to interpretation using common bioinformatics toolkits
such as gene set analysis [23]. Each fingerprint is a function of a subset of the input genes,
and thus each can be said to be affected by a set of genes. The set of genes used by a
fingerprint can be compared with gene sets, which are known to be involved in certain
biological processes, or to flag certain genes and gene sets as worthy of closer investigation.
Hence, multi-omic fingerprints hold the promise of both research tools and complex
biomarkers for immediate clinical utility.

We have demonstrated that MAUI multi-omic fingerprints are superior in various settings to
latent factors obtained by competing methods. This multi-level information can help
researchers view molecular profiles from many different perspectives at the same time.
Information contained in MAUI fingerprints can be used in a variety of settings, where some
are informative for survival, others might be informative for the common molecular pathways
utilized by the subsets of tumors. However, these different perspectives do not necessarily
overlap. It is important to stress the relevance of this point in patient stratification in the
context of precision medicine. Which patients belong to which stratum depends on the
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objective of the stratification. For instance, a pair of patients who might belong to the same
group based on expected level of overall survival, might be stratified into different groups
based on their response to a certain treatment. This is a result of the heterogeneity of how
cancer can progress uniquely in each patient and the diversity of the complex molecular
patterns that might be associated with different clinical outcomes differently. To further
illustrate this argument with an example, we could compare how gastrointestinal cancer
patients are stratified based on different outcomes of interest. We observe that patients
stratified based on overall survival outcomes can be stratified quite differently if the objective
of the stratification was progression-free survival, or if the objective of stratification was to
figure out which patients have high MSI status (Suppl. Fig 5A). Although correlations
between different groupings exist (Suppl. Fig 5B), each stratification procedure could look
like a scrambled version of the allocation of patients by a different stratification procedure.

At its current shape, despite the utility of using MAUI for multi-omics data integration in a
non-linear fashion, it also comes with some limitations. As a joint multi-omics integration
method, special thought needs to be given to data normalization; different omics data have
distinct distributions and dimensionalities, and proper normalization must be applied to avoid
giving too much weight to, for instance, the modality with the highest dimensionality, or the
least sparse data. It is also not yet optimized to account for the distinct data distributions
observed in single-cell omics datasets, that is why although it might work for single-cell
multi-omics data integration, other tools such as reviewed here [65] might be more suited for
this purpose.

An additional feature that is currently missing in MAUI is the ability to handle missing
observations, which can be handled by MOFA [22]. Due to the cost or difficulty of sample
acquisition, profiling of all omics layers in every patient is not currently routinely performed.
However, on the one hand, the reduction of the cost of data acquisition might overcome this
barrier in the future, on the other hand, MAUI is well versed to be applied to large-scale
prospective efforts, such as TCGA and similar community-driven approaches.

Another important aspect, which can be thought of as a feature or a limitation depending on
the context, stems from the fact that MAUI is a deep learning method. As in other deep
learning methods, the latent factors derived from MAUI are not computationally perfectly
reproducible. We observed that, even though the exact values of MAUI fingerprints are not
identical at every run, we can derive the same conclusions from different runs of the
analysis. Moreover, the fingerprints are not necessarily orthogonal to each other or sorted
based on total variance explained in the whole dataset as in other linear integration methods
such as MCIA, MOFA, or PCA-based methods. From our point of view this is not a limitation,
but a feature that gives flexibility in a variety of machine learning tasks where we can
discover clinically relevant latent factors for downstream applications. Again, being a deep
learning-based method, MAUI requires many samples (we considered cohorts with at least
100 samples in this study) for it to be more useful out of the box, however, it is readily
possible to use transfer learning approaches, where the neural networks can be trained in an
independent database with many samples and the pre-trained model can be used to further
train a relatively small number of samples and make meaningful predictions.

Utilisation of multi-omics data with deep learning algorithms in the context of precision
medicine is actually part of a bigger wave of disruptive innovations that are coming about
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due to the involvement of artificial intelligence approaches in (pre-)clinical research and
healthcare in general [66,67]. We believe that deep learning applications of multi-omics
profiling along with many other layers of information that can be obtained from personal
wearable devices, imaging technologies, and devices that measure the interactions of
people with their environment, will become an important tool in not only disease diagnostics,
but also continuous health monitoring, disease prevention, prognostics, treatment
recommendation, and different levels of clinical/pre-clinical research.
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Methods

Data

TCGA data download and preparation

Omics data from the TCGA consortium was downloaded and prepared for further analysis
using TCGADbiolinks R Package [68] for gene expression, mutation, and methylation data.
RTCGAToolbox R Package [69] was used to download GISTIC [70] scores for somatic copy
number variations for TCGA samples (version date 2016/01/28). The omics platforms
included in the analysis are:

1) Gene expression (workflow type: HTSeq - FPKM; data type: Gene expression
quantification; data category: Transcriptome profiling).

2) Mutation: Mutation data was downloaded as MAF files.

3) Copy number variation: (data type: GISTIC scores from Broad GDAC Firehose)

4) Methylation: (platform: lllumina Human Methylation 450; data category: DNA Methylation)

Clinical Annotation Data

Project specific clinical data was downloaded using TCGAbiolinks [68]. For survival
endpoints, we used survival data processed by Liu et al [71].

Tumor purity estimates for TCGA samples were downloaded using the built-in data table
TCGAbiolinks::Tumor.purity. The table includes tumor purity estimates based on
immunohistochemistry (IHC), computational estimates by tools such as ABSOLUTE [31],
ESTIMATE [32], and LUMP along with a consensus purity estimate [CPE] value derived from
the combination of these estimates [30].

TCGA subtype annotations

Cancer subtype annotations were downloaded using the PanCancerAtlas_subtypes function
in the TCGADbiolinks package. The ‘Subtype_Selected’ field was used as the accepted
subtype annotation for the corresponding project.

For MSI status prediction, the MSI status annotations by Liu et al [35] were used, where MSI
status was quantified using a MSI-Mono-Dinucleotide Assay that examines
mono/di-nucleotide repeat loci. MSI annotation data was downloaded using the
TCGADbiolinks package.

Pan-cancer and pan-organ definitions

TCGA projects were grouped into custom defined projects mentioned in the manuscript.

1) Pan-cancer project includes the following TCGA projects:
TCGA-BLCA, TCGA-BRCA, TCGA-CESC,TCGA-COAD,TCGA-READ, TCGA-ESCA, T
CGA-HNSC, TCGA-KIRC, TCGA-KIRP,TCGA-LGG, TCGA-LIHC, TCGA-LUAD, TCGA-
LUSC,TCGA-PAAD, TCGA-PCPG,TCGA-PRAD,TCGA-SARC,TCGA-STAD,TCGA-T
GCT, TCGA-THCA,TCGA-UCEC.
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2) Pan-gastrointestinal project includes: TCGA-ESCA, TCGA-STAD, TCGA-COAD,
TCGA-READ.
3) Non-small-cell Lung Cancer project includes: TCGA-LUAD, TCGA-LUSC.

Omics data preparation for multi-omics integration

Input features:

For training MAUI, we collated a gene set consisting of 7679 genes by taking a union of all
the cancer hallmark gene sets from the MSIGDB database [72] and tumor microenvironment
related gene set annotations from the xCell R package [73].

1) Gene expression: Genes were sorted by most variable FPKM counts and top 2500
genes were kept for further analysis.

2) Copy number variation: Gene-level copy number scores from GISTIC [70] were used.
Top 2500 genes with most variable GISTIC scores were kept for further analysis.

3) Mutation: Mutations of any variant classes were extracted from the MAF files for each
project. For each gene, the number of mutations were counted. The genes were
sorted by the number of samples in which the gene is mutated. Top 2500 genes were
kept for further analysis.

4) Methylation: ~450,000 CpG methylation sites were firstly filtered for those that
overlap the promoters of the selected set of collated genes. The remaining CpG sites
were sorted by variance of methylation scores across the analyzed cohort of
samples. Top 2500 CpG sites were kept for further analysis.

Input Samples:

For each of the omics data types, the normal samples (TCGA sample type codes: 'NB',
'NBC', 'NEBV', 'NT', 'NBM') were excluded to only consider tumor samples in the analysis.
The remaining samples were grouped by patient barcodes (bcr_patient _barcode). For
patients with more than one sample per data type, the first sample by alphabetical order was
kept. Finally, patients that lack at least one sample per data type were excluded and the
obtained data matrices were individually scaled by column. The input for multi-omics
integration tools is eventually 4 data matrices (one for each data type), each containing
omics profiles for the same set of patients.

Immunotherapy Response in Metastatic Urothelial Carcinoma Dataset

Gene expression measurements of a cohort (N = 348) of Metastatic Urothelial Carcinoma
pre-treatment with anti-PD-L1 was downloaded from the IMvigor210CoreBiologies R
Package (version 0.1.13) as described in [46]. The raw gene counts were normalized by the
sample-wise scaling factors as provided in the data package and further log-transformed.
Genes were further filtered to keep only those that are members of the cancer hallmark gene
sets from the MSIGDB database and the xCell gene set annotations. Top most variable 5000
genes were selected as input features. The annotations for treatment response, tumor
mutation burden, and immune phenotypes were all used as provided in the
IMvigor210CoreBiologies R package.
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Multi-omics integration tool settings

MAUI: maui-tools version 0.1.93 [23] was run with 1000 hidden units, for 500 epochs,
looking for 100 latent factors. Feature contributions to each latent factor were extracted
using the get neural weight product function. For unsupervised clustering tasks, MAUI
latent factors that are highly correlated were filtered prior to the clustering task using the
findCorrelation from the caret R package [74]. The correlation cut-off was set to the value
that corresponds to the 99th percentile of the pairwise correlation distribution of the
corresponding matrix of latent factors.

MOFA: MOFA2 version 1.0.0 [22] was run with the default settings except for the number of
factors. The number of factors was set to a quarter of the number of input samples with an
upper limit of 100 factors (if the number of samples is larger than 400). Uninformative factors
were automatically dropped by the algorithm.

PCA: The prcomp function in the built-in stats library in R [75] was used to compute 100
principal components.

MCIA: omicade4 (v.1.30.0) R package [21] was used to train the Multi-Co-Inertia Analysis
algorithm. The default settings were used searching for 20 factors for each project. Our initial
attempt to search for 100 factors failed, because the algorithm didn’t converge for that many
factors. The number of searched factors was decreased to 20, which worked for all
experiments.

Machine learning tasks

Classification

Random Forest [76] models were built using the ranger R package [77] with a 60/40
train/test data partitioning with default settings, but looking for 1000 trees unless otherwise
stated.

For Elastic Net models, caret R package [74] was utilized to run a 5-fold cross-validation to
optimize hyperparameter settings of Elastic Net by gimnet R package [39] on the training
dataset (60% of the data). Area under the ROC curve (AUC) and the corresponding
confidence intervals were computed using pROC R package [78].

Detecting Latent Factors associated with discrete variables

In order to quantify the predictive power of latent factors or individual omics features for
discrete variables such as clinical parameters (e.g. tumor stage) and molecular subtypes
(e.g. MSI status), for each subgroup of patients corresponding to a subgroup of a given
discrete variable, a one-vs-all Wilcoxon rank-sum test was performed (alternative = greater)
to detect latent factors (or omics features) that are enriched for the subgroup of patients. The
p-values obtained from the statistical test were further adjusted for multiple testing using the
Benjamini-Hochberg method as implemented in the stats R package [75].

Ranking input features by contribution to latent factors

The individual contribution of each input omics feature to each latent factor was computed
and ranked according to the absolute neural path weight products, which is defined as the
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product of weights along the path from from input features to latent factors, using the
neural_path_weight_product function of MAUI package [23].

Building decision trees from omics features for non-small cell lung cancer subtypes

Top 10 omics features contributing to each of top 5 latent factors predictive of the dependent
variable (e.g. lung cancer subtypes) were detected based on neural path weight product
(nwp)-rankings of omics features per each LF. The candidate omics features were further
used to build an initial conditional inference tree on 60% of the samples. Top most important
features from this model were extracted to build a final model on the 60% of the samples.
The final decision tree classification performance was evaluated on the remaining 40% of
the samples. Conditional inference (decision) tree was built using the partykit R package
[79,80] and visualised using the treeheatr R package [81].

anti-PD-L1 (immunotherapy) response prediction

MAUI was trained on the full cohort of 348 samples with gene expression measurements.
For patients with tumor mutation burden (TMB) measurements (N = 216), the dataset was
split into training/testing in a 60/40 split. An initial Elastic Net model (5-fold cross-validation
with 5 repetitions using down-sampling to account for class imbalance) was built to detect 5
MAUI LFs that are predictive of response to therapy.
These top 5 LFs were used in combination with published response markers in the study by
Mariathasan et al [46], which included TMB, a 12-gene signature for CD8+ effector T-cells,
and a 4-gene signature for pan-fibroblast TGF-beta response. Combinations of the different
sets of markers were used to build Elastic Net models (5-fold cross-validation with 5
repetitions using down-sampling to account for class imbalance) to predict the responders to
anti-PD-L1 therapy. The models were evaluated on the test dataset using the area under the
ROC curve (AUC) metric.
- CD8+ effector T-cell (CD8 Teff) signature genes: CD8A, GZMA, GZMB, IFNG,
CXCL9, CXCL10, PRF1, TBX21
- pan-fibroblast TGF-beta response (F-TBRS) genes: ACTA2, COL4A1, TAGLN,
SH3PXD2A

Survival analysis

We used Progression Free Interval (PFI) or Overall Survival (OS) annotations from Liu et al
[71]. Harrell’'s C-index as a measure of survival outcome prediction accuracy was computed
by fitting a Random Survival Forest using the randomForestSRC R package [82] and
computing the average error per each grown tree (1000 trees). We followed a two-step fitting
procedure, where we initially built a random survival forest on the training data using all
latent factors, from which we picked the top 10 latent factors in terms of variable importance
for predicting survival in the training data. A second model was built using the top 10
survival-associated latent factors. This final model was evaluated on the testing data by
computing the C-index values. survival R package [83] was used to build survival objects,
fitting Cox Proportional Hazards models, and computing corresponding hazard ratios.
Log-rank tests and covariate-adjusted Kaplan-Meier curves were computed using the
survminer R package [84].
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Modelling tumor purity estimates

Elastic Net regression models (using repeated five-fold cross-validation) were built on 60%
of the samples for each TCGA cohort, for which the tumor purity estimates were available
(14 TCGA cancer types out of the 21 studied cancer types), where the input features were
MAUI latent factors and the dependent variable was the reported tumor purity estimates by
IHC or CPE. The models were evaluated on the remaining 40% of the samples with respect
to the Pearson correlation between the predicted tumor purity values and the reported tumor
purity estimates (IHC or CPE).

Modelling TMZ resistance in GBM

Response to TMZ was defined as no tumor progression for six months following the last
treatment. Partial and non-responders are defined as patients who experienced tumor
progression in that same six month period. Prediction of TMZ response was done using the
Lasso (I1-regularized logistic regression) tuned using 5-fold cross-validation, with each
sample predicted when it was not in the training set for a full set of out-of-training-set
predictions. The input to the Lasso was the set of latent factors learned by MAUI, and the
output response/non-response vector was as defined here. The ROC was computed and the
area under the curve calculated to quantify the prediction accuracy. Error bars were
calculated by bootstrapping the entire procedure. AUCs for MGMT expression and promoter
methylation were calculated likewise, using a simple logistic regression without
regularization.

Clustering

Clustering experiments that were carried out to evaluate the stability and homogeneity of
clusters were done using the clValid R package [28]. Unless otherwise stated, the k-means
algorithm implemented in the stats R package [75] was used to cluster samples with 1000
random restarts and a maximum 30 iterations.

Data visualisation

The plots in the manuscript were generated using ggplot2 [85], ggpubr [86] and cowplot [87]
libraries. Heatmaps were plotted using pheatmap R package [88]. tSNE dimensions were
calculated using the Rtsne R package [27]. Decision trees were computed using the partykit
R package [79] and visualised using the treeheatr R package [81].

Data and Code availability

All data used in this study are publicly available. The code that was used for downloading,
preparing, and processing the publicly available data, training of the multi-omics integration
tools, and generating the figures in the manuscript can be found at
https://github.com/BIMSBbioinfo/uyar_et_al_multiomics_deeplearning.
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Figure 1 : A) tSNE plot of MAUI multi-omics fingerprints (using top 5 fingerprints enriched
per cancer type) learned from pan-cancer dataset B) Percentage of top 100 features by
omics types contributing to top predictive MAUI fingerprint per cancer type. C, D)
Comparison of unsupervised clustering performances based on cluster homogeneity
(Silhouette) in C and cluster stability (Average Proportion of Non-Overlap (APN) in D. Each
point represents a score for an individual clustering experiment in a total of 132 k-means
clustering experiments (21 cancer types x for 6 different values of k from 3 to 8) for each
tool.
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Figure 2 : A) Top significant (padj < 0.05) clinical factor-associated multi-omic fingerprints
per cancer type. B) MAUI fingerprints enriched for subgroups of different clinical features
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of TCGA-LGG samples. LF45 is enriched among samples histologically categorized as
Oligodendrogliomas; LF54 is enriched among donors of male gender; LF65 is enriched
among samples with histological grade of G3. C) Harrell's C-index for progression-free
survival prediction accuracy computed using only clinical factors (age + gender + tumor
stage) or using clinical factors along with survival-predictive MAUI fingerprints
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Figure 3 : Latent factors predictive of MSI status (high: MSI-H, stable: MSI-S, low: MSI-L) in
pan-gastrointestinal cancers A) Comparison of top latent factor per MSI status for each tool
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in terms of adjusted p-values reflecting the differences between MSI subgroups. B) ROC
curves for prediction accuracy of MSI status using MAUI latent factors (multi-omic
fingerprints) C) tSNE plots of samples generated using top MSI-predictive fingerprints (5
LF per MSI class) colored by MSI status D) tSNE plots of samples colored by MAUI
fingerprint LF63, which is most predictive of MSI-H samples. E) Distribution of MAUI
fingerprint LF63 across MSI subgroups in the pan-gastrointestinal cancer samples. F)
Relative abundance of omics feature types among the top 500 features contributing to
MAUI fingerprint LF63.
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Figure 4 : Classification of Non-Small-Cell Lung Adenocarcinoma samples using MAUI
multi-omic fingerprints. A) ROC curves with AUC values on testing data (40% of the
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dataset) using an Elastic Net model with 5-fold cross-validation. B) t-SNE plot of MAUI
fingerprints colored by cancer types. C) t-SNE plot of MAUI fingerprints colored by the top
most-predictive fingerprint for TCGA-LUSC samples. D) t-SNE plot of MAUI fingerprints
colored by the top most predictive fingerprint for TCGA-LUAD samples. E) Decision tree
visualisation of top MAUI fingerprint-associated omics markers detected that can be used
to distinguish LUSC and LUAD subtypes.
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Figure 5 : Predicting responders to anti-PD-L1 treatment in a cohort of Metastatic
Urothelial Cancers (N=216) using MAUI. A) Comparison of top latent factors predictive of
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complete/partial response (CR/PR) to the anti-PD-L1. B) Comparison of top latent factors
predictive of immune phenotypes (inflamed/excluded/desert). C) Comparison of top latent
factors with respect to their correlation with tumor mutation burden status of the samples
in the cohort D) Survival stratification of the cohort based activation score of top MAUI
latent factor (fingerprint) E) Average value of top MAUI latent factors (fingerprints)
predictive of response to anti-PD-L1 response groups. F) Comparison of marker
combinations in terms of accuracy in predicting anti-PD-L1 response. TMB: tumor mutation
burden, CD8_Teff: 12 gene signature for CD8+ effector T-cells, F_TBRS: 4-gene
pan-fibroblast TGF-beta response signature, MAUI: top predictive MAUI fingerprints as seen
in panel E). Each bar plot represents prediction accuracy (AUC) when using the
corresponding subset of variables in an Elastic Net model.
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Figure 6 : Predicting TMZ resistance in GBM patients. A) Area under the ROC curve (AUC)
for 5-fold cross-validation predictions of response to TMZ. MAUI multi-omic fingerprints
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outperform both MGMT expression and MGMT promoter methylation, and the best
performance is achieved by combining MAUI fingerprints with MGMT expression. B) 2D
UMAP projection of TCGA-GBM samples based on MAUI multi-omic fingerprints which are
predictive of the TMZ response. Responders and non-responders tend to cluster separately.
C) Kaplan-Meier curves for progression-free interval for responders and non-responders to
TMZ. Response defined as progression-free interval of at least six months, non- or
partial-response defined as tumor progression within six months of treatment. D)
Kaplan-Meier curves for progression-free intervals for predicted responders and
non-responders using MAUI multi-omic fingerprints combined with MGMT expression. E)
Kaplan-Meier curves for progression-free intervals for predicted responders and
non-responders using MGMT expression. F) Kaplan-Meier curves for progression-free
intervals for predicted responders and non-responders using MGMT promoter methylation.
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Supplementary Figure 1 : A) Predictive power of latent factors in distinguishing cancer
types comparing MAUI with PCA/MOFA/MCIA. Mean Balanced Accuracy computed on the
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test dataset (40% of held-out data) trained on 60% of the dataset using an Elastic Net
multi-class model. B) Confusion matrix of predicted versus true labels of samples’ cancer
types. The color of each cell represents the percentage of samples from the cancer type in
the rows that are classified into the cancer types on the column. Cells that deviate from the
red color represent a relatively lower level of classification accuracy. C) Top MAUI latent
factors (multi-omic fingerprints) detected per cancer type. Size/color/opacity of the points
represent the average neural activation value of the MAUI fingerprint for the corresponding
type of tumor samples.
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Supplementary Figure 2 : Kaplan-Meier survival curves adjusted for clinical factors (tumor
stage + age + gender) stratified by the neural activation values of top survival-predictive
multi-omic fingerprints per cancer.
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Supplementary Figure 3 : Predicting tumor purity estimates using MAUI latent factors. A)
Correlation of the MAUI predictions of IHC versus the annotated IHC values
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(immunohistochemistry-based tumor purity estimation). B) Comparison of average
correlations between computational estimates of [HC values by different tools. Each point
represents the value obtained for each of the TCGA cohorts seen in panel A. ABSOLUTE tool
lacks estimates for 6 out of 14 cancer types. C) Correlation of the MAUI predictions of CPE
versus the annotated CPE levels (CPE stands for consensus purity estimated by
computational methods: ABSOLUTE, ESTIMATE, and LUMP). D) Scatterplots of MAUI
predictions versus the annotated IHC and CPE values for the top two best predicted cancer
types with respect to annotated IHC values.
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Supplementary Figure 4 : Top 100 genes sorted by importance in predicting TMZ resistance
in GBM patients.
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Supplementary Figure 5 : Demonstration of how cancer subtypes are context/objective
dependent. A) Heatmap of patient cluster memberships based on different objectives:
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optimum stratification based on overall survival or progression free survival, molecular
homogeneity (TCGA pan-GI subtypes), or micro-satellite instability (MSI) status. Columns
are ordered first by membership in the optimum Overall Survival cluster membership. B)
Pairwise Adjusted Mutual Information (AMI) of cluster labels obtained via different patient
stratification methods. The AMI value ranges from 0 to 1 and the higher the value, the more
overlap between patient partitions.
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