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Abstract 

Background 

DNA methylation (DNAm) based predictors hold great promise to serve as clinical tools for health 

interventions and disease management. While these algorithms often have high prediction 

accuracy and are associated with many disease-related phenotypes, the reliability of their 

performance remains to be determined. We therefore conducted a systematic evaluation across 

101 different data processing strategies that preprocess and normalize DNAm data and assessed 

how each analytical strategy affects the reliability and prediction accuracy of 41 DNAm-based 

predictors. 

  

Results 

Our analyses were conducted in a large EPIC DNAm sample of the Jackson Heart Study 

(N=2,053) that included 146 pairs of technical replicate samples. By estimating the average 

absolute agreement between replicate pairs, we show that 32 out of 41 predictors (78%) 

demonstrate excellent test-retest reliability when appropriate data processing and normalization 

steps are implemented. Across all pairs of predictors, we find a moderate correlation in 

performance across analytical strategies (mean rho=0.40, SD=0.27), highlighting significant 

heterogeneity in performance across algorithms within a choice of an analytical pipeline. 

(Un)successful removal of technical variation furthermore significantly impacts downstream 

phenotypic association analysis, such as all-cause mortality risk associations. 

  

Conclusions 

We show that DNAm-based algorithms are sensitive to technical variation. The right choice of 

data processing and normalization pipeline is important to achieve reproducible estimates and 

improve prediction accuracy in downstream phenotypic association analyses. For each of the 41 

DNAm predictors, we report its test-retest reliability and provide the best performing analytical 

strategy as a guideline for the research community. As DNAm-based predictors become more 

and more widely used, both for research purposes as well as for clinic applications, our work helps 

improve their performance and standardize their implementation. 
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Introduction 

DNA methylation (DNAm) is a form of epigenetic regulation that is essential for human 

development and implicated in health and disease[1,2]. Through advancements in biological 

technology, large-scale DNA methylation profiling has become more affordable and widely used. 

Microarray technologies now enable the simultaneous interrogation of DNAm states of more than 

850,000 CpG dinucleotides across the genome, using the latest EPIC array[3]. An application of 

DNAm data has been in developing DNAm-based algorithms to predict health-related 

phenotypes, including blood cell type proportions[4,5], ageing[6–13], all-cause mortality risk[14–

17], cancer risk[18,19], body-mass-index (BMI), and smoking signatures[20], among others. 

These molecular predictors have great potential for clinical applications. A thorough and 

systematic investigation of their performance has however not been conducted so far. 

Unlike the genome, the DNA methylome is of dynamic nature and largely explained by 

non-shared individual environments[21]. Like other high-throughput molecular data, DNAm can 

furthermore be impacted by variation in laboratory conditions, sample handling, reagents and/or 

equipment used[22]. Technical variation is often widespread and tackling such effects is of critical 

importance to study biological variation in any -omic analysis, including DNAm. Over the years, a 

plethora of methods have been developed to identify and remove unwanted technical variations 

from DNAm data[23–29]. Previous studies have investigated the impact of specific methods on 

outcomes of DNAm analysis and demonstrated the importance of correcting for probe design 

type, batch effects, and hidden confounders while the effect of different normalization strategies 

gave mixed results[30–33]. A systematic and unbiased evaluation of commonly used data 

preprocessing and normalization strategies of DNAm data for the application of DNAm-based 

predictors has however not yet been conducted. DNAm is an important tool to study health and 

disease and understanding how analytical strategies impact algorithm performance is critical for 

method standardization and implementation for both research and clinical purposes. 

Here, we performed a comprehensive investigation of 41 DNAm predictors and evaluated 

algorithm performance by measuring their test-retest reliability across 101 data preprocessing 

and normalization strategies in the Jackson Heart Study (JHS)[34]. The JHS has collected a large 

sample of 850K EPIC DNAm arrays in blood that includes 146 pairs of technical replicates. These 

replicates represent identical DNA samples that were assayed twice at independent time points. 

The agreement in DNAm predictor estimate between technical replicates after data preprocessing 

and normalization allowed us to quantify the degree to which an analytical strategy can 

successfully remove unwanted technical variation. We report the best test-retest reliability for 

each predictor and demonstrate how reducing technical variation is critical for optimal algorithm 

performance in downstream phenotypic analyses. Our work emphasizes the importance of data 

processing and normalization of DNAm data and provides best practices to optimize the 

performance and reliability of DNAm predictors. 
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Results 

To evaluate how unwanted technical variation in DNAm data impacts the performance of 

DNAm-based predictors, we implemented 101 data processing and normalization strategies in 

the JHS dataset. For each analytical strategy, which we will refer to as a “pipeline”, we then 

extracted beta values and calculated estimates of 41 DNAm-based predictors in (1) JHS data1: 

a sample of 146 technical replicate pairs and (2) JHS data 2: a general sample of 1,761 non-

replicate samples that do not overlap with the individuals in the replicate dataset. Figure 1 shows 

an overview of our analysis plan. In the sample of technical replicates, we quantified the average 

absolute agreement between replicate pair values (i.e. reliability) by means of the ICC for each 

DNAm predictor and each pipeline separately (41 predictors x 101 pipelines = 4,141 ICC 

analysis). We also generated DNAm estimates in the general sample. This allowed us to correlate 

the ICC of a pipeline that was estimated in the sample of replicates with predictor estimates in the 

independent general JHS sample. 

 

 
Figure 1. Schematic overview of analysis plan to evaluate DNAm algorithm performance. 

DNAm analyses are conducted using DNAm EPIC array samples in JHS. JHS includes a significant number 

of technical replicate pairs thereby allowing for a careful investigation of how the removal of unwanted 

technical variation impacts DNAm algorithm performance across 101 data processing pipelines. JHS has 

also collected information on disease-related phenotypes, including mortality status after follow-up. This 

allowed us to assess how removal of technical variation in DNAm predictor estimates by a data processing 

pipeline impacts downstream phenotypic association analyses.  

 

We calculated the ICC estimates derived from a two-way random effect model to assess 

the reliability of each predictor for each data processing pipelines. The ICC is a zero to one 

estimate that quantifies the average absolute agreement across technical replicate pairs that were 

processed at a different occasion. We also calculated five other types of ICCs and found high 

concordance between the different ICC measures (mean rho=0.99, SD=0.01, see Figure S1). 

Table S5 reports all ICC statistics for each DNAm predictor and pipeline. In the remainder of the 

paper we will refer to ICC(2,1) as ICC, unless stated otherwise. 

 

Most DNAm-based predictors yield high reliability when the best analytical pipeline is 

implemented 

         Table 1 shows all 41 DNAm predictors alongside general information on each algorithm 

and corresponding ICC statistics, including the data processing and normalization pipeline that 

yielded the highest reliability for each predictor. Across all predictors and pipelines (N=4,141), we 
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Predictor Information  Reliability (ICC statistics) 

Name Phenotype Array compatibility  Median Min Max Best pipeline 

GrimAge [15] Mortality EPIC/450K  0.990 0.921 0.994 ENmix: oob_mean_q3_rcp 

ZhangAge [8] Chronological age EPIC/450K  0.991 0.987 0.992 ENmix: neg_mean_q2_rcp 

TIMP_1 [15] TIMP-1 serum protein EPIC/450K  0.988 0.973 0.992 ENmix: oob_relic_q2_rcp 

Bcell [5] B-lymphocyte cell fraction EPIC  0.980 0.881 0.988 Minfi: illumina_nobg_normcontrol 

Neu [5] Neutrophil cell fraction EPIC  0.984 0.973 0.987 ENmix: oob_mean_q2_rcp 

B2M [15] B2M serum protein EPIC/450K  0.973 0.759 0.985 ENmix: oob_relic_q1_rcp 

SkinBloodAge [9] Chronological age EPIC/450K  0.979 0.908 0.982 ENmix: neg_relic_q1_rcp 

Smoking_Lu [15] Smoking pack-years EPIC/450K  0.971 0.889 0.981 ENmix: oob_nodye_nonorm_rcp 

Smoking_McCartney [20] Smoking pack-years EPIC  0.975 0.942 0.979 Minfi: noob_dyecorr 

HannumAge [7] Chronological age 450K  0.972 0.834 0.978 ENmix: est_relic_nonorm_rcp 

CD8T [5] CD8+ T-cell fraction EPIC  0.969 0.881 0.978 ENmix: neg_mean_q1_rcp 

NK [5] Natural killer cell fraction EPIC  0.952 0.883 0.977 ENmix: neg_relic_q3_rcp 
BioAge4HAStatic [17] Chronological age 450K  0.966 0.826 0.975 ENmix: oob_relic_nonorm_rcp 

Cystatin_C [15] Cystatin C serum protein EPIC/450K  0.954 0.829 0.973 ENmix: oob_nodye_q2_rcp 

PhenoAge [14] Mortality EPIC/450K/27K  0.954 0.926 0.97 ENmix: neg_relic_q1_rcp 

Mono [5] Monocyte cell fraction EPIC  0.953 0.865 0.968 Minfi: illumina_bg_normcontrol 

DNAmTL [12] Telomere length EPIC/450K  0.952 0.912 0.965 ENmix: oob_relic_q1_rcp 

HorvathAge [6] Chronological age 450K/27K  0.950 0.867 0.964 WateRmelon: naten 

CD4T [5] CD4+ T-cell fraction EPIC  0.959 0.951 0.964 ENmix: neg_nodye_nonorm_rcp 

epiTOC [18] Mitotic divisions 450K  0.911 0.498 0.962 ENmix: oob_mean_q2_rcp 

Leptin [15] Leptin serum protein EPIC/450K  0.896 0.447 0.953 ENmix: oob_relic_q3_rcp 

VidalBraloAge [13] Chronological age 27K  0.945 0.922 0.952 ENmix: neg_mean_nonorm_rcp 

MiAge [19] Mitotic divisions 450K  0.884 0.348 0.947 WateRmelon: nanes 
LinAge [10] Chronological age 450K  0.930 0.878 0.939 ENmix: est_relic_nonorm_norcp 

ADM [15] ADM serum protein EPIC/450K  0.900 0.756 0.938 ENmix: neg_mean_q3_rcp 

WHR [20] Waist-to-hip ratio EPIC  0.878 0.634 0.925 ENmix: oob_relic_q2_rcp 

ZhangMortality [16] Mortality 450K  0.877 0.807 0.92 Minfi: illumina_nobg_normcontrol 

BodyFat [20] Body fat EPIC  0.893 0.843 0.918 ENmix: est_relic_nonorm_rcp 

Cholesterol [20] Total cholesterol EPIC  0.888 0.762 0.917 ENmix: oob_nodye_q2_rcp 

BMI [20] BMI EPIC  0.904 0.877 0.914 ENmix: neg_mean_nonorm_rcp 

GDF_15 [20] GDF-15 serum protein EPIC/450K  0.819 0.502 0.903 ENmix: est_mean_q1_rcp 
LDL [20] LDL EPIC  0.846 0.732 0.901 ENmix: oob_relic_nonorm_rcp 

HDLratio [20] Total:HDL cholesterol ratio EPIC  0.848 0.643 0.890 ENmix: oob_relic_q1_rcp 

Alcohol [20] Alcohol EPIC  0.807 0.551 0.878 ENmix: neg_relic_nonorm_rcp 
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Table 1. Overview of predictor reliability and best performing data processing pipelines. Shown are general information on each DNAm-based predictor alongside their 
corresponding ICC statistics from the reliability analysis. The name of the predictor, the phenotype it is trained on, and DNAm array compatibility are listed on the left side 
of the table. ICC statistics are listed on the right side of the table. For each predictor, across 101 pipelines, the median, minimum, and maximum ICC are listed. Predictors 
are ranked by the maximum ICC. The final column reports the best performing data processing pipelines (i.e., the pipeline with the highest reliability). 

WeidnerAge [11] Chronological age 27K  0.826 0.583 0.865 ENmix: neg_relic_nonorm_rcp 

Education [20] Educational attainment EPIC  0.774 0.506 0.865 Cross: noob_dyecorr_BMIQ 
HDL [20] HDL cholesterol  EPIC  0.835 0.694 0.853 ENmix: est_relic_q1_rcp 

CD8pCD28nCD45Ran [6] Specific T-cell fraction 27K  0.814 0.756 0.845 ENmix: oob_relic_nonorm_rcp 

PlasmaBlast [6] Plasma B cell fraction 27K  0.718 0.638 0.840 Cross: noob_dyecorr_BMIQ 

PAI_1 [15] PAI-1 serum protein EPIC/450K  0.744 0.22 0.838 ENmix: neg_relic_q3_rcp 

CD8naive [6] CD8 T-cell fraction 27K  0.777 0.659 0.830 WateRmelon: danen 
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observed a significant degree of similarity between replicates (all ICC P-values < 0.05/4,141). The 

median across all ICC estimates is 0.93 with a range of 0.22-0.99. 

The GrimAge predictor reports the highest reliability (ICC=0.994, P=6.6e-144), followed 

by ZhangAge (ICC=0.992, P=8.4e-132), and TIMP_1 (ICC=0.992, P=8.5e-133). In fact, 32 out of 

41 predictors (78%) reach a reliability of an ICC > 0.9 with at least one data processing pipeline. 

The predictors with higher ICCs have more narrow ICC distributions than predictors with lower 

ICCs (see Figure 2), suggesting that predictors with higher reliability are more robust to the choise 

of data processing pipelines. The predictors with the lowest reliability are CD8pCD28nCD45RAn 

(ICC=0.85, P=1.63e-41), PlasmaBlast (ICC=0.84, P=7.19e-52), PAI-1 (ICC=0.84, P=2.80e-40), 

and CD8_naive (ICC=0.83, P=1.17e-39). 

 

Across pipelines and predictors (N=4,141), the ENmix package yielded higher reliability 

(median ICC=0.93, range=0.61-0.99) than the minfi (median ICC=0.91, range=0.22-0.99) and 

wateRmelon (median ICC=0.91, range=0.49-0.99) packages. Among the best performance of 

each 41 DNAm predictors, i.e. achieving the highest reliability, 32 (78%), 4 (10%), and 3 (7%) 

predictors  were from the ENmix, minfi, and wateRmelon package, respectively. Among ENmix 

pipelines; out-of-band (OOB) background estimation (15 out of 32), REgression on Logarithm of 

Internal Control probes (RELIC) dye-bias correction (19 out of 32), no quantile normalization (12 

out of 32), and the Regression on Correlated Probes (RCP) probe-type bias correction (31 out of 

32) yielded the highest reliability most often (see Figure S2). Two ENmix pipelines achieved the 

highest reliability for three predictors. The analytical pipeline that included OOB background 

estimation, RELIC dye-bias correction, no normalization, and RCP probe-type bias correction (i.e. 

“ENmix:oob_relic_nonorm_rcp”) performed best for the BioAge4HAStatic, LDL, and 

CD8pCD28nCD45RAn predictors. The pipeline that included OOB background estimation, RELIC 

dye-bias correction, quantile normalization, and RCP probe-type bias correction (i.e. “ENmix: 

oob_relic_q1_rcp”) performed best for the B2M, DNAmTL, and HDLratio predictors. 
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Figure 2. The distribution of intraclass correlations across pipelines for each DNAm algorithm. For each 

predictor, a histogram of ICC values across 101 pipelines is shown. The ICC quantifies the degree of 

absolute agreement between estimator values of a pair of technical replicates. The predictors are ranked 

based on their max ICC value. The name of the predictor is printed on top. In each panel, the median, 

lowest, and highest ICC value of a corresponding data processing pipeline for that predictor is shown as 

well. 

 

There is significant heterogeneity in pipeline performance across predictors 

Among the 41 best performing pipelines (i.e. the pipeline with the largest ICC value for 

each of the 41 predictors), there are 27 different data processing and normalization strategies, 

which highlights significant heterogeneity in choice of best pipeline between predictors. As ICC 

differences between pipelines of a predictor can be small and pipelines beyond the highest ICC 

may also be informative, we calculated the median rank across the 41 predictors for each of the 

101 pipelines (see Table S6). The pipeline with the best median rank (at 15) across predictors is 

the “ENmix: oob_relic_q1_rcp”. While this observation suggests this pipeline yields the best 

average performance across predictors, it still scored average to low for multiple predictors. For 

example, for the BMI predictor the “ENmix: oob_relic_q1_rcp” pipeline had one of the lowest ranks 

(ICC = 0.89, rank = 91). It is also important to note that a data processing pipeline can also 

introduce more spurious variation instead of removing technical variation. That is, the raw data 
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pipeline that does not apply any data processing and normalization yielded a median rank of 85 

(range: 7 to 100). For the CD4T and CD8 naive predictors, the raw data pipeline ranked as the 

seventh best performing pipeline highlighting that most pipelines perform worse than no data 

processing at all for these two predictors. The “Minfi: raw_quantile_strat” and “Minfi: 

illumina_bg_quantile_strat” had the lowest median rank of 100 and yielded the lowest reliability 

for 17 and 9 predictors, respectively (Table S5). 

To assess the concordance in pipeline performance across predictors more formally, we 

calculated the rank correlation in pipeline reliability between all pairs of predictors. In Figure 3 we 

visualize the result of this analysis via a clustered correlation heatmap. 

 

 
Figure 3. DNAm predictors have a moderate degree of concordance in performance between 

pipelines. Shown is a clustered correlation heatmap of pipeline reliability concordance between predictors. 

The color coding depicts Spearman’s rho and clustering is performed using hierarchical clustering. Only 

correlations with a P-value < 0.01 are colored. 
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For some predictors the ranking in pipeline performance is very similar. For example, the 

GrimAge, Smoking_Lu, Cystatin_C, and GDF_15 predictors show strong concordance (mean rho 

= 0.92).  As noted, these four predictors were developed in the same dataset and the Cystatin_C, 

GDF_15, and Smoking_Lu estimates are included in the GrimAge algorithm. Across all pairs of 

predictors, we find a moderate correlation in pipeline performance (mean rho=0.40, SD=0.27). 

Some predictors however show little to no concordance with other predictors. The ranking of 

pipelines of the BMI and NK predictor, for example, have a mean rank correlation of 0.14 

(SD=0.20) and 0.21 (SD=0.24), respectively, with that of other predictors. For a handful of 

predictor-pairs we even observe a negative correlation, suggesting that pipelines that yield high 

reliability for one predictor yield low reliability for another. Pipeline performance of the 

BioAge4HAStatic and Mono predictors for example have a correlation of -0.45 (P=2.1e-06). Our 

findings thus far show that specific pipelines are more effective in removing unwanted technical 

variation for a predictor and that significant heterogeneity exists in pipeline performance across 

predictors. 

 

The choice of data processing pipeline impacts downstream analysis of predictors 

Next, we evaluated if the performance of a pipeline can also affect downstream phenotypic 

analyses of a predictor. For these analyses, we used the general JHS data 2 sample. For each 

pipeline, we calculated the mean and standard deviation (SD) of the predictor estimate distribution 

in the general JHS sample. For each predictor, we then correlated these two statistics (i.e., the 

mean and SD) with the ICC estimates of the pipelines obtained in the technical replicate sample. 

We find that the choice of pipeline has a significant impact on the distribution of the predictor 

estimate. Of the 41 predictors, 33 (80%) are significantly impacted on the distribution of their 

estimates after Bonferroni correction P<0.0012).  For 22 predictors (54%), we find a significant 

correlation for both the mean and standard deviation. For DNAmTL, we, for example, observe a 

negative correlation between the performance of a pipeline and the mean of the estimate 

distribution (rho=-0.71, P<2.2e-16) and a positive correlation with the standard deviation of the 

estimate distribution (rho=0.79, P<2.2e-16). The best performing pipeline yields a mean estimate 

of 6.83 kilobases (SD=0.34). The least performing pipeline yields a mean estimate of 7.20 

kilobases (SD=0.29). This shows that the more effective a pipeline is in removing technical 

variation, the lower the DNAm-based predicted estimate of telomere length and the larger the 

variation between individuals. The direction of effect of the relationship between pipeline 

performance and the mean and standard deviation of the DNAm variables varies between 

predictors as well. HorvathAge, for example, is impacted on its standard deviation (rho=0.39, 

P=5.6e-05) but not on the mean (rho=-0.10, P=0.27). HDLratio is impacted on its mean but unlike 

DNAmTL shows a positive correlation with pipeline performance (rho=0.38, P=9.8e-05). HDLratio 

is not impacted on the standard deviation of its distribution (rho=0.00, P=0.96). Correlation plots 

and correlation statistics of all predictors are shown in Supplementary Note 1. A full overview of 

test statistics can be found in Table S7. 

         Several DNAm age predictors are known to predict all-cause mortality risk. We therefore 

examined if pipeline performance also impacts their association with mortality risk. We focus on 

four predictors: HorvathAge, PhenoAge, GrimAge, and ZhangAge. Each predictor has different 

training characteristics and captures a different aspect of biological age and/or mortality risk[41]. 

ZhangAge is a blood-based DNAm clock and was developed on the largest training dataset and 
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shown not to be associated with mortality risk despite its improved precision[8]. We find that 

pipeline performance significantly impacts downstream analysis for all four predictors (Figure 4). 

 

 
Figure 4. Pipeline performance impacts downstream analyses of DNAm age predictors. Shown are 

association between pipeline ICC and the correlation with chronological age (left panels), the hazard ratio 

of mortality risk prediction (middle panel), and the z-score of the mortality risk prediction (right panels) for 

Horvath Age (top row), PhenoAge (2nd row), GrimAge (3rd row), and ZhangAge (bottom row). Pipelines 

are color-coded by package/method. Spearman rank correlation statistics are shown in the top left corners. 
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For HorvathAge, pipelines that achieve greater reliability also achieve a greater correlation 

between HorvathAge and chronological age (rho=0.47, P=1.8e06). Better performing pipelines 

furthermore achieve greater power to predict all-cause mortality (rho=0.52, P=3.3e-08). For 

PhenoAge, we did not find an effect on the correlation with chronological age but did find the 

survival analysis to be significantly impacted. Better performing pipelines achieve greater power 

for PhenoAge (rho=0.68, P<2.2e-16) but also a smaller hazard ratio (rho=-0.39, P=5.3e-05), 

suggesting that unsuccessful removal of technical variation in DNAm data can inflate the 

magnitude of mortality risk. In contrast to our findings for HorvathAge, we found that better 

performing pipelines produced a lower correlation with chronological age for GrimAge (rho=-0.67, 

P < 2.2e-16). Similar to PhenoAge, we found that pipelines that achieve greater reliability yield 

more significant associations with mortality for GrimAge (rho=0.75, P<2.2e-16) but also a smaller 

hazard ratio (rho=-0.62, P<2.2e-16). The most reliable pipeline reports a significant hazard ratio 

of 1.12 (SE=0.01, P=1.60e-30), which verifies GrimAge as a strong predictor of all-cause 

mortality, especially when spurious technical variation is appropriately accounted for. For 

ZhangAge, we found no impact on the correlation with chronological age. Better performing 

pipelines produced smaller and less significant effects in associations with all-cause mortality. 

The most reliable pipeline produced a non-significant hazard ratio of 1.10 (SE=0.05, P=0.06), 

confirming that ZhangAge does not predict mortality risk. Taken together, using the general JHS 

sample, we demonstrate how pipeline performance has a significant impact on downstream 

phenotypic analysis of DNAm predictors. 

  

Predictor reliability is inversely associated with sample size of the training dataset 

To assess if specific features of the predictors are associated with higher reliability, we 

investigated the number of CpG probes and the sample size of the training dataset in relation to 

the ICC of the best performing pipeline (see Figure S3). Using predictors for which such 

information was available, we find that the sample size of the dataset in which a predictor was 

developed is inversely associated with the observed predictor reliability (N=37, rho=-0.39, 

P=0.02). We did not find a significant association between the number of predictor CpG probes 

and reliability of a predictor (N=37, rho=-0.21, P=0.20). 

  

A smaller number of replicate pairs can be used to measure reliability 

In our analyses, we made use of a large number of replicate pairs. We therefore assessed 

how sample size affected our measure of reliability and if a smaller number of replicate pairs yield 

similar findings. Across reliabilities from all pipelines and predictors, we observe good 

concordance (rho > 0.94) with as low as ten replicate pairs compared with measures obtained 

from larger sample sizes (Figure S4). Differences however exist between predictors with some 

predictors still requiring a larger number of replicate pairs (Supplementary Note 2). 
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Discussion 

DNAm-based predictors are emerging as powerful new methods to study health and 

disease, but little is known about the reliability of the estimates they produce. To investigate their 

performance, we carried out a systematic evaluation of 41 predictors across 101 data processing 

and normalization strategies and assessed to what degree algorithm performance is impacted by 

(un)successful removal of technical variation. Leveraging a large technical replicate sample in the 

JHS, we demonstrate that the choice of analytical pipeline has a significant impact on the reliability 

of predictors as well as on the outcomes of downstream phenotypic analyses. We highlight that 

specific pipelines are more effective in removing unwanted technical variation for a predictor but 

that significant heterogeneity exists in pipeline performance across predictors. Pipelines of the 

ENmix package achieved the highest reliability and were most frequently represented among the 

best performing pipelines. As research on DNAm-based predictors will continue to grow, our work 

provides best practices for the research community to help standardize their implementation and 

improve their performance. 

         To quantify method performance, we used a type of intraclass correlation that measures 

test-retest reliability by assessing the degree of absolute similarity between technical replicate 

pairs. Guidelines from reliability research suggest that ICC values less than 0.5 are indicative of 

poor reliability, values between 0.5 and 0.75 indicate moderate reliability, values between 0.75 

and 0.9 indicate good reliability, and values greater than 0.90 indicate excellent reliability[40]. The 

ICC range of best performing pipelines across predictors was 0.83-0.99, indicating good to 

excellent reliability for these predictors. For 32 out of 41 predictors (78%), we found excellent 

reliability (ICC > 0.9) for at least one data processing pipeline. Several predictors show a reliability 

close to 1, which demonstrates that repeated collections of DNAm data yield almost the same 

predictor estimate and highlights their potential as a biomarker for health-related outcomes. 

Among predictors with high reliability are predictors of mortality risk, smoking behavior, blood cell 

types, and cancer risk. Demonstrating internal validity for these DNAm tools is important for 

research purposes but even more so for their potential utilization for health management and 

disease prediction in the clinic. GrimAge, a strong predictor of all-cause mortality, for example, 

has the highest test-retest reliability of 0.994. This finding demonstrates excellent test-retest 

reliability based on technical replicates from the same biological sample. It remains an open 

question if the measured reliability translates to repeated measures of DNA samples extracted 

from different blood draws at the same time point or across time points. The analytical framework 

we applied can however be easily extended to study design of other types of (biological) 

replicates. Establishing method reliability in other contexts of technical and biological variation is 

an important next step for future research. 

We found that the choice of analytical pipeline is essential as multiple data processing 

strategies produced poor reliability (ICC<0.5) for several predictors. For some predictors, like for 

CD4T and CD8 naive T cells, using the raw data achieves higher reliability than most data 

processing pipelines. This highlights that analytical decisions on how to best prepare DNAm data 

require careful consideration as certain data processing and normalization steps can even reduce 

algorithm performance. Among the best performing pipelines of each predictor, we found 

significant heterogeneity across predictors. That is, there are 27 unique pipelines across the 41 

predictors. On average, pipelines of the Enmix package achieved the highest reliability most 

frequently. While there is no one optimal pipeline to use for all predictors, several data processing 
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steps stand out as producing high reliability for multiple predictors. For example, almost half of 

the best performing pipelines make use of the RELIC dye-bias correction method. RELIC uses 

the information between pairs of internal normalization control probes to correct for differences 

between color channels that measure intensity levels of the array[28]. The EPIC array contains 

85 pairs of controls that target the same DNA region in housekeeping genes and contain no 

underlying CpG sites. RELIC uses the relationship between the pairs of controls to correct for 

dye-bias on intensity values for the whole array. Another data processing step that produced high 

reliability is the RCP probe type-bias correction method. 31 out of 41 of the best performing 

pipelines make use of this data processing step. RCP uses the existing correlation between pairs 

of nearby type I and II probes to adjust the beta values of all type II probes[27]. Both RELIC and 

RCP have been shown to reduce technical variation in DNAm data and are implemented in the 

ENmix package. While both approaches are effective in removing unwanted technical variation, 

we still recommend using the best performing pipeline for a specific predictor as reported in Table 

1 as RELIC and RCP both show heterogeneity in performance across predictors. 

         The choice of analytical pipeline does not only impact the test-retest reliability of a 

predictor but also significantly affects downstream phenotypic analyses. We show that 80% of 

predictors are impacted on the mean and/or standard deviation of their distribution in the general 

JHS cohort. We furthermore analyzed DNAm clocks and showed that the strength of correlation 

between DNAm age and chronological age is affected in opposite directions for HorvathAge and 

GrimAge. While the correlation with chronological age becomes stronger with better performing 

pipelines for HorvathAge, the correlation becomes weaker for GrimAge. For DNAm clocks that 

are shown to be associated with mortality risk, successful removal of technical variation produced 

smaller hazard ratios but more significant associations. This highlights that not appropriately 

accounting for technical variation can decrease statistical power and inflate risk estimates for 

these predictors. It also shows that despite the narrow distribution of reliability estimates for these 

predictors, for example GrimAge has an ICC range of 0.921-0.994 indicating excellent reliability 

across all pipelines, the choice of pipeline still impacts downstream association analyses. We 

note that in our association analysis with mortality risk, we adjusted for chronological age, and 

still found that the choice of pipeline influences the outcome of the analysis. This is different from 

findings of a previous study that reported that the choice of pipeline influences the mean of DNAm 

age but not the DNAm age acceleration residual[42]. This study however only compared three 

data processing and normalization strategies and could have missed this effect as it did not 

perform a systematic evaluation across many pipelines. Finally, we confirm that ZhangAge, a 

DNAm clock developed in the largest blood based DNAm dataset, does not associate with 

mortality risk. 

We also investigated if specific characteristics of a predictor impacted the measured 

reliability. We found that the sample size of the training dataset has a moderate inverse 

relationship with the reliability of a predictor. This suggests that predictors developed in larger 

training datasets are more sensitive to technical variation than predictors developed in a smaller 

dataset. This relationship could for example arise if larger training datasets on average have more 

technical factors that are not properly accounted for. The ZhangAge predictor, however, was 

developed in the largest training dataset and shows the second to highest reliability of all 

predictors we investigated. This indicates that other factors in addition to sample size of the 

training dataset are likely to play a role as well. ZhangAge was developed using 65 training sets 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.29.462387doi: bioRxiv preprint 

https://paperpile.com/c/J1TElb/UdYBZ
https://paperpile.com/c/J1TElb/0GJL2
https://paperpile.com/c/J1TElb/PVQ7v
https://doi.org/10.1101/2021.09.29.462387
http://creativecommons.org/licenses/by/4.0/


 

across 14 cohorts, where each training set had a certain number (ranging between 1 and 13) of 

cohorts randomly sampled from the 14 cohorts[8]. This strategy is, as far as we know, unique to 

this predictor and may have helped select for CpG probes that are less impacted by technical 

variation due to its many training sets of different randomly assigned cohort compositions. As 

training datasets with large sample sizes are essential to developing more accurate DNA-based 

predictors, a strategy to randomize the potential effect of technical factors, like was implemented 

for the development of ZhangAge, could be worthwhile to consider for new predictors as well. We 

did not find a significant relationship between the number of CpG probes and the observed 

reliability of a predictor. 

Our study comes with limitations. First, we measured reliability using technical replicate in 

one study. A different cohort or different types of repeated measures may yield different 

outcomes. Ideally, one would use study-specific replicate samples and assess if similar best 

practices are achieved or if alternative strategies are more appropriate to remove technical 

variation most optimally for that specific study. If future studies have the means to include replicate 

samples, they should aim to include at least ten replicate pairs. We determined that for most 

predictors a sample size of ten replicate pairs can already provide meaningful insights into their 

reliability. Second, several predictors were not fully compatible with the EPIC array platform. 

Predictors that were developed on older DNAm array platforms showed lower reliability. Missing 

probes could have affected the outcome of our analysis. Having said that, as the older 27K and 

450K DNAm array platforms are discontinued, any future application of predictors that are not 

fully compatible with the EPIC array will face a similar challenge. 

 

Conclusion 

         In summary, this study demonstrates that considerable variation exists in the performance 

of DNAm-based predictors depending on the data processing and normalization strategy 

implemented. Analytical pipelines that best remove unwanted technical variation in DNAm data 

achieve excellent test-retest reliability for most predictors thereby demonstrating their potential as 

biomarkers for health-related outcomes. DNAm is an important tool to study health and disease. 

As the number of DNAm predictors continues to rise, understanding how best to improve and 

implement these algorithms will be essential for downstream clinical applications. 
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Methods 

Cohort descriptions 

The Jackson Heart Study is a large observational study of African American individuals from the 

Jackson, Mississippi (USA), metropolitan area[34]. JHS seeks to study the causes and disparities 

in cardiovascular health and related phenotypes in African Americans. Data and biological 

materials have been collected from 5,306 participants. For a subset of the cohort, peripheral blood 

samples were collected at baseline and subsequently used to quantify DNA methylation using the 

Illumina Infinium MethylationEPIC BeadChip that covers over 850,000 CpG sties. These samples 

have been included in previous DNAm studies[15,35]. See Table S1 for cohort characteristics. In 

our analysis, we included individuals for which DNAm data, phenotypic variables, and mortality 

data were available (N=1,909, 62.2% women, mean (SD) of age = 56.1 (12.4) years). For 146 

individuals, technical replicates were collected. We therefore divided this dataset into two 

samples; 1) a general cohort sample that does not include technical replicate pairs (N=1,761, 

62.6% women, mean(SD) of age=56.0 (12.3)) and 2) a technical replicate sample (N=146, 57.5% 

women, mean  (SD) of age=57.4 (14.0)). Replicate pairs represent DNAm samples that were 

assayed twice using the EPIC array at separate occasions but originate from the same DNA 

extraction sample. 

  

Data preprocessing and normalization strategies 

To perform a systematic evaluation of available data preprocessing and normalization strategies, 

we incorporated all methods that are available through the commonly used R packages minfi[36], 

wateRmelon[23], and ENmix[25]. Within the same package, we implemented all possible 

combinations of background correction, dye-bias correction, probe correction, and data 

normalizations as was feasible within the structure of the package. In total, this yielded 101 

strategies to prepare DNAm data (Table S2). For each sample, raw intensity values were read 

from IDAT files into an RGChannelSetExtended object in the R programming environment using 

the read.metharray() function in minfi. Sample quality control was performed by excluding 

samples with more than 5% of CpG sites with a detection P-value greater than 0.05 (using the 

pfilter() function in the wateRmelon package) and by removing outlying samples based on a low 

median of chipwide (un)methylation across CpG sites (using the getQC() function in minfi). In 

total, 44 samples were removed. No probes were filtered out to minimize missing probes in 

downstream DNAm prediction analysis. Data processing and normalization were then executed 

in batches of 96 samples for computational efficiency. The output of each analytical pipeline was 

a matrix with beta values for each sample. Table S3 shows an overview of our sample quality 

control analysis. 

  

DNAm-based predictors 

DNAm predictor estimates were calculated using regression coefficients as reported by the 

corresponding study unless stated otherwise. Custom R scripts were implemented that take as 

input a matrix of EPIC array beta values and output predicted estimates as a linear combination 

of weighted CpG methylation levels. For DNAm clocks, inverse transformation was applied to 

calibrate the DNAm age estimates in units of years, as required by the algorithm. For instance, 

Horvath’s epigenetic clock regressed log-linear age (that leveraged age at 20) on DNA 

methylation levels and required this calibration step.   
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 Next, we briefly describe the different predictors included in our study. Table S4 presents an 

overview of predictor characteristics. For full details on each predictor, we refer to their 

corresponding studies. 

  

DNAm clocks: 

The following predictors all output a form of DNAm age and capture a different aspect of biological 

age depending on characteristics of their training dataset. The Hannum clock uses 71 CpG probes 

and was developed in a whole blood 450K DNAm dataset of 656 individuals[7]. The Horvath clock 

was developed using 3,931 multi-tissue and -cell type samples using both 27K and 450K array 

samples[6]. The Horvath clock uses 353 CpG probes that are present on both arrays. The 

BioAge4HAStatic clock is an extended measure of the Hannum clock and defined by forming a 

weighted average of Hannum's estimate with 3 cell types that are known to change with age: 

naïve (CD45RA+CCR7+) cytotoxic T cells, exhausted (CD28-CD45RA-) cytotoxic T cells, and 

plasmablasts[17]. The Weidner clock uses 3 CpG and was developed in a 27K DNAm dataset of 

whole blood samples from 575 individuals[11]. The Lin clock uses 99 CpG and was developed in 

a dataset of 450K array whole blood samples of 656 individuals[10]. The VidalBralo clock uses 8 

CpG probes and was developed in a dataset of 450K array whole blood tissue of 390 

individuals[13]. The Skin & Blood clock uses 391 CpG probes and was developed in a dataset of 

450K and EPIC arrays of a mixture of human fibroblasts, skin tissue, buccal cells, endothelial 

cells, whole blood, and cord blood samples (N=896)[9]. The Zhang clock uses 514 CpG probes 

and was developed in a dataset of EPIC and 450K arrays of 13,566 samples. The majority of the 

samples were derived from whole blood with a small subsample from saliva tissue[8]. 

  

Mitotic clocks: 

The MiAge calculator uses 268 CpG probes and was developed on 4,020 samples of 8 cancer 

types using 450K DNAm arrays[19]. MiAge outputs an estimate of mitotic age (total number of 

lifetime cell divisions) for a given human tissue. The epiTOC calculator was developed in a 450K 

DNAm dataset of 650 whole blood samples. EpiTOC uses a subset of 385 Polycomb group 

targets promoter CpGs to predict an estimate of age acceleration in cancer. EpiTOC yields a 

score, denoted “pcgtAge”, as the average DNAm over CpG sites, representing the age-cumulative 

increase in DNAm at these sites due to putative cell-replication errors[18]. 

  

Mortality risk estimators: 

The Zhang mortality score is defined by a weighted average of 10 CpGs that are associated with 

mortality status[16]. The Zhang mortality score predictor was trained on a discovery cohort of 

whole blood 450K DNAm samples from 954 individuals (N=402 deceased at follow-up) and 

validated in a cohort of 1,000 individuals (N=231 deceased at follow-up). The second mortality 

estimator, Levine clock, is a predictor of “phenotypic age”, which is a DNAm surrogate of the 

composite score based on ten mortality markers (9 clinical markers + chronological age)[37]. A 

training cohort of 456 whole blood samples were then used to identify 513 CpGs predictive of 

phenotypic age. Only probes available on the 27K, 450K, and the EPIC array platform were used 

in their analysis. The linear combination of the weighted 513 CpGs is called “DNAm PhenoAge”. 

The third mortality risk estimator isGrimAge from Lu et al., which is defined by a composite score 

based on seven DNAm-based plasma protein markers, DNAm-based pack years of smoking, 
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chronological age and gender[15]. GrimAge used a training dataset of whole blood samples of 

1,731 individuals. The DNA methylation profiling was based on the 450K beadchip but the 

biomarker was trained on the CpGs present on both the 450K and the EPIC array in order to 

ensure compatibility for both platforms. GrimAge was calculated using a python executable that 

was developed by the authors of the original study, which also outputs several DNAm-based 

plasma protein markers, three blood cell types, and pack years of smoking (see below). 

  

Plasma protein markers: 

DNAm-based estimators were developed for the following seven plasma proteins; adrenomedullin 

(ADM), beta-2-microglobulin (B2M), Cystatin-C, growth differentiation factor 15 (GDF-15), leptin, 

plasmin activator inhibitor 1 (PAI-1), tissue inhibitor metalloproteinases 1 (TIMP-1). These plasma 

proteins were measured using an immunoassay and the predictor trained using a whole blood 

450k DNAm dataset of 1,731 individuals in Framingham Heart Study (FHS) cohort[15]. ADM, 

B2M, cystatin-C, GDF-15, leptin, PAI-1, and TIMP-1 are defined by 186, 91, 87, 137, 187, 211, 

and 42 CpGs, respectively. Each of these individual estimates were calculated using the GrimAge 

python executable. 

  

Smoking predictors: 

Two DNAm-based smoking predictors were included in our analysis. The Lu estimator was trained 

using a whole blood 450K DNAm dataset of 1,731 individuals in FHS and uses 172 CpGs for 

prediction, which is a component of GrimAge[15]. We estimated Lu pack years of smoking using 

the GrimAge python executable. The McCartney estimator was developed using EPIC DNAm 

data (only probes that are also present on the 450K platform) of 3,444 individuals[20]. The 

McCartney estimator uses 233 CpGs and outputs, similar to the Lu predictor, the number of pack 

years of smoking. 

 

Blood cell type estimator: 

We included DNAm-based blood cell type estimators for nine cell types in our analysis. For 

neutrophils (Neu), B cells, monocytes (Mono), natural killer cells (NK), CD4+ T cells (CD4T), and 

CD8+ T cells (CD8T), estimators were developed using 850K EPIC DNAm data from magnetic 

sorted cells[5]. These six cell types were estimated using the 

estimateCellProp(refdata="FlowSorted.Blood.EPIC", nprobes=50) function of the ENmix R 

package. Plasma B cells (PlasmaBlasts), naive CD8+ T cells, and CD8+, CD28-,CD45RA- T cells 

(CD8pCD28nCD45RAn), were estimated based on the Horvath method [38] and  computed using 

the same python executable as was used for the GrimAge estimator. These estimates are the 

same estimates that can be obtained through the online DNAm Age Calculator; 

https://dnamage.genetics.ucla.edu/. 

  

Other estimators: 

We also included DNAm-based estimators that are developed for body-mass-index (BMI, in 

kg/m2), alcohol (units: per week), educational attainment (Edu, in years), total cholesterol (in 

mmol/L), HDL cholesterol (in mmol/L), LDL with remnant cholesterol (in mmol/L), total:HDL 

cholesterol ratio (HDL_ratio), waist-to-hip ratio (WHR), body fat (in %). These estimators were 

developed in a whole blood EPIC DNAm dataset (only probes that are also present on the 450K 
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platform) of between 2,819 to 5,036 individuals and used between 205 to 1,109 CpG sites to 

predict DNAm-based estimates[20]. Finally, we also included an estimator of leukocyte telomere 

length (TL). This DNAm-based TL predictor was developed in a whole blood 450K/EPIC DNAm 

dataset of 2,256 individuals and uses 140 CpGs[12]. 

  

Statistical analyses 

In the sample of technical replicates, the intraclass correlation (ICC) was calculated using the 

ICC() function of the R psych package (v2.1.3). More specifically, we use ICC(2,1), which is a 

type of ICC that calculates reliability from a single-measurement using a two-way random effects 

model[39,40]. ICC(2,1) assumes absolute agreement, which means the estimates of the 

replicates are expected to have exactly the same value. We also calculated ICC(1,1), ICC(3,1), 

ICC(1,k), ICC(2,k), ICC(3,k) for comparison with other ICC types. 

  

In the general JHS sample (i.e., without technical replicates), we calculated multiple statistical 

measures on the distribution of the output estimates of each predictor. The coefficient of variation 

was calculated by dividing the standard deviation by the mean of the distribution of the estimates. 

DNAm age acceleration residual (ΔAge) was calculated by regressing DNAm age on 

chronological age using the lm() function in R. To relate DNAm predictor estimates with mortality 

risk, a Cox proportional hazards regression model was fit using the coxph() function of the survival 

package (v3.2). Finally, to assess if the above statistical properties change depending on the type 

of data processing pipeline used, we calculated Spearman correlations between the ICC 

calculated in the replicate JHS sample and the various statistics generated in the general JHS 

sample across the 101 pipelines For this we use the cor.test(method=”spearman”) function of the 

stats package. The statistical analyses were performed in R (v4.0.3).  
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