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Figure S3: Particle-based reaction diffusion simulations of reversible binding kinetics on a 2D domain. Simulations
were done in Smoldyn with 256 monomeric subunits in a square domain with side length L = 5.333 and run until
reaching a steady state fraction of monomers. Each curve was independently found to be insensitive to decreasing
the simulation time-step ∆t. (A) Monomer fraction at steady state for a range of koff and rbind. (B) The effective
dissociation constant, i.e., the unbinding rate koff for which 50% of the monomeric subunits are in the monomeric form,
as a function of binding radius. For binding radii close to the estimated physiological binding radius of rbind = 10�2

(corresponding to roughly 1nm), the steady-state monomer we see weak insensitivity between the monomer fraction
and the binding radius, as previously reported, due to the complicated logarithmic nature of two-dimensional diffusion
[72, 73]. At binding radii larger than 0.3, the system approaches the crowding regime, resulting in large impact to
monomer fraction.

Table S1: Table of model variables, model parameters, Weighted Ensemble and simulation metaparameters

Model parameters
RROI Radius of region of interest

D Diffusion coefficient of single-subunit molecule
ρ Surface density of molecule (units of molecules per R2

ROI)
ρ̃ Surface density of molecule (units of molecules per nm2)

nin Mean number of molecules in the ROI assuming uniform (nin = πρ)
Model variables

∆t Dynamics timestep
nin Number of particles in ROI
φ Rate of flux into the evacuated state
T Mean time to the evacuated state (units of R2

ROI/D)
T̃ Mean time to the evacuated state (units of seconds)

Simulation metaparameters
L Domain size
N Total number of particles (N = L2ρ)

∆t Dynamics timestep
Weighted Ensemble metaparameters

τ Time interval between WE merging/splitting
mtarg Number of replicas per bin

(No symbol) Number of repeated WE runs (10 unless otherwise specified)
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Analytic derivation of pentry = 0 FPT distribution

Here we compute the mean first evacuation time from a disc of a collection of molecules undergoing dif-
fusion, when reentry is prohibited (pentry = 0). To solve this problem, we first find expressions involving
evacuation time for a single molecule placed at a specific location inside the region to be evacuated. We then
use that to find the mean first evacuation time for a molecule placed arbitrarily in the domain by averaging its
expression across the domain. Lastly, we adapt that expression to systems of N non-interacting molecules
placed randomly across the domain as an expression of the mean final evacuation time.

Single Molecule Evacuation

LetR = RROI and p = p(r, t|r0) be the probability density of a single molecule given the molecule’s initial
position r0 = (r0, θ0). This probability obeys the two-dimensional diffusion equations

1

D
∂tp = ∂2

rp+
1

r
∂rp+

1

r2
∂2
θp (6)

with boundary conditions

p(r, 0) = δ(r− r0) (7)

p(R, θ, t) = 0. (8)

This equation is separable, p(r, θ, t) = T (t)Θ(θ)R(r). The separated equations are

∂tT +Dλ2T = 0 (9)

∂2
θΘ +m2Θ = 0. (10)

r2∂2
rR+ r∂rR+ (r2λ2 −m2)R = 0 (11)

The temporal and angular solutions are

T (t) = Ce−λ
2Dt (12)

Θ(θ) = A sin(mθ) +B cos(mθ) (13)

for unknown constants A,B,C. The periodicity requires that Θ(θ) = Θ(θ + 2π), which demands m
be an integer. The radial equation is an example of Bessel’s equation, and given the boundedness of the
solution at the origin it is appropriate to limit the possible solutions to Bessel functions of the first kind. This
also defines the constant λ to be one of the zeroes of the Bessel function for some corresponding m, with
Jm(λm,nR) = 0, where the m subscript specifies the order of Bessel function and n subscript refers to one
of the (infinitely many) zeroes of the function. Combining arbitrary constants our solution may be written
generally as

p(r, t|r0) =
∑
m

∑
n

(
e−(λm,n/R)2DtJm(λm,nr/R) [Am,n cos(mθ) +Bm,n sin(mθ)]

)
. (14)

Survival Probability and Passage Time Distributions

We introduce the survival probability G(t), the probability that the molecule remains in the evacuation
region at time t. This can be expressed in terms of an integral over the position

G(t|r(0) = r0) =

∫
Ω
dr p(r, t|r0), (15)
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where Ω is the spatial domain of the evacuation of radius R. This leads to

G(t|r(0) = r0) = 2π

∫ R

0
rdr

∑
n

Ane
−(λn/R)2DtJ0(λnr/R) (16)

= 2πR2
∑
n

An
λn
J1(λn)e−(λn/R)2Dt. (17)

Eq. 16 by recognizing that the integral vanishes when m > 0 and relabeling the indices to only count the
zeros of J0. Eq. 17 the property of Bessel functions

∫
rν+1Jν(r)dr = rν+1Jν+1(r) [74].

Using the orthogonality relation∫ R

0
J0(λmr/R)J0(λnr/R)rdr =

1

2
R2[J1(λn)]2δmn , (18)

allows us to find the coefficients

An =
1

πR2J1(λn)

∫
Ω
J0(λnr/R)δ(r− r0)dr (19)

=
J0(λnr0/R)

πR2[J1(λn)]2
, (20)

and our final expression for the survival probability G is

G(t|r0) = 2
∑
n

e−(λn/R)2DtJ0(λnr0/R)

J1(λn)λn
. (21)

The survival probability can also be written in terms of the distribution of first passage times, %(τ |r0), as

G(t|r(0) =

∫ ∞
t

%(τ |r0) dτ , (22)

which implies
%(τ |r0) = −∂τG(τ |r0) . (23)

Integration by parts then gives the mean first passage time of a single diffusing molecule in terms of its
positional probability distribution,

τ =

∫ ∞
0

τ% dτ =

∫ ∞
0

dτ G =

∫ ∞
0

dτ

∫
Ω
dr p(r, τ |r0) . (24)

To find the mean first passage time for a molecule randomly placed throughout the domain, rather than at a
specific initial condition r0, we average across all possible initial conditions

〈τ〉 =
1

πR2

∫ ∞
0

∫
Ω
τ% dτ dr0 =

1

πR2

∫ ∞
0

dτ

∫
Ω
dr

∫
Ω
dr0 p(r, τ |r0) =

∫ ∞
0

dτ〈G(τ)〉 . (25)

where

〈G(t)〉 =
2

πR2

∫
Ω
dr0

∑
n

e−(λn/R)2DtJ0(λnr0/R)

J1(λn)λn
= 4

∑
n

(
e−(λn/R)2Dt

λ2
n

)
. (26)

We confirm this result by comparison with brute-force simulation in Fig. S4A.

As an aside, noting that the molecule should always remain in the region at t = 0, 〈G(t)〉 should evaluate to
1 at t = 0, implying the following property of the zeroes of the order 0 Bessel function of the first kind:

∞∑
n=1

1

λ2
n

=
1

4
, (27)

which is an interesting relation that this work confirms numerically.
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Generalization to N Molecules

To generalize this solution for N distinct, non-interacting molecules consider the joint probability that all
molecules evacuate prior to some time t′:

P (τN,All ≤ t′) = P (τ1 ≤ t′, τ2 ≤ t′, ..., τN ≤ t′) (28)

=
∏
i

Pi(τi ≤ t′) , (29)

where P (τN,All ≤ t′) is the probability that the evacuation time for every molecule is less than t′. As the
molecules are independent and non-interacting, we express it as a product of their individual probabilities
of evacuating prior to t′, Pi. These Pi are the complement to each molecule’s associated G(t|ri) given in
the previous section,

Pi(τi ≤ t′) = 1−G(t′|ri) . (30)

We are interested in the survival probability of the entire system ofN particles, which we can substitute into
Eq. 24 and Eq. 25 to get the mean first passage time of the entire system. We designate the total survival
probability GN,Any(t), i.e. the probability that at least one molecule remains inside the evacuation region at
some time t, as the complement to the probability of every molecule evacuating.

GN,Any(t) = 1− P (τN,All ≤ t) . (31)

Combining Eq. 31 into Eq. 28 yields

GN,Any(t′|r1, ..., rN ) = 1−
∏
i

(
1−G(t′|ri)

)
. (32)

As the molecules are non-interacting, we can use Cov(G(t′|r1), G(t′|r2)) = 0 to obtain 〈G(t′|r1)G(t′|r2)〉 =
〈G(t′|r1)〉〈G(t′|r2)〉 = 〈G(t)〉2 and find an expression for the spatial average of the probability at least one
molecule remains in the region of interest. The spatial average of GN,Any can then be written as

〈GN,Any(t)〉 = 1− (1− 〈G(t)〉)N = −

(
N∑
k=1

(
N

k

)
(−〈G(t)〉)k

)
(33)

The mean first passage time for the entire system is then given by

〈τN,All〉 =

∫ ∞
0

dτ〈GN,Any(τ)〉 (34)

We confirm this result by comparison with brute-force simulation in Fig. S4B.
Placement Outside of Evacuation Region To account for placement outside of the evacuation region,
if we have n molecules and 〈τm,All〉 is the evacuation time for exactly m molecules inside the ROI, with
m ≤ N , we can use the fact that for each molecule, the probability of being placed inside the evacuation
region is p(rj ∈ ΩROI) = AROI/ADomain, the ratio of areas of the ROI and the whole domain. The overall
evacuation then can be measured as a mean of the possible evacuation times across the Bernoulli trials of
successful molecule placement inside the evacuation region,

〈τAll〉 =
∑
i

((
N

i

)(
AROI

ADomain

)i(ADomain −AROI

ADomain

)n−i
〈τi,All〉

)
. (35)
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MFPTs assuming no re-entryA B

Figure S4: Evaluation of analytical solution for MFPT with pentry = 0 shows strong agreement with brute force
simulation. (A) Cumulative distribution for the first passage time of a single molecule to leave the ROI from analytical
expression in Eq. 26 (black) and Smoldyn results come as the result of 20000 individual simulations (blue). (B) MFPT
for multiple molecules inside of the domain, analytically from Eq. 34 (black) and computationally from Smoldyn
(blue). In addition to the N values shown, an analytic value for N=256 is given in Fig. 6C. Error bars for Smoldyn
results are given as the standard error of the mean for 500 Smoldyn simulations per data point.
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