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ABSTRACT 15 

Studies dating back a century (Flügge, 1934) have stressed the critical role of the wind as the 16 
primary directional cue in odor plume navigation. Here, we show that Drosophila shape their 17 
navigational decisions using a second directional cue – the direction of motion of odors – which 18 
they detect from the temporal correlations of the odor signal between their two antennae. Using 19 
a high-resolution virtual reality paradigm to deliver spatiotemporally complex fictive odors to 20 
freely-walking flies, we demonstrate that such odor direction sensing is computationally equivalent 21 
to motion detection algorithms underlying motion detection in vision. Simulations and theoretical 22 
analysis of turbulent plumes reveal that odor motion contains valuable directional information 23 
absent from the airflow; indeed, this information is used by both Drosophila and virtual agents to 24 
navigate naturalistic odor environments. The generality of our findings suggests that odor 25 
direction sensing is likely used throughout the animal kingdom, and could significantly improve 26 
olfactory robot navigation in harsh chemical environments.   27 

 28 

INTRODUCTION 29 

Odor plumes in the wild are spatially complex and rapidly fluctuating structures carried by 30 
turbulent airflows (Riffell et al., 2008). Odors arrive in bursts of high concentration interrupted by 31 
periods of undetectable signal (Murlis et al., 1992; Murlis et al., 2000), and the temporal statistics 32 
of these odor encounters can vary by orders of magnitude (Celani et al., 2014). To successfully 33 
navigate odor plumes in search of food and mates, insects must extract and integrate multiple 34 
features of the odor signal, including the odor encounters’ intensity (Alvarez-Salvado et al., 2018; 35 
Pang et al., 2018), spatial distribution (Jung et al., 2015; Tao et al., 2020), and temporal aspects 36 
such as timing (Mafra-Neto and Cardé, 1994; van Breugel and Dickinson, 2014), duration 37 
(Alvarez-Salvado et al., 2018), and frequency (Demir et al., 2020; Jayaram et al., 2021; Kanzaki 38 
et al., 1992; Mafra-Neto and Cardé, 1994; Vickers and Baker, 1994). Effective plume navigation 39 
requires balancing these multiple streams of olfactory information and integrating them with other 40 
sensory inputs including visual and mechanosensory cues (Budick et al., 2007; Suver et al., 2019; 41 
van Breugel and Dickinson, 2014). 42 

Like many animals, insects sense odors using two spatially separated sensors – their antennae 43 
– which provides an information stream whose role in navigation still remains unclear. Indeed, 44 
Drosophila can detect inter-antennal concentration differences, and use them to navigate simple 45 
plumes such as static ribbons, where gradients are resolvable and informative  (Duistermars et 46 
al., 2009; Gaudry et al., 2013). But the relevance of bilateral sensing for natural plume navigation 47 
is less clear, since odor gradients in turbulent flows fluctuate rapidly and do not reliably point 48 
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toward the source (Alvarez-Salvado et al., 2018). Assessing whether insects use these gradients 49 
in complex plumes would require imaging odor signals in real-time during navigation, which was 50 
done for the first time only recently (Demir et al., 2020). While theoretical studies have suggested 51 
that gradients may be informative in near-surface turbulent plumes (Boie et al., 2018), this is not 52 
yet supported by observations (Alvarez-Salvado et al., 2018).  53 

Here, we reveal a distinct role for bilateral sensing: detecting the direction of motion of odor 54 
signals. A waft of odor, such as a thin odor filament, passing laterally over an insect hits the two 55 
antennae sequentially; the filament’s direction of motion could in principle be inferred by resolving 56 
differences in firing rate between the antennae over time. Indeed, by reanalyzing data from an 57 
experiment in which odor plumes were measured simultaneously with fly behavior (Demir et al., 58 
2020), we find a significant correlation between fly turning and odor motion direction. To 59 
investigate causality, we develop an optogenetic approach to deliver fictive odor signals with high 60 
temporal and spatial precision, and completely divorced from wind, to freely-walking Drosophila. 61 
In this setup, flies reliably turn against the direction of fictive odors, even in the absence of wind 62 
– fly turning responses are odor direction selective. Leveraging stimuli from experiments exploring 63 
direction selectivity in the fly eye (Salazar-Gatzimas et al., 2016), we find that odor direction 64 
selectivity is consistent with elementary correlation-based algorithms underlying visual motion 65 
detection (Hassenstein and Reichardt, 1956), revealing the generality of these computations 66 
across sensory modalities. Naively, since odors are transported by the wind, odor motion and 67 
wind motion could be considered redundant directional cues. Instead, we find that odor direction 68 
sensing integrates with wind-driven responses in a mostly additive manner, and we show, using 69 
simulations of complex plumes, that odor motion contains valuable directional information absent 70 
in the airflow. To demonstrate the utility of odor direction sensing in a goal-directed task, we 71 
delivered complex fictive odor plumes and assessed flies’ ability to localize the source. Selectively 72 
perturbing odor direction, while leaving all other aspects of the plume and airflow unaltered, 73 
significantly degrades flies’ navigational performance. Finally, we show that complex plume 74 
navigation by virtual agents in silico is significantly enhanced by odor direction sensing, 75 
suggesting improvements in the design of olfactory robots. Our work reveals a key information 76 
stream for natural plume navigation, and suggests a valuable role for spatiotemporal sensing in 77 
environments which lack reliable odor gradients.  78 

 79 

RESULTS 80 

Flies respond direction selectively to odor motion in the absence of wind 81 

To investigate if flies sense and react to odor direction, we first re-analyzed a dataset of walking 82 
Drosophila navigating a complex, visualizable odor plume whose odor statistics resemble those 83 
in turbulent flows (Demir et al., 2020) (Fig. 1a). In this plume, gradients can be randomly oriented 84 
relative to the source, and often differ substantially from the odor direction (Fig. 1a; green and 85 
magenta vectors). Since the odor is visible, we can quantify the odor signal perceived during 86 
navigation, as well as infer the projections along the antennae of the odor gradient and of the odor 87 
motion direction (Fig. 1b and Supplementary Fig. 1), while simultaneously measuring fly behavior 88 
(Fig. 1b). Insects turn upwind when encountering odor signals (Alvarez-Salvado et al., 2018; 89 
Budick and Dickinson, 2006; Demir et al., 2020; van Breugel and Dickinson, 2014), which we 90 
verified for flies oriented slightly away from the upwind direction (blue and red curves in Fig. 1c). 91 
For flies already oriented upwind, there was no odor-elicited turning bias, nor any turning bias 92 
relative to the perceived odor gradient (Fig. 1d). However, in this case, fly turning correlated 93 
significantly with odor direction (Fig. 1e), suggesting that flies use directional odor cues when 94 
directional information from the wind is minimized.  95 
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Still, since odors are transported by the airflow, odor direction and wind motion are inherently 96 
correlated. To break this correlation, we turned to optogenetic stimulation of olfactory receptor 97 
neurons (ORNs) using the red-shifted channelrhodopsin Chrimson (Bell and Wilson, 2016; 98 
Klapoetke et al., 2014; Mafra-Neto and Cardé, 1994; Tao et al., 2020). We reasoned that not only 99 
would optogenetics allow us to adjust the airflow independently of the odor signal, it would also 100 
give us tight (< 300 μm) and fast (< 16 ms) control of the stimulus. We combined two experimental 101 
paradigms into a single optogenetic setup. The first is a large arena, high-throughput wind tunnel 102 
for walking fruit flies, also used to collect the data in Fig. 1 (Demir et al., 2020). The second is a 103 
method for patterned optogenetic stimulation using a light projector mounted above the arena 104 
(DeAngelis et al., 2020) (Fig. 2a). Our setup can deliver spatially complex light patterns throughout 105 
the arena, and individual flies can be optogenetically stimulated with sub-mm resolution. Due to 106 

Figure 1. Drosophila turning behaviors are correlated with odor direction in a spatiotemporally complex 
odor plume. a, Snapshot of walking flies navigating a spatiotemporally complex odor plume generated by 
stochastically perturbing an odor ribbon in laminar flow with lateral airjets. Odor gradients (magenta arrows) and 
odor direction (green arrows) do not necessarily align, and can point in random directions relative to the odor source. 
Blue oval: virtual fly antennae region used to estimate perceived signal quantities during navigation. b, Example 
time trace of perceived signal-derived quantities (blue) and fly behaviors (orange) for track shown in a. Odor 
direction was computed by cross-correlating the signal in the virtual antenna over successive frames, and 
determining the spatial shift giving maximal correlation, while odor gradient was computed by linearly regressing 
the odor concentration against position along the major axis of the virtual antenna. c, Fly angular velocity as a 
function of odor concentration, for flies oriented in a 40o upwind sector (black), or in a 40o sector centered 20o 
clockwise (red) or counterclockwise (blue) from the upwind direction. Positive values indicate a counterclockwise 
turn. Correlations are significant for flies in the off-axis sectors (slopes = 0.037 ± 0.005,  n = 174 tracks and −0.039 ±
0.003, n = 312 tracks for clockwise and counterclockwise sectors, respectively. 𝑝𝑝 < 1𝑒𝑒-6 (two-tailed t-test) for both 
sectors), but not those oriented directly upwind (slope = 0.005 ± 0.003,𝑝𝑝 > 0.05, n = 285 tracks). d-e, Fly angular 
velocity versus odor gradient and odor direction for flies oriented in a 40o sector upwind. Angular velocity is 
uncorrelated with odor gradient (mean slope = −0.005 ± 0.003,𝑝𝑝 > 0.05, two-tailed t-test, n = 284 tracks) but 
significantly correlated with odor direction (mean slope = 0.040 ± 0.003,𝑝𝑝 < 1𝑒𝑒-6, two-tailed t-test, n = 282 tracks) 
in the virtual antenna.  
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Chrimson’s high sensitivity (Klapoetke et al., 2014), the relatively low light intensity of the projector 107 
(4.25 μW/mm2) over the large 27x17 cm2 arena was sufficient to stimulate a sustained firing 108 
response in ORNs, as verified with electrophysiology (Supplementary Fig. 2a). As a proof-of-109 
concept, we projected fictive “odor ribbons” onto the arena while flowing laminar wind 110 
(Supplementary Fig. 2b), and recorded flies in which the olfactory co-receptor Orco drove the 111 
expression of Chrimson. Though flies are only weakly responsive to red light, we used blind flies 112 
throughout to remove any visual effects. Previous studies have shown that optogenetic 113 
stimulation of Orco-expressing neurons acts as an attractive fictive odor signal (Bell and Wilson, 114 
2016; Tao et al., 2020). Indeed, flies turned and followed the fictive ribbons upwind, mirroring fly 115 
responses to streaming ribbons of attractive odors such as ethyl acetate and apple cider vinegar 116 
(Demir et al., 2020) (Supplementary Fig. 2b). By aligning the coordinate systems of the camera 117 
and projector, we can track flies’ behaviors simultaneously with their perceived fictive odor signal, 118 
giving us spatiotemporally precise measurements of fictive odor stimuli (Methods, Supplementary 119 
Fig. 2c). 120 

Next, we presented a simple stimulus consisting of traveling fictive odors bars in the absence of 121 
wind. Flies oriented perpendicular to the bar motion receive differential stimulation across their 122 
antennae when the edges of each bar pass across them. If flies responded selectively to the 123 
direction of fictive odor motion, we would expect opposing behaviors for bars traveling rightward 124 
versus leftward. We thus presented 5mm-wide bars traveling 15 mm/s either left or right, in 5s-125 
long blocks followed by a 5s-long block of no stimulus (Fig. 2b). Right-moving bars elicited a net 126 
displacement of fly position to the left, and vice versa (Fig. 2c). Further, flies oriented against the 127 
direction of motion during the 5s stimulus block, but exhibited no asymmetry during the 5s blank 128 
(Fig. 2d). Notably, both of these behaviors were absent in Orco>Chrimson flies with one antenna 129 
ablated (Supplementary Fig. 3a-b), but were preserved when Chrimson was expressed only in 130 
ORNs expressing the receptor Or42b (Supplementary Fig. 3c-d), which is known to drive olfactory 131 
attraction to vinegar (Semmelhack and Wang, 2009). These experiments suggested that flies’ 132 
olfactory responses were direction selective, and that direction selectivity is enabled by bilateral 133 
sensing from the two antennae. The key indicator of direction selectivity was counterturning 134 
against bar motion – a reasonable response for locating an odor source emitting propagating odor 135 
signals.  136 

Direction selective responses to ON and OFF edges are computed with a timescale of tens 137 
of milliseconds 138 

Since insects and vertebrates both detect spatial gradients of odor concentration and use them 139 
to navigate (Catania, 2013; Duistermars et al., 2009; Gardiner and Atema, 2010; Rajan et al., 140 
2006; Wu et al., 2020), we wondered if gradient sensing could explain the directional biases we 141 
observed. We repeated the experiments above with wider (30-45 mm) bars, which allowed us to 142 
quantify responses to each edge individually – the ON edge, when the fictive odor first passes 143 
over the fly, and the OFF edge, when fictive odor leaves the fly (Fig. 2e). Responses to these 144 
stimuli would clearly distinguish direction selectivity from gradient sensing, since gradient sensing 145 
would result in opposing behaviors at the ON and OFF edges while direction sensing responses 146 
would be the same (Fig. 2e). We calculated fly turning bias, defined as the sign of the cumulative 147 
change in orientation between 150 and 300 ms after the edge hit, as a function of the fly’s 148 
orientation relative to the moving edge. For both ON and OFF edges, these plots had strong 149 
positive peaks for fly’s oriented parallel to the edge, indicating that flies are responding to the odor 150 
direction, not the spatial gradient (Fig. 2f). Meanwhile, the responses were flat for control flies 151 
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 152 

(Fig. 2f). Repeating this for various bar speeds |𝒗𝒗bar| showed strong direction selectivity for bars 153 
at 10 and 15 mm/s, and a suppression for lower speeds down to 1 mm/s (Supplementary Fig. 4). 154 
For slower speeds — 1 and 5 mm/s — the ON response was still significant, while the OFF 155 
response was absent, which could result from gradient sensing in nearly static odor environments. 156 
Finally, directional turning responses were essentially absent in two negative controls – flies in 157 
which Chrimson is not activated, or those with 1 antenna ablated (Supplementary Fig. 4). 158 

Turning responses to odor motion and wind motion are summed.  159 

Insects universally bias their heading upwind in the presence of odor (Alvarez-Salvado et al., 160 
2018; Baker et al., 2018; Budick and Dickinson, 2006; Demir et al., 2020; Kanzaki et al., 1992; 161 
Kennedy and Marsh, 1974; Mafra-Neto and Cardé, 1994; Vickers and Baker, 1994), but the role 162 

Figure 2. Turning responses are consistent with direction sensing, not gradient sensing. a, Schematic of fly 
walking assay. Flies with Chrimson expressed in ORNs receive optogenetic stimulation from a video projector 
mounted above arena, which displays fictive odor stimuli throughout arena with high spatial (< 300 um) and temporal 
(< 6 ms) precision. b, Fictive odor bars moving at 15 mm/s are presented in 5s blocks, interleaved with a 5s blank 
period. Differences in fly orientation or velocity for rightward (along +x) versus leftward (along -x) bar motion would 
indicate that flies can sense odor direction without mechanical cues from the wind. c, Component of fly walking 
velocity along +x direction during the 5s stimulus (shaded grey) and blank periods, for rightward (blue; n = 407 
tracks) and leftward (orange, n = 455 tracks) moving bars, for Orco>Chrimson flies. Shaded error bars: SEM. d, 
Distribution of fly orientations during the 5s stimulus period (top) and 5s blank period (bottom), for rightward (blue) 
and leftward (orange) bar motion. Orientations are symmetrized over the x-axis. The differential effects in c and d 
disappeared for the same genotype with 1 antenna ablated (Supplementary Fig. 3a-b), but were maintained for flies 
with Chrimson expressed only in ORNs that express Or42b (Supplementary Fig. 3c-d). e, Direction sensing can be 
differentiated from gradient sensing by measuring turning responses as a function of fly orientation at both edges 
of wide, moving fictive odor bars: the ON edge (when the fictive odor passes onto the fly) and the OFF edge (when 
it leaves it). f, Fly turning bias versus orientation at ON (green) and OFF (purple) edge, for Orco>Chrimson flies 
that are optogenetically active (left 2 plots) and optogenetically inactive (i.e. not fed ATR; right 2 plots). Bars move 
at either 10 or 15 mm/s (data is pooled); turning bias is quantified as the sign of the change in orientation over the 
window from 150 ms to 300 ms after the bar onset, where +1 is counterclockwise and -1 is clockwise. Each point 
covers a span of ±45𝑜𝑜; thus, distinct points contain overlapping data. Error bars: SEM. Turning bias for 
optogenetically active flies oriented perpendicular to the bar motion (𝜃𝜃 = 0) are significantly distinct from zero for 
both ON and OFF edges (p < 1e-6 for both edges, chi-squared test; n = 2398 tracks), but not for optogenetically 
inactive flies (p > 0.05 for both edges; n = 3622 tracks).  
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of odor direction in this upwind response is unknown. Our patterned optogenetic setup allowed 163 
us to investigate this by independently controlling the wind and odor direction, which is otherwise 164 
impossible in natural environments. Above, we quantified turning bias in response to odor motion, 165 
but without wind (Fig. 2). We reasoned that in the presence of both wind and odor motion, fly 166 
responses would reflect some sort of summation of these responses in isolation, so we now 167 
presented fictive odors in wind, but without the motion of odor. To remove odor motion, we flowed 168 
laminar wind and flashed the entire arena for 2.5 seconds, followed by 2.5 seconds of no stimulus 169 
(Fig. 3a). This stimulates both antennae simultaneously, removing bilateral information — an 170 
artificial stimulus that is difficult to deliver with natural odors. In this situation, flies bias their 171 

Figure 3. Turning responses to odor motion and wind motion are summed. a, Flashing the whole arena 
stimulates both antennae simultaneously, thus removing bilateral information that could enable direction selectivity. 
Laminar wind is introduced at 150 mm/s. b, Fly turning bias as a function of fly orientation, defined as in Fig. 2, for 
fictive bilateral odor flashes in the presence of wind (left) and moving fictive odor bars without wind (right). The latter 
plot is the same data as in Fig. 2f. Axes for the two plots are defined such that 900 points in the direction of the wind 
or the direction of the bars, respectively. Grey shades: values for which fly turns counter to the wind direction or bar 
direction; all measured values lie in this range. Both plots can be well approximated by −0.4cos𝜃𝜃 and −0.3cos𝜃𝜃, 
respectively. c, By row: expected turning bias versus orientation (dashed curve) for bars oriented parallel, 
antiparallel, or perpendicular to the wind, assuming that turning bias is the sum of the fitted cosines from b, which 
are reproduced in black and grey, respectively. Note that in the 2nd and 3rd row, the grey curve has a phase shift 
depending on the bar direction relative to the wind. d, Solid curves: measured data. Bars move at 15 mm/s. Dashed 
curves: expected responses from c. Shaded regions: 1 standard error. n = 2586, 2535, 2467, 1614 tracks for flash, 
and bars parallel, antiparallel, and perpendicular to the wind, respectively. Responses to OFF edges were very 
weak, suggesting other nonlinear interactions between the loss of odor and the wind (Supplementary Fig. 5). 
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heading upwind (against the wind) at the onset of the flash (Fig. 3b; left plot), reminiscent of their 172 
tendency to turn “against” the odor motion in the absence of wind (Fig. 2f). The similarity of turning 173 
responses to wind and odor motion separately is illustrated by fitting the turning bias versus 174 
orientation plots to a sinusoid (Fig. 3b; dashed lines). In both cases, the plots are well fit by 𝐴𝐴cos𝜃𝜃, 175 
where 𝐴𝐴wind = -0.40 and 𝐴𝐴odor = -0.30. 176 

These simple functional forms encouraged us to consider a simple hypothesis for how flies 177 
respond to fictive odor edges moving at a given angle relative to the wind. We hypothesized that 178 
the response to the combined signal is a sum of the bar motion and odor motion responses. This 179 
hypothesis predicts that when the odor and wind direction are aligned, the peak response should 180 
increase in magnitude and remain centered at 0𝑜𝑜 and 180𝑜𝑜 (Fig. 3c; first row). If odor and wind 181 
motion oppose each other, these peaks should nearly cancel (Fig. 3c; middle row). Finally, in the 182 
interesting case of wind and odor directions perpendicular to each other, the peaks should shift 183 
leftward to ~145𝑜𝑜 and ~325𝑜𝑜 (Fig. 3c; bottom row). To test these predictions, we presented fictive 184 
odor bars either parallel, antiparallel, or perpendicular to 150 mm/s laminar wind. When the wind 185 
and odor were aligned, the turning bias at ON edges was nearly perfectly fit by the additive 186 
prediction (Fig. 3d). The antiparallel motion of bars and odors was also fit well – extrema remained 187 
at 0𝑜𝑜 and 180𝑜𝑜, though the cancellation overshot slightly. Notably, the response to perpendicularly 188 
oriented wind and odor reproduced the shift of the response curve peak from ~180𝑜𝑜 to  145𝑜𝑜, and 189 
nearly reproduced the shift of the minimum from ~360𝑜𝑜 to ~325𝑜𝑜. These results suggest that odor 190 
direction selective responses integrate with directional information from the wind in a largely, but 191 
not entirely, additive fashion. Moreover, universally observed upwind turning responses are more 192 
than naive mechanosensory reactions triggered by the presence of odor – they can be enhanced 193 
and even cancelled by directional information from the odor itself. 194 

Flies use spatiotemporal correlations in odor intensity to detect odor direction.  195 

We next tested the extent to which our observations were consistent with elementary motion 196 
detection algorithms, by first analyzing our data for moving bars in the absence of wind (Fig. 2). 197 
Odor motion creates a difference in latency Δ𝑇𝑇 between the stimulation of the two spatially 198 
separated antennae, the sign and magnitude of which determines the output of direction-selective 199 
models such as the classical Hassenstein-Reichardt correlator (HRC) (Hassenstein and 200 
Reichardt, 1956). In our assay, Δ𝑇𝑇 can be inferred from the velocity of the bars relative to the flies 201 
using simple geometric considerations (Supplementary Fig. 6; Methods). This allows us to 202 
express turning bias as a function of Δ𝑇𝑇, thereby directly testing the predictions of an HRC model. 203 
In a rightward-selective HRC (Fig. 4a), a signal from the left antenna is multiplied with the delayed 204 
signal from the right antenna, where the delay is implemented as an exponential filter 𝑒𝑒−𝑡𝑡/𝜏𝜏. 205 
Subtracting this from a similar computation with the antennae switched gives the detector output 206 
𝑟𝑟(𝑡𝑡). We modeled the turning bias as the time integral of 𝑟𝑟(𝑡𝑡), for which the HRC predicts a turning 207 
bias proportional to 1 − 𝑒𝑒−Δ𝑇𝑇/𝜏𝜏 for rightward moving edges. Thus, plotting the turning bias against 208 
Δ𝑇𝑇 would allow us to extract the filter time constant 𝜏𝜏, revealing the timescale of olfactory motion 209 
detection. Pooling the data from both ON and OFF edges, we found that the prediction was fit 210 
well, with filter timescales in the range 𝜏𝜏 = 25 ± 12  ms (Fig. 4b). Though this estimate is 211 
approximate and limited by the temporal and spatial resolution of the projector, it is notable that 212 
the timescale is comparable to the timescales of visual motion detection in Drosophila vision 213 
(Salazar-Gatzimas et al., 2016).  214 
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Elementary motion detection algorithms respond fundamentally to correlations in the signal over 215 
space and time. To better compare against the predictions of the HRC, we moved beyond ON 216 
and OFF odor edges and turned to correlated noise stimuli, which have been used to characterize 217 
direction selective computations in fly vision (Salazar-Gatzimas et al., 2016). A snapshot of a 218 

Figure 4. Olfactory direction sensing obeys a correlation-based algorithm. a, Schematic of hypothesized 
Hassenstein-Reichardt correlator (HRC) model in the olfactory circuit. Signal from one antenna projects to both 
brain hemispheres, but with distinct temporal transformations; we implement this by filtering one arm with 𝑒𝑒−𝑡𝑡/𝜏𝜏. 
Fly’s turning bias is modeled as the time integral of the correlator output (Methods). b, Black dots: measured turning 
bias versus Δ𝑇𝑇, for all times fly crosses a fictive odor edge. Each datapoint spans ±4 ms. The HRC model predicts 
that turning bias is proportional to 1 − 𝑒𝑒−

Δ𝑇𝑇
𝜏𝜏 , which can be used to extract the delay timescale 𝜏𝜏. Middle red line: fit 

of HRC to mean of turning bias; upper/lower lines: fit to mean ± 1 SEM of the turning bias. Estimated correlator 
timescale 𝜏𝜏 lies in a range of tens of milliseconds. c, Correlated noise stimuli consist of 1-pixel-wide fictive odor 
bars perpendicular to 150 mm/s laminar flow. In one frame, each bar is independently bright or dark with equal 
probability (3 subsequent frames are shown). However, stimuli are correlated in time, so the bar pattern in the next 
frame depends on the pattern in the current frame. In this illustration, bars are positively correlated along +𝑥𝑥, so a 
bright bar at a given 𝑥𝑥 in one frame is likely to be proceeded by a bright bar one 𝑥𝑥-pixel to its right in the next frame. 
Visually, this would look like a rightward moving pattern. d, There are 4 types of stimuli, depending on the correlation 
direction (along +𝑥𝑥, i.e. with-wind, or along – 𝑥𝑥, i.e. against the wind) and the correlation parity (+ or -). Each type 
of stimulus is characterized by the correlation matrix 𝐶𝐶(Δ𝑥𝑥,Δ𝑡𝑡) between two bars separated spatiotemporally by 
Δ𝑥𝑥 pixels and Δ𝑡𝑡 frames. Since our stimuli are generated by summing and binarizing Gaussian variables, nonzero 
correlations are not absolute, but rather have magnitude 1/3. For example, for positively correlated with-wind stimuli 
(top left plot), 𝐶𝐶(1, 1) =  𝐶𝐶(−1,−1) = 1/3, and the remaining correlations are zero, while for negatively correlated 
with-wind stimuli (bottom left plot), 𝐶𝐶(1, 1) =  𝐶𝐶(−1,−1) = −1/3. e, Turning bias versus fly orientation for positively 
correlated (left) and negatively correlated (right) stimuli. Stimuli are presented in 4s blocks, interleaved with 4s of 
no stimulus; wind flows throughout. Turning biases are defined as the sign of the change in orientation over 300 
ms from the onset of the 4s stimulus block. n = 489, 496 for positively correlated with and against-wind, and 338, 
335 for negatively correlated wind and against-wind, respectively. f, Difference D between with-wind and against-
wind responses from c, for positively (green) and negatively (purple) correlated stimuli. The value of D for positive 
and negative correlations differed significantly for flies oriented perpendicular to the bar motion (𝜃𝜃 = 0), (p < 1e-4, 
chi-squared test).  
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correlated noise stimuli is a pattern of 1-pixel wide bars, each of which is either bright or dark (Fig. 219 
4c). The pattern updates in time in such a way that it contains well-defined positive or negative 220 
correlations between adjacent pixels. Intuitively, a positive correlation in the +x direction means 221 
that bright bar at a given x is likely to be proceeded, in the subsequent frame, by a bright bar 1 222 
pixel to its right; visually, this would appear to be a rightward moving pattern. To enhance the 223 
effects, we simultaneously flowed laminar wind as in the experiments in Fig. 3. Thus, there were 224 
four types of correlated noise stimuli, corresponding to the possible combinations of correlation 225 
direction (with or against wind) and polarity (negative or positive), each of which is uniquely 226 
defined by its correlation matrix 𝐶𝐶(Δ𝑥𝑥,Δ𝑡𝑡) (Fig. 4d). 227 

In this experiment, turning responses to positively-correlated noise stimuli mimicked those to 228 
moving bars: upwind turning was suppressed when the correlation direction opposed the wind 229 
(Fig. 4e; first plot). Importantly, spatial gradients in these stimuli quickly average to zero, so only 230 
a computation sensitive to spatiotemporal correlations — and not gradients — could account for 231 
behavioral suppression when the correlation direction and wind were misaligned. Repeating for 232 
negative correlations, we found that upwind turning was suppressed when the correlation and 233 
wind were aligned (Fig. 4e; second plot). Notably, this response is also consistent with a 234 
correlation-based algorithm, which predicts a reversal of behavior when the correlation polarity 235 
flips sign (Salazar-Gatzimas et al., 2016). In fact, this “reverse phi” phenomenon is actually an 236 
illusion – a byproduct of a pairwise correlator algorithm – that has been observed in visual 237 
responses of several species (Clark et al., 2011; Livingstone et al., 2001; Orger et al., 2000; 238 
Salazar-Gatzimas et al., 2018; Tuthill et al., 2011), including humans (Anstis and Rogers, 1975). 239 
Subtracting the with-wind and against-wind responses for each polarity indicated clearly that the 240 
reverse phi prediction was satisfied (Fig. 4f).  241 

We corroborated our results using gliders, another class of correlated stimuli (Clark et al., 2014; 242 
Hu and Victor, 2010). Visually, a glider is a random pattern of light and dark bars moving in one 243 
direction (Supplementary Fig. 7a).  Unlike correlated noise, the bars are correlated not only with 244 
a neighboring bar in the subsequent frame, but also with more distant bars at later times. 245 
However, unlike the weaker 1/3 correlations for correlated noise, the correlations in glider stimuli 246 
are perfect (Supplementary Fig. 7b), so we expected similar trends as before, but with larger 247 
effect sizes. For positively correlated gliders, we found similar trends as with correlated noise, but 248 
much larger separations between the with-wind and against-wind responses (Supplementary Fig. 249 
7c). We were also able to explore a range of correlation times by adjusting the frame update 250 
times. For update times in the range of 17-30 ms, we find direction selective responses, while for 251 
shorter update times (11 ms), direction selectivity disappeared (Supplementary Fig. 7d). 252 
Interestingly, the maximum separation of with-wind and against-wind responses was with a frame 253 
update of 17-22 ms, consistent with the estimate of the HRC filter constant using moving bars 254 
(Fig. 4b).  255 

For flies to sense these correlations in our assay, their antennae must be optogenetically 256 
stimulated by distinct pixels. We satisfied this requirement by mounting the projector such that 257 
the 𝑥𝑥-pixel width (~290 µm) approximated the D. melanogaster antennal separation 258 
(Supplementary Fig. 7e) (Miller and Carlson, 2010). Consistent with this, effects must also reduce 259 
for bars that are wider than the antennal separation. Indeed, repeating the experiments with 260 
double the bar width, we found no significant differences between with-wind and against-wind 261 
responses (Supplementary Fig. 7f). Together, these results suggest that Drosophila olfactory 262 
direction sensing obeys a correlation-based algorithm. 263 
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Odor direction encodes crosswind position and aids navigation in complex plumes 264 

Animals could use measurements of odor direction to help them navigate complex plumes, 265 
provided this information complements other directional cues such as gradients or wind. To 266 
quantify the distribution of odor signal directions in a naturalistic plume, we ran numerical 267 
simulations of an environment replicating the plume from Fig. 1. These simulations provide not 268 
only a more finely resolved concentration field, but also the airflow velocity field (Fig. 5a), which 269 
is experimentally inaccessible. We first compared, for a few fixed points in the plume, the odor 270 
velocity vodor and the airflow vwind at a single time. Both vodor and vwind had x-components 271 
comparable to the mean flow speed 150 mm/s. However, vodor also had large crosswind 272 
components v𝑦𝑦,odor pointing outward from the plume centerline, which were noticeably absent 273 
from vwind (Fig. 5b; left). Averaging over all detectable odor filaments in the 120s simulation 274 
revealed a similar trend: away from the plume centerline, the distribution of vodor spanned a tight 275 
angular range, pointing consistently outward in the crosswind direction (Fig. 5b; middle column). 276 
Meanwhile, 𝒗𝒗wind was distributed largely downwind, with much smaller outward angles (Fig. 5b; 277 
right column). To visualize the “flow” of odor motion, we calculated the time-average of ⟨vodor⟩ at 278 
all locations in the plume. We compared this to the time-average of the wind vector conditional on 279 
the presence of odor, ⟨vwind|odor⟩. We used the latter rather than the unconditional wind velocity, 280 
⟨vwind⟩, since for an ideal point source of odor within homogeneous turbulence, the latter does not 281 
encode the lateral location of the source. Throughout the plume, ⟨vodor⟩ flowed strongly outward 282 
from the plume center, while �vwind|odor� was directed essentially downwind (Fig. 5c).  283 

This analysis suggests that in naturalistic odor plumes emanating from a point source, odor 284 
direction is a strong indicator of the direction towards the centerline of the plume. This directional 285 
cue is not necessarily reflected in the local wind, nor in the local gradients, though we did find that 286 
odor gradients have a similar crosswind structure closer to the source, where the plume is less 287 
intermittent (Supplementary Fig. 8a). Of course, to be useful for navigation, odor direction must 288 
be resolvable on realistic timescales. By calculating the running average of the odor direction at 289 
a fixed location, we found that in most of the plume extent, only several hundred milliseconds 290 
were necessary to resolve the lateral components (Supplementary Fig. 8b-c). Since odor bursts 291 
occurred at ~1-5 Hz in this particular plume, a navigator could estimate the direction of odor 292 
motion orthogonal to the mean flow after only a few odor hits.  293 

To investigate how Drosophila use odor motion during a navigation task, we designed a fictive 294 
odor plume whose boundaries were subtended by a cone — as if emanating from a source — 295 
and within which thin bars moved laterally outward from or inward toward the centerline, while 296 
laminar wind flowed along the cone axis (Fig. 5d). We reasoned that inward moving bars, which 297 
are reversed from their natural flow, would degrade localization to the odor “source,” i.e. the tip of 298 
the cone. For both bar directions, flies stayed within the conical fictive odor region, but were 299 
significantly more likely to reach the upwind source region when the bars moved naturally outward 300 
(9.8% versus 4.8% reached the source for outward versus inward bars, respectively, p < 0.01, 301 
two-tailed t-test) (Fig. 5e-f). Notably, the fictive odor signals in these two paradigms do not differ 302 
by location, frequency, duration, or spatial gradient — differences in performance (Fig. 5f) can 303 
only be explained by odor direction alone. We then tried the more realistic case of projecting a 304 
video of a recorded plume (Fig. 1a) onto the arena (Fig. 5b), playing the video not only normally, 305 
but also in reverse. As in the previous paradigm, reverse playback reverses odor direction without 306 
perturbing any other spatial or temporal information measured at each point. Remarkably, the 307 
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Figure 5. Odor direction detection enhances natural plume navigation. a, Snapshot of direct numerical 
simulation of complex odor plume from Fig. 1. Grey vector field: airflow at snapshot instant; white scale bar: 20 
mm. b, (left column) Odor velocity vector at corresponding boxed locations in a along with airflow direction vector 
at same position. (middle column) Histogram of odor velocity at all times in simulation, at corresponding positions 
in a. (right column) Same for wind. c, (top) Odor velocity vector field, averaged over entire simulation. (bottom) 
Vector field of wind velocity, for times at which odor concentration is detectable, averaged over entire simulation. 
Vectors are colored by magnitude from low (yellow) to high (maroon). d, Illustration of fictive odor landscape in 
which bars move laterally outward or inward from center of the arena. Bars are restricted to a conical region 
approximating the envelope of a complex plume emanating from a source. Laminar wind flows at 150 mm/s. 
Experiments used 2 mm wide bars moving at 15 mm/s and spaced by either 5, 10, or 15 mm (data is pooled); these 
gave fictive odor hit frequencies in the range ∼1-2 Hz, similar to the measured plume. e, Measured tracks for flies 
beginning in the rear 50 mm of the arena, navigating the plume depicted in d, for outward (top) and inward (bottom) 
moving bars. Black tracks: fly tracks that reached a 40 mm box around the fictive plume source. n = 312, 457 tracks 
for outward and inward bars. For visual comparison, the same number of tracks (312) are shown in both plots. f, 
Percentage of tracks beginning in rear 50 mm that reached the source (red box in e); means are 9.8% and 4.8% 
for the outward and inward plumes, respectively. SEMs determined by bootstrapping over individual trajectories; 
differences are significant (p < 0.01, two-tailed t-test). g, Snapshot of recorded plume from Fig. 1, optogenetically 
projected into the arena with normal playback or reverse playback. Reversing the playback preserves the spatial 
location of odor hits and other temporal features, but reverses the local odor direction. h, Measured tracks for flies 
navigating the complex plume depicted in g, when the video is played normally (top) or in reverse (bottom). Only 
considered are tracks beginning in the rear 50 mm of the arena and within 30 mm laterally from the plume centerline; 
further from the centerline, there is no detectable stimulus. n = 295 and 277 tracks for normal and reverse playback, 
respectively. i, Percentage of tracks that reached the source; means are 3.0% and 0.7% for forward and reverse 
playback, respectively; differences are significant (p < 0.05, two-tailed t-test). j, 2-sensor robot navigator in silico. 
Agents are always oriented at 0o, 90o, 180o or 270o, and at each timestep turn 90o either left or right and move 
forward one step. Agents are either direction sensing (DS+) or not direction sensing (DS-) When odor concentration 
𝑐𝑐 exceeds some threshold 𝑐𝑐0, DS- agents turn upwind. DS+ agents, for 𝑐𝑐 > 𝑐𝑐0, turn against the odor direction when 
oriented upwind or downwind; crosswind agents always turn upwind. DS+ agents infer odor direction using a simple 
spacetime correlation between their 2 sensors (Methods). k, Example trajectories of robots navigating plume in a, 
when they are initialized in the back of the arena. l, Distance to source over time, for those with (purple) and without 
(green) odor direction sensing ability, for robots initialized near the plume centerline (<120 mm from axis; left plot) 
or near the plume edges (right plot). DS+ agents make significantly quicker progress when initialized near the plume 
edges.  
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likelihood to reach the odor source significantly degraded when the plume was played in reverse  309 
(3.0% versus 0.7%; p < 0.05, two-tailed t-test) (Fig. 5h-i). Together, these results indicate that the 310 
odor motion provides a directional cue complementary to odor gradients and wind motion, and 311 
strongly enhances navigation in complex odor plumes, even when all other aspects of the odor 312 
signal remain unchanged. 313 

Finally, with an eye toward practical applications, we used in silico experiments to explore the 314 
impact of odor motion sensing for robots obeying a simplified navigation algorithm. Virtual agents 315 
detected odor signals using two spatially separated olfactory “sensors,” from which they inferred 316 
odor direction 𝑣𝑣odor = ±1 using a rudimentary HRC-like computation (details in Methods). We 317 
simulated two types of agents, with and without odor direction sensing (DS+ and DS- agents, 318 
respectively). Agents were always oriented in one of the 4 cardinal directions; at each frame, they 319 
turned 90o either left or right and moved forward one step. For undetectable odor concentrations 320 
(odor concentrations c less than some threshold 𝑐𝑐0), turns were randomly left or right with equal 321 
probability. For DS- agents, navigation followed a simple odor-gated anemotaxis strategy, in 322 
which agents moved upwind in the presence of odor. Specifically, for 𝑐𝑐 > 𝑐𝑐0, crosswind agents 323 
turned upwind, upwind agents maintained their heading, and downwind agents turned randomly 324 
left or right (Fig. 5j; first row). DS+ agents, on the other hand, obeyed a combination of odor-gated 325 
anemotaxis and odor-direction-biased taxis. Specifically, odor-elicited turns were shaped by odor 326 
direction whenever the wind provided no bias (Fig. 5j; second row). Thus, for 𝑐𝑐 > 𝑐𝑐0, crosswind 327 
agents still turned upwind, but those facing up- or downwind turned “against” the odor motion (left 328 
or right turns for 𝑣𝑣odor = 1 or 𝑣𝑣odor = −1, respectively), provided the odor motion was above a 329 
detectable threshold.  330 

Putting these agents in the simulated plume (Fig. 5a), we found that both DS+ and DS- agents 331 
starting in the back of the arena could eventually find their way to the odor source (Fig. 5k). In 332 
particular, both fared well when initialized near the plume axis – in fact, DS- agents reached the 333 
source slightly more efficiently, unhindered by suboptimal crosswind moves when already facing 334 
upwind (Fig. 5l; dashed line). However, if initialized closer to the plume edges, DS- agents’ 335 
progress quickly deteriorated once they surpassed the conical extent of the plume (Fig. 5k-l). 336 
Meanwhile, DS+ agents were aided by lateral motion toward the plume axis (Fig. 5k), leading to 337 
significantly more sustained progress toward the source (Fig. 5l). This indicated that the clearest 338 
benefit of odor direction sensing was an increase in navigation reliability for sub-optimal starting 339 
positions. Thus, even a simplistic implementation of odor motion sensing can enhance the 340 
robustness of complex plume navigation, and could be incorporated straightforwardly to olfactory 341 
robots in a variety of existing schemes (Gumaste et al., 2020; Hengenius et al., 2021; Kowadlo 342 
and Russell, 2008; Liu et al., 2020; Riman et al., 2021). 343 

 344 

DISCUSSION 345 

Olfactory navigation relies on integrating various sensory signals that contain information about 346 
the odor source. Which features exist, and how much information they carry, can vary 347 
considerably between plume structures (Boie et al., 2018; Jayaram et al., 2021; Rigolli et al., 348 
2021). Gradient sensing can provide reliable directional information when navigating laboratory-349 
controlled plumes, such as static ribbons (Duistermars et al., 2009), or very close to the source 350 
of natural plumes before odor patches have dispersed (Supplementary Fig. 8). Further away from 351 
the source however, turbulent air motion stretches and fragments odor regions as they are carried 352 
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downstream, producing odor signals that are patchy and intermittent (Celani et al., 2014; Riffell 353 
et al., 2008), and which span many spatial scales – the so-called inertial convective range – from 354 
macroscopic eddies to molecular diffusion (Sreenivasan, 2019). In these regions, odor 355 
concentration gradients tend to point in random directions relative to the source, and so have 356 
limited value. Even in turbulent boundary layers, where concentrations are more regular (Connor 357 
et al., 2018), gradients can aid navigation, but require unnaturally amplifying the gradient to an 358 
extreme degree not consistent with data (Alvarez-Salvado et al., 2018).  359 

Our work confronts some of the limitations of gradients by revealing an entirely distinct role for 360 
bilateral sensing: measuring odor direction by comparing concentrations in both space and time. 361 
This information stream is especially relevant to the statistical features present in the inertial 362 
convective range of turbulent plumes. Parallel to the plume axis, odor motion is mainly determined 363 
by, and redundant with, the average wind direction. But perpendicular to the plume axis, 364 
turbulence spreads odor packets by random continuous motions, with an effective diffusivity much 365 
larger than molecular diffusion (Pope, 2011; Taylor, 1922). What results is a flux of odor patches 366 
directed away from the plume centerline, providing a strong directional cue orthogonal – and thus 367 
complementary – to the mean wind. We corroborated this with theoretical analysis of a simple 368 
turbulent plume model (Methods), finding that the outward flow of odor motion we found in 369 
simulations (Fig. 5c) exists in turbulent odor plumes more generally (Supplementary Fig. 9a-b), 370 
and that lateral odor velocity components can be detected by computing local correlations 371 
between two nearby points (Supplementary Fig. 9c).  372 

Insects universally bias their heading upwind when odors become longer, more intense, or more 373 
frequent (Alvarez-Salvado et al., 2018; Baker et al., 2018; Demir et al., 2020; Kanzaki et al., 1992; 374 
Kennedy and Marsh, 1974; Mafra-Neto and Cardé, 1994; van Breugel and Dickinson, 2014). This 375 
strategy fails at the plume edges, where insects then resort to local search or downwind or 376 
crosswind motion to re-enter the plume (Alvarez-Salvado et al., 2018; Budick and Dickinson, 377 
2006; Mafra-Neto and Cardé, 1994). In this sense, the value of the lateral odor motion is evident, 378 
providing cues about which crosswind direction to take to reenter the plume. Our work does not 379 
explore odor direction sensing in the z-dimension – say, for flying insects. The role of odor 380 
direction sensing would likely be different, since odors traveling upward would not be sensed 381 
bilaterally unless the fly were flying with nonzero roll. In flight, directional cues from the optic flow 382 
also shape navigation (Budick et al., 2007). How odor direction contributes in this locomotor 383 
regime remains an avenue for future work.  384 

Our setup allows us to test the predictions of the HRC using artificial correlation-type stimuli which 385 
would be prohibitive to reproduce with natural odors. In particular, we generated a reverse phi 386 
illusory percept for negative correlations, an signature of correlation-based algorithms observed 387 
in visual motion detection in flies (Clark et al., 2011; Eichner et al., 2011; Salazar-Gatzimas et al., 388 
2018; Salazar-Gatzimas et al., 2016; Tuthill et al., 2011) and other species (Hassenstein and 389 
Reichardt, 1956; Livingstone et al., 2001; Orger et al., 2000), including humans (Anstis and 390 
Rogers, 1975). The HRC computes only second-order correlations – correlations between pairs 391 
of points in space and time – but, at least in vision, higher-order correlations can elicit direction-392 
selective behaviors (Clark et al., 2014), and may improve motion detection by exploiting the 393 
statistics of natural scenes (Chen et al., 2019; Fitzgerald and Clark, 2015; Fitzgerald et al., 2011). 394 
Natural odor landscapes also exhibit universal highly-structured statistics (Celani et al., 2014) to 395 
which odor direction selective computations may likewise be tuned.  396 
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In mouse retina and fly vision, motion detection circuits have been characterized in detail and 397 
have many parallels (Borst and Helmstaedter, 2015; Clark and Demb, 2016), though much 398 
remains unknown. In both, visual motion is computed separately for ON and OFF edges (Euler et 399 
al., 2002; Famiglietti, 1983; Maisak et al., 2013), and it is likely that a similar split may exist in 400 
odor motion computations, given the difference in responses to ON and OFF edges in the 401 
presence of wind (Supplementary Fig. 5). In contrast to the canonical HRC architecture, three 402 
inputs feed into direction selective neurons in the fly visual circuit (Shinomiya et al., 2019; 403 
Takemura et al., 2017). This is unlikely to be the case in olfaction, if direction sensing is indeed 404 
enabled by bilateral segregation. Still, our results do not implicate any specific circuit architecture 405 
or mechanism. In fly vision, direction selective behaviors and signals are frequently well-described 406 
by a pairwise correlator model (Clark et al., 2011; Haag et al., 2004), while the underlying neural 407 
architectures and functional interactions remain incompletely understood and quite complex 408 
(Badwan et al., 2019; Gruntman et al., 2018, 2019; Haag et al., 2016; Salazar-Gatzimas et al., 409 
2018; Shinomiya et al., 2019; Strother et al., 2017; Takemura et al., 2017; Wienecke et al., 2018). 410 
Ultimately, comparisons between odor and visual motion detection systems will reveal how 411 
circuits in these distinct modalities accomplish similar tasks. 412 

Where could direction selectivity occur in the olfactory circuit? Most ORNs project to both antennal 413 
lobes, but ipsilateral and contralateral signals differ in magnitude and timing (Gaudry et al., 2013; 414 
Tobin et al., 2017), which could be amplified further downstream to enact bilateral computations. 415 
One potential region of interest is the third-order olfactory center, the lateral horn (LH), which 416 
mediates innate odor responses (Jefferis et al., 2007). Output neurons from the LH to the 417 
ventrolateral protocerebrum (VLP) have been shown to enhance existing bilateral differences 418 
through contralateral inhibition (Mohamed et al., 2019). Though this may be an isolated effect, 419 
the VLP region is highly suggestive: it lives in the ventral region of the LH, which receives inputs 420 
from wind-sensing wedge neurons – a potential integration center for bilateral odor information 421 
and wind (Dolan et al., 2019).  422 

The lack of smooth concentration fields in naturalistic plumes has inspired a number of studies 423 
focusing on how animals use the temporal features of the odor signal, such as the frequency of 424 
encounters with odorized air packets. This reliance on timing is enabled by the remarkable degree 425 
of temporal precision in olfactory circuits (Ackels et al., 2021; Gorur-Shandilya et al., 2017; Martelli 426 
et al., 2013; Park et al., 2016; Shusterman et al., 2011). Here, we show that odor timing can be 427 
combined with spatially-resolved sensing to produce a complementary information stream, 428 
encoding directions that do not exist in the only other directional cue, the wind. Our work reveals 429 
a novel role for bilateral sensing in turbulent plume navigation, beyond measuring simple 430 
gradients. 431 

  432 
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 455 

METHODS 456 

Fly strains and handling  457 

Flies were reared at 25oC and 60% humidity on a 12 hour/12 hour light-dark cycle in plastic vials 458 
containing 10 mL standard glucose-cornmeal medium (i.e. 81.8% water, 0.6% agar, 5.3% 459 
cornmeal, 3.8% yeast, 7.6% glucose, 0.5% propionic acid, 0.1% methylparaben, and 0.3% 460 
ethanol. Media was supplied by Archon Scientific, NC). All flies used in behavioral experiments 461 
were females. Between 10 and 30 females were collected for starvation and placed in empty vials 462 
containing water-soaked cotton plugs at the bottom and top. All flies were 3–10 days old and 3 463 
days starved when experiments were performed. Optogenetically active flies were fed 1 mM all 464 
trans-Retinal (ATR) (MilliporeSigma; previously Sigma Aldrich) dissolved in water. ATR was fed 465 
to flies 1 day prior to recording.  466 

All flies used throughout the study had copy of the GMR-hid gene to make them blind. Optogenetic 467 
activation was achieved by expressing Chrimson (20X-UAS-CsChrimson) in Orco-expressing 468 
olfactory receptor neurons (Orco-GAL4) in almost all experiments. The one exception was the 469 
single-Or experiments (Supplementary Fig. 3c-d), which expressed Chrimson in only neurons 470 
expressing the olfactory receptor Or42b. 471 
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Behavioral assay and optogenetic stimulation 472 

The fly walking assay is identical to the one used in a previous study (Demir et al., 2020). All 473 
experiments were done in a behavioral room held at 21-23oC and 50% humidity. The walking 474 
arena is 270x170x10mm (see Fig. 2a), and consists of top and bottom glass surfaces and acrylic 475 
sidewalls. The upwind end is an array of plastic coffee straws, which laminarize the airflow (when 476 
wind is turned on); downwind end is a plastic mesh. For experiments with wind, dry air is passed 477 
through the straws at a flow rate giving a laminar flow at 150 mm/s within the arena. Flies are 478 
introduced by aspirating through a hole near the downwind plastic mesh. Flies were illuminated 479 
using 850 nm IR LED strips (Waveform Lighting) placed parallel to the acrylic sidewalls.  480 

Experiments were recorded with a FLIR Grasshopper USB 3.0 camera with IR-pass filter at 60 481 
Hz. Optogenetic stimuli were delivered using a LightCrafter 4500 digital light projector mounted 482 
310 mm above the arena, illuminating an area larger than in the original method (DeAngelis et 483 
al., 2020). Only the red LED (central wavelength 627 nm) was used throughout this study. We 484 
used the native resolution of the projector (912 x1140 pixels), which illuminated the entire walking 485 
arena with pixels of size 292 µm (along wind axis) x 292 (perpendicular to wind axis) µm. The 486 
majority of our experiments used a 60 Hz stimulus update rate; the exception is the glider 487 
experiments (Supplementary Fig. 7d), for which we used a 180 Hz update rate to get faster 488 
updating stimuli. The average intensity of the red light within the walking arena was 4.25 µW/mm2. 489 
Though all data presented in this article used blind flies, initial exploratory experiments used flies 490 
that were not blind. To remove visual effects from the stimulating red light, we shone green light 491 
using an LED (Luxeon Rebel LED 530 nm) throughout the arena to flood the visual response. 492 
Though this was not necessary for blind flies, we retained the green light throughout the 493 
experiments presented here to compare to past data.  494 

The projector and camera have distinct coordinate axes – camera and projector pixels are 495 
different sizes and their native coordinates systems are not even the same handedness. To infer 496 
the virtual perceived stimuli for navigating flies, the transformation between a 2D camera 497 
coordinate xcam and a 2D stimulus coordinate xstim. We assume that the two are related by a 498 
combination of linear transformations and translations:  499 

xcam= Axstim+B. 500 

To estimate the matrix A and vector B, 3 mm diameter dots were projected at random locations 501 
xstim
𝑖𝑖  in the arena while recording with the camera; camera coordinates xcam

𝑖𝑖  were determined in 502 
the imaged frame using the SimpleBlobDetector function in OpenCV. The 6 elements of A and B 503 
were then determined by minimized the least squares difference: 504 

𝐶𝐶 = ��xcam
𝑖𝑖 − Axstim

𝑖𝑖 − B�
2

𝑖𝑖

  505 

We verified manually that this procedure generated accurate transformations. We generated all 506 
stimuli using custom-written scripts in Python 3.7.4, and delivered these stimuli to the projector 507 
using the Python package PyschoPy, version 2020.2.4.post1.  508 

 509 

 510 

 511 
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Electrophysiology 512 

Single sensillum recordings from Drosophila antennae were performed as described previously 513 
(Gorur-Shandilya et al., 2017). The recording electrode was inserted into a sensillum on the 514 
antenna of an immobilized fly and a reference electrode was placed in the eye. Electrical signals 515 
were amplified using an Ext-02F extracellular amplifier (NPI electronic instruments). The ab2 516 
sensillum was identified by i) its size and location on the antenna, and ii) test pulses of Ethyl 3-517 
HyrdoxyButyrate, to which the B neuron is very sensitive. Spikes from the A and B neurons in this 518 
sensillum were identified and sorted as described previously (Gorur-Shandilya et al., 2017), using 519 
a spike-sorting software package written in MATLAB (Mathworks, Inc.) (https://github.com/ 520 
emonetlab/spikesort).  521 

 522 

Experimental protocol  523 

Experiments were carried out between 9 and 12 AM. All videos were 1 minute long, unless 524 
otherwise noted. Flies numbering between 10 and 30 were aspirated into the arena and let to 525 
acclimate for 2 minutes before experiments began. Before all experiments, optogenetic activation 526 
was verified by presenting static fictive odor ribbons (as in Supplementary Fig. 2c) with laminar 527 
wind for 120 seconds, and ensuring that flies followed the ribbons upwind as a positive control. 528 
Unless otherwise noted, each experiment ran for 60 seconds, with 60 seconds in between 529 
experiments. Throughout, experiments were interleaved such that the directions of the moving 530 
stimuli were randomized. No more than 30 videos were recorded on a single set of flies. 531 

 532 

Quantification of fly behavior and perceived fictive odor stimulus  533 

Extraction of fly position, speed, and orientation from videos 534 

All scripts were written in Python 3.7.4. Fly centroids were determined using SimpleBlobDetector 535 
in OpenCV, assuming a minimum area of 5 mm2. Given the centroids, fly identities were 536 
determined using custom tracking scripts. Briefly, centroids in subsequent frames were matched 537 
to the nearest centroid, and if the centroids could not be matched, they were marked as 538 
disappeared. Flies marked as disappeared for more than 30 frames (0.5 seconds) were then 539 
deregistered. Subsequent detected centroids were then marked as new fly tracks. Fly orientations 540 
𝜃𝜃 were determined by first using the canny function in the Python module scikit-image to 541 
determine the points defining the fly edges around the centroid, then fitting these to an ellipse 542 
using custom-written Python scripts. Fly orientations are defined on the interval [0, 360o], but 543 
ellipse-fitting does not distinguish head (0o) from rear (180o). We properly resolved this using the 544 
fly velocity (below). 545 

The above data defines the fly positions (𝑥𝑥,𝑦𝑦) and orientations 𝜃𝜃. To remove measurement noise, 546 
we filtered each of these quantities with a Savitsky-Golay filter using a 4th-order polynomial and 547 
window size of 21 points (to avoid branch cuts in 𝜃𝜃, it was first converted to an un-modded 548 
quantity). Velocities �̇�𝑥 and �̇�𝑦  and angular velocity �̇�𝜃 were defined by taking the analytical 549 
derivative of the fitted Savitsty-Golay polynomials for 𝑥𝑥,𝑦𝑦, and 𝜃𝜃. To resolve the two-fold symmetry 550 
in the fitted ellipses, and therefore distinguish the fly head from the rear, we used the fly velocity. 551 
For fly speeds greater than a given speed threshold, we matched the orientation to the fly velocity 552 
vector since flies walked forward. For other times, we matched the fly heading at the beginning 553 
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and end of bouts when fly speed was below the speed threshold. The result was an estimate that 554 
may still have errors which occur as unnatural jumps in orientation. We repeated this process for 555 
various speed thresholds from 1 to 4 mm/s, and chose the orientation trace with the least number 556 
of jumps. We verified manually with several tracks that this procedure was highly reliable. 557 

We noticed that during the experiments, particularly those with long fictive odor encounters such 558 
as the wide bars in Figs. 2 and 3, there was a slow, gradual bias toward one side of the arena 559 
(along the shorter axis of the arena). This only occurred for optogenetically active flies, and we 560 
reasoned it was due to a shadowing effect of the projector light from one antenna onto the other, 561 
since the projector lens is nearer to the bottom of its projected image. This shadowing effect 562 
essentially creates a static fictive odor gradient across the antenna. To account for this bias, we 563 
repeated all experiments that had an asymmetry in the perpendicular direction, such as bars 564 
perpendicular to the wind (Fig. 3d; 3rd row), in both directions. We then averaged the turning 565 
biases from these two directions, after flipping the orientations appropriately. This would retain 566 
the effects due to direction sensing but remove the bias, under the assumption that this bias was 567 
an additive effect.  568 

 569 

Estimation of perceived fictive odor stimulus in antennae 570 

Given these smoothed and corrected 𝑥𝑥,𝑦𝑦,𝜃𝜃, we then estimated the perceived fictive odor signal 571 
in the antenna region by defining a virtual antenna at a location 1.5 mm from its centroid along 572 
the ellipse major axis toward the fly head. To generate stable estimates – i.e. not relying on a 573 
single pixel value – we use the stimulus value averaged over a box of 0.25 mm2 around this 574 
location. Stimulus values in the antennal region are not measured by imaging, since the images 575 
are IR-pass filtered. Rather, they are obtained from knowledge of the stimulus pattern and the 576 
stimulus-to-camera coordinate transformation defined above. In PsychoPy, stimulus values are 577 
defined as 8-bit integers, from 0 to 255, but in practice we only deliver stimuli as max intensity 578 
(255) or 0. Accordingly, we treat the signal in the virtual antenna as binary, equal to 1 when the 579 
average stimulus value in the 0.25 mm2 region is above 200, and 0 otherwise.  580 

 581 

Calculation of turning bias at bar edges 582 

For the bar stimuli in Figs. 2-3, we identified ON and OFF edge hits as the times that the antennal 583 
signal switched from 0 to 1 or 1 to 0, respectively, where this binarization was calculated as 584 
described above. Correlated noise and glider stimuli (Fig. 4) were presented in blocks of 4s 585 
stimulus interleaved with 4s of no stimulus; thus the stimulus ON times were 0, 8, 16 seconds, 586 
etc. To calculated turning biases, we followed prior work and considered saccadic turning events, 587 
identified as points at which the absolute value of the angular velocity exceeded 100o/s, and 588 
ignored small jitters. Turn biases at a given time 𝑡𝑡𝑖𝑖 (e.g. at an ON or OFF edge hit (Fig. 2-3)), were 589 
defined as the sign of the change in fly orientation from 𝑡𝑡𝑖𝑖 + 150 ms to 𝑡𝑡𝑖𝑖 + 300 ms, provided the 590 
absolute value of angular velocity in that window exceeded 100o/s at some point in that window.  591 
We used this 150 ms latency after 𝑡𝑡𝑖𝑖 to account for uncertainties in 𝑡𝑡𝑖𝑖 due to uncertainties in exact 592 
position of the antenna, which we estimated as being upper bounded by 2 mm. For correlated 593 
noise and glider stimuli, we considered orientation changes from 𝑡𝑡𝑖𝑖 to 𝑡𝑡𝑖𝑖 + 300 ms; the 150 ms 594 
latency was not needed in this case since the signal was independent of fly behavior, so the hit 595 
time was known to the precision of the inverse frame rate (16 ms). For all plots, to remove tracks 596 
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in which flies may have been turning before the hit, we ignored points for which the absolute 597 
angular velocity exceeded 100o/s between 300 ms and 150 ms before the hit.  598 

 599 

Plume simulations 600 

Direct numerical simulations were generated using the CFX® hydrodynamic simulation software 601 
package of ANSYS 2019. Parameters were chosen to emulate the flow and intermittent odor 602 
structure of the plume analyzed in Fig. 1 (Demir et al., 2020). An odorant with molecular diffusivity 603 
𝐷𝐷𝑚𝑚 = 7.3𝑒𝑒-6 m2/s was injected mid-stream (vertically and horizontally). The odorant was modeled 604 
as a conservative, neutrally buoyant tracer. The dimensions of the computational model domain 605 
were 30x18x1 cm, approximately matching those of the walking arena (Demir et al., 2020). The 606 
computational air inlet boundary was modeled as a uniform velocity condition, representing an 607 
idealized collimated flow. The outlet boundary condition was modeled as a zero-pressure gradient 608 
opening allowing for bidirectional flow across the boundary. Walls were modeled using 609 
hydraulically smooth, no-slip boundary conditions. To reproduce the stochastic airjets creating the 610 
complex flow and plume, alternating jet pulses of air were applied from two orifices on opposite 611 
sides of the flume. The time series of pulses were identical to the experiments (Demir et al., 2020). 612 
The model domain was broken up into 4.7𝑒𝑒6 tetrahedral elements where velocity and 613 
concentration were computed, with the largest element’s length at 5 mm with an inflation layer 614 
along the domain boundaries and a refined mesh around the inlet orifices.  615 

The flow was simulated at a 2.5 ms time step using a 𝑘𝑘-𝜖𝜖 eddy viscosity model (Pope, 2011), 616 
which solves the Reynold-averaged Navier Stokes equations, where the momentum equation is 617 
defined as: 618 

 619 
𝜕𝜕𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑡𝑡

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜕𝜕𝑈𝑈𝑖𝑖𝑈𝑈𝑗𝑗� = −
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝜇𝜇eff �
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑈𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

�� 620 

 621 
and the continuity equation as: 622 

 623 
𝜕𝜕𝑝𝑝
𝜕𝜕𝑡𝑡

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜕𝜕𝑈𝑈𝑗𝑗� = 0, 624 

 625 
where 𝜕𝜕 is the fluid density, p is pressure and 𝜇𝜇eff is the effective fluid viscosity. The turbulent 626 
eddy viscosity is treated analogously to viscosity in laminar flow such that 𝜇𝜇eff = 𝜇𝜇𝑡𝑡 + 𝜇𝜇 where 𝜇𝜇𝑡𝑡 627 
is the turbulent viscosity and 𝜇𝜇 the fluid viscosity. The 𝑘𝑘-𝜖𝜖 model assumes the local turbulent 628 
viscosity is related to the local turbulent kinetic energy (k) and the eddy dissipation rate (ε) as 629 
follows: 630 

𝜇𝜇𝑡𝑡  ∝  𝜕𝜕
𝑘𝑘2

𝜀𝜀
  631 

 632 
The advection-diffusion equation for conservative tracers was used to model the chemical 633 
transport of the odorant: 634 
 635 

𝜕𝜕𝑡𝑡𝐶𝐶𝑥𝑥  +  𝒖𝒖 ∙ 𝛻𝛻𝐶𝐶 = (𝐷𝐷𝑥𝑥 + 𝜀𝜀) 𝛻𝛻2𝐶𝐶𝑥𝑥 636 
 637 
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where 𝐶𝐶𝑥𝑥 is the tracer concentration, 𝒖𝒖 is the velocity field, 𝐷𝐷𝑥𝑥 is the molecular diffusivity and 𝜀𝜀 is 638 
the local eddy diffusivity solved from the turbulence model. For all further analysis, we used the 639 
concentration and velocity in a plane 1 mm above the bottom of the domain, in the approximate z-640 
plane of the fly antennae. 641 
 642 

 643 

Mathematical modeling and data analysis 644 

Inter-antennal latency of edge hit Δ𝑇𝑇 645 

The inter-antennal latency Δ𝑇𝑇 as a function of fly walking speed |vfly| and bar speed |vbar| can be 646 
calculated with basic geometric considerations. Here, we assume that the fly speed along the bar 647 
direction is sufficiently slow such that the bar passes over the fly. Consider a coordinate system 648 
in the frame of the moving bar, where the bar direction is +𝑦𝑦 (i.e. the bar’s edge is in 𝑥𝑥). The fly 649 
velocity in this frame is  650 

v𝑟𝑟 = [−|vfly| sin𝜙𝜙 , |vfly| cos𝜙𝜙 − |vbar|] 651 

where 𝜙𝜙 is the angle of rotation from vbar to vfly in the experimenter frame. The inter-antennal 652 
latency Δ𝑇𝑇 is then the projection of the antennal spacing 𝐿𝐿 along vbar divided by the projection of 653 
v𝑟𝑟 along vbar. The former is 𝐿𝐿 sin𝜙𝜙 and the latter is the 𝑦𝑦-component of v𝑟𝑟; the sign of 𝐿𝐿 sin𝜙𝜙  is 654 
treated as meaningful, so that a positive/negative value means the left/right antenna is hit first. 655 
Thus: 656 

Δ𝑇𝑇 =
𝐿𝐿 sin𝜙𝜙

|vbar| − |vfly| cos𝜙𝜙
 657 

where the sign is given by the numerator since the denominator is always positive for bars passing 658 
over the fly.  659 

This expression ignores the fly’s angular velocity while walking. Assuming that the fly is walking 660 
forward while also turning at a rate 𝜔𝜔, then the total accumulation of orientation over the 661 
Δ𝑇𝑇 interval is 𝜔𝜔Δ𝑇𝑇, which for typical values of the maximum rotation rate during normal turns 𝜔𝜔 ∼662 
300o/s and typical inter-antennal latencies without turning, Δ𝑇𝑇 < 15 ms, is less than 5 degrees. 663 
This would be if the fly were turning at a maximum angular velocity. For more typical jitters, 664 
rotation rates are approximately 20o/s (Demir et al., 2020), giving an accumulated angle during of 665 
less than 1 degree. If we incorporate this error as an uncertainty on 𝜙𝜙, δ𝜙𝜙, then Δ𝑇𝑇 acquires an 666 
error of  667 

𝛿𝛿Δ𝑇𝑇 = 𝛿𝛿𝜙𝜙[
𝐿𝐿 cos𝜙𝜙

|vbar| − |vfly| cos𝜙𝜙
+

�vfly�𝐿𝐿 sin2 𝜙𝜙
(|vbar| − �vfly� cos𝜙𝜙)2

] 668 

 669 

With the values assumed throughout, |𝛿𝛿Δ𝑇𝑇| < 1 ms, so 𝜔𝜔 is safely ignored to the resolution of our 670 
experiments. 671 

 672 

 673 
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HRC output versus Δ𝑇𝑇 for traveling edges  674 

Our prediction for the turning bias as a function of the latency Δ𝑇𝑇 at which an edge of odor hits 675 
the right antenna after hitting the left, is based on the output 𝑟𝑟(𝑡𝑡) of the mirror-symmetrized 676 
Hassenstein-Reichardt correlator (Salazar-Gatzimas et al., 2016). To calculate 𝑟𝑟(𝑡𝑡), we model 677 
the correlator architecture as depicted in Fig. 4a. Specifically, the time-varying signals from the 2 678 
sensors are 𝑠𝑠𝐿𝐿(𝑡𝑡) and 𝑠𝑠𝑅𝑅(𝑡𝑡). In one arm of the computation, 𝑠𝑠𝐿𝐿(𝑡𝑡) is linearly filtered with an 679 

exponential 1
𝜏𝜏
𝑒𝑒−

𝑡𝑡
𝜏𝜏, while 𝑠𝑠𝑅𝑅(𝑡𝑡) is transmitted unchanged; these are then multiplied. For a traveling 680 

ON edge moving left to right, we have 𝑠𝑠𝐿𝐿(𝑡𝑡) = 𝐻𝐻(𝑡𝑡) and 𝑠𝑠𝑅𝑅(𝑡𝑡) = 𝐻𝐻(𝑡𝑡 − Δ𝑇𝑇), where 𝐻𝐻(⋅) is the 681 
Heaviside function. Then the product of the filtered values is: 682 

𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡) = 𝐻𝐻(𝑡𝑡 − Δ𝑇𝑇)
1
𝜏𝜏
� 𝑒𝑒−

𝑡𝑡−𝑡𝑡′
𝜏𝜏 𝐻𝐻(𝑡𝑡′)

𝑡𝑡

−∞
𝑑𝑑𝑡𝑡′ 683 

𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡) = 𝐻𝐻(𝑡𝑡 − Δ𝑇𝑇)
1
𝜏𝜏
� 𝑒𝑒−

𝑡𝑡−𝑡𝑡′
𝜏𝜏

𝑡𝑡

0
𝑑𝑑𝑡𝑡′ 684 

 685 

𝑠𝑠12(𝑡𝑡) = 𝐻𝐻(𝑡𝑡 − Δ𝑇𝑇) �1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏� 686 

The other arm is similar, except that 𝑠𝑠2(𝑡𝑡) is filtered and 𝑠𝑠1(𝑡𝑡) is transmitted unchanged. Then the 687 
product of the filtered inputs is:  688 

𝑠𝑠𝑅𝑅𝐿𝐿 = 𝐻𝐻(𝑡𝑡)
1
𝜏𝜏
� 𝑒𝑒−

𝑡𝑡−𝑡𝑡′
𝜏𝜏 𝐻𝐻(𝑡𝑡′ − Δ𝑇𝑇)

𝑡𝑡

−∞
𝑑𝑑𝑡𝑡′ 690 

= 𝐻𝐻(𝑡𝑡 − Δ𝑇𝑇)(1− 𝑒𝑒−
𝑡𝑡−Δ𝑇𝑇
𝜏𝜏 ) 691 

 689 

 The correlator output is therefore: 692 

𝑟𝑟(𝑡𝑡) =  𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡) − 𝑠𝑠𝑅𝑅𝐿𝐿(𝑡𝑡) = 𝐻𝐻(𝑡𝑡 − Δ𝑇𝑇) �𝑒𝑒−
𝑡𝑡−Δ𝑇𝑇
𝜏𝜏 − 𝑒𝑒−𝑡𝑡/ 𝜏𝜏 � 693 

Assuming that flies sense odor direction using this computation, the output of the correlator, 𝑟𝑟(𝑡𝑡), 694 
must be converted to a behavior; here, we model this behavior as the turning bias being 695 
proportional to ∫ 𝑟𝑟(𝑡𝑡)𝑑𝑑𝑡𝑡:   696 

Turning bias ∝  � 𝑟𝑟(𝑡𝑡)
𝑇𝑇+

−𝑇𝑇−
𝑑𝑑𝑡𝑡 = � �𝑒𝑒−

𝑡𝑡−Δ𝑇𝑇
𝜏𝜏 − 𝑒𝑒−𝑡𝑡/ 𝜏𝜏 �𝑑𝑑𝑡𝑡

𝑇𝑇+

Δ𝑇𝑇
 697 

� 𝑟𝑟(𝑡𝑡)
∞

−∞
𝑑𝑑𝑡𝑡   ∝ �1 − 𝑒𝑒−

Δ𝑇𝑇
𝜏𝜏 � 698 

provided that behavioral timescales 𝑇𝑇− and 𝑇𝑇+, over which the correlator response is integrated 699 
to produce the turning response, are large compared to 𝜏𝜏 and to Δ𝑇𝑇. Long after the edge hit, 𝑡𝑡 ≫700 
𝑇𝑇−, the signals are both 𝑠𝑠𝐿𝐿 = 𝑠𝑠𝑅𝑅 = 1, giving an HRC output of 0, as expected for the anti-symmetric 701 
architecture.  702 

To estimate the filtering constant 𝜏𝜏, we minimize: 703 
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𝐶𝐶(𝐴𝐴, 𝜏𝜏) =  �Turning bias(Δ𝑇𝑇) − 𝐴𝐴 �1 − 𝑒𝑒−
Δ𝑇𝑇
𝜏𝜏 ��

2
 704 

over 𝐴𝐴, 𝜏𝜏. The turning bias is plotted in increments of Δ𝑇𝑇 = 4 ms, where the value at a given Δ𝑇𝑇  705 
includes values from ± 4 ms. Neighboring points therefore contain overlapping data; this has the 706 
effect of smoothing – but not biasing – the turning bias vs. Δ𝑇𝑇 curve.  707 

Responses to rightward moving OFF edges are analogous. The signal switches from 1 to 0 at the 708 
OFF edge (set it to 𝑡𝑡 = 0), so the signal on the left sensor is 𝑠𝑠𝐿𝐿(𝑡𝑡) = 1 −𝐻𝐻(𝑡𝑡) and for the right 709 
sensor is 𝑠𝑠𝑅𝑅 = 1 −𝐻𝐻(𝑡𝑡 − Δ𝑇𝑇). Then one arm of the HRC is: 710 

𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡) = (1 −𝐻𝐻(𝑡𝑡 − Δ𝑇𝑇))
1
𝜏𝜏
� 𝑒𝑒−

𝑡𝑡−𝑡𝑡′
𝜏𝜏 (1−𝐻𝐻(𝑡𝑡′))

𝑡𝑡

−∞
𝑑𝑑𝑡𝑡′ 711 

𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡) = �1 −𝐻𝐻(𝑡𝑡 − Δ𝑇𝑇)�
1
𝜏𝜏
� 𝑒𝑒−

𝑡𝑡−𝑡𝑡′
𝜏𝜏

0

−∞
𝑑𝑑𝑡𝑡′      𝑡𝑡 > 0 712 

𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡) = 𝑒𝑒−
𝑡𝑡
𝜏𝜏 ,   0 < 𝑡𝑡 < Δ𝑇𝑇 713 

and 𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡) = 0 for 𝑡𝑡 > Δ𝑇𝑇 and 𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡) = 1 for 𝑡𝑡 < 0. The other arm output is simply 𝑠𝑠𝑅𝑅𝐿𝐿 = 1 for 𝑡𝑡 <714 
0 and 𝑠𝑠𝑅𝑅𝐿𝐿 = 0 for 𝑡𝑡 > 0, since the non-delayed arm drops to zero as soon as the edge passes it 715 
at 𝑡𝑡 = 0. Thus the output is: 716 

𝑟𝑟(𝑡𝑡) =  𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡) − 𝑠𝑠𝑅𝑅𝐿𝐿(𝑡𝑡) = 𝑒𝑒−
𝑡𝑡
𝜏𝜏 𝐻𝐻(𝑡𝑡)(1 −𝐻𝐻(𝑡𝑡 − Δ𝑇𝑇)) 717 

Integrating this quantity over time gives the same turning bias as the ON edge. 718 

 719 

Generation of correlated noise stimuli and 𝐶𝐶(Δ𝑥𝑥,Δ𝑡𝑡) 720 

Correlated noise stimuli were generated as previously described (Salazar-Gatzimas et al., 2016). 721 
We used optogenetic bars that were parallel to the short axis (𝑦𝑦) of the arena (e.g. perpendicular 722 
to the wind direction, which runs along 𝑥𝑥). Each bar has a width of one 𝑥𝑥-pixel – thus, refer to an 723 
𝑥𝑥-pixel as a “pixel,” since correlations are defined just in the 𝑥𝑥-direction. The stimulus value (where 724 
-1 and 1 are for dark and bright bars, respectively) of a bar at pixel location 𝑥𝑥 and time 𝑡𝑡 is given 725 
by 𝑐𝑐(𝑥𝑥, 𝑡𝑡) = sgn(𝜂𝜂(𝑥𝑥, 𝑡𝑡) + 𝛼𝛼𝜂𝜂(𝑥𝑥 + 𝛽𝛽Δ𝑥𝑥, 𝑡𝑡 + Δ𝑡𝑡)), where each 𝜂𝜂(𝑥𝑥, 𝑡𝑡) is independently chosen from a 726 
standard normal distribution. Δ𝑥𝑥 is the pixel spacing; Δ𝑡𝑡 is the inter-frame interval. The constant 727 
𝛽𝛽 governs the direction of the correlations: +1 for stimuli correlated in the +𝑥𝑥 direction (“with-wind” 728 
in the main text) and -1 for stimuli correlated in the −𝑥𝑥 direction ("against-wind”). The constant 𝛼𝛼 729 
governs the polarity of the correlations; +1 or −1 for positive or negative correlations, respectively. 730 

The correlations can be computed straightforwardly (Salazar-Gatzimas et al., 2016). Assume that 731 
𝛼𝛼 = 𝛽𝛽 = 1; the other cases are analogous. The correlations between two pixels separated by 732 
spacing 𝑥𝑥′ and timing 𝑡𝑡′ we denote  𝐶𝐶(𝑥𝑥′, 𝑡𝑡′) = ⟨𝑐𝑐(𝑥𝑥, 𝑡𝑡 )𝑐𝑐(𝑥𝑥 + 𝑥𝑥′, 𝑡𝑡 + 𝑡𝑡′)⟩. In general, 733 

𝐶𝐶(𝑥𝑥′, 𝑡𝑡′) = ⟨sgn((𝜂𝜂1 + 𝜂𝜂2)(𝜂𝜂3 + 𝜂𝜂4))⟩ 734 

where 𝜂𝜂𝑖𝑖 is one sample of 𝜂𝜂.  For most choices of 𝑡𝑡′,𝑥𝑥′, all 𝜂𝜂𝑖𝑖 are distinct, so the correlation reduces 735 
to 0 since the sums are independent. For 𝑥𝑥′ = 𝑡𝑡′ = 0, the correlation reduces to the variance of 736 
𝑐𝑐(𝑥𝑥, 𝑡𝑡), which is 1. However, for 𝑡𝑡′ = Δ𝑡𝑡 and 𝑥𝑥′ = Δ𝑥𝑥, 𝜂𝜂2 =  𝜂𝜂3. Then,  737 
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𝐶𝐶(𝑥𝑥′, 𝑡𝑡′) = ⟨sgn((𝜂𝜂1 + 𝜂𝜂2)(𝜂𝜂2 + 𝜂𝜂4))⟩ 738 

𝐶𝐶(𝑥𝑥, 𝑡𝑡) = ⟨sgn((𝜂𝜂1 − 𝜂𝜂2)(𝜂𝜂2 − 𝜂𝜂4))⟩ 739 

since the random variables are symmetric about 0. The sign depends only on the ordering of the 740 
𝜂𝜂𝑖𝑖, which are 3 independent samples from a standard normal distribution. There are 6 ways to 741 
uniquely order the 𝜂𝜂𝑖𝑖, only two of which give a positive sign (𝜂𝜂1 >  𝜂𝜂2 >  𝜂𝜂4 and 𝜂𝜂1 <  𝜂𝜂2 < 𝜂𝜂4); 742 
thus the expected value is 1/3 (Salazar-Gatzimas et al., 2016). An analogous property holds for 743 
𝑡𝑡′ = −Δ𝑡𝑡,𝑥𝑥′ = −Δ𝑥𝑥. Finally, the 𝛼𝛼 and 𝛽𝛽 factors are incorporated straightforwardly as scale factors, 744 
giving: 745 

𝐶𝐶(𝑥𝑥′, 𝑡𝑡′) = 𝛿𝛿𝑥𝑥′,0𝛿𝛿𝑡𝑡′,0 + 𝛼𝛼
1
3

(𝛿𝛿𝑥𝑥′,𝛽𝛽Δ𝑥𝑥𝛿𝛿𝑡𝑡′,Δ𝑡𝑡 + 𝛿𝛿𝑥𝑥′,−𝛽𝛽Δ𝑥𝑥𝛿𝛿𝑡𝑡′,−Δ𝑡𝑡) 746 

Note that the correlation can be calculated by averaging over all of spacetime, or just in space for 747 
a fixed set of times, or just in time for a fixed set of points. The latter is our interpretation for the 748 
HRC output from fixed antennae, assuming the correlation direction is perpendicular to the fly 749 
body.  750 

 751 

Generation of glider stimuli 752 

Here, the stimulus value of a bar at pixel location 𝑥𝑥 and time 𝑡𝑡 is given by 𝑐𝑐(𝑥𝑥, 𝑡𝑡) = 𝐵𝐵(𝑥𝑥 − 𝛽𝛽𝑡𝑡Δ𝑥𝑥/Δ𝑡𝑡), 753 
where 𝐵𝐵 = 2𝑋𝑋 − 1 with 𝑋𝑋 ∼ Bernoulli(𝑝𝑝 = 0.5), Δ𝑥𝑥 is the pixel spacing, and Δ𝑡𝑡 is the inter-frame 754 
interval. The correlation between two pixels separated by spacing 𝑥𝑥′ and timing 𝑡𝑡′ is 755 

𝐶𝐶(𝑥𝑥′, 𝑡𝑡′) = ⟨sgn[𝐵𝐵 �𝑥𝑥 − 𝛽𝛽𝑡𝑡Δ𝑥𝑥
Δ𝑡𝑡

�𝐵𝐵 �𝑥𝑥 + 𝑥𝑥′ − 𝛽𝛽𝑡𝑡Δ𝑥𝑥
Δ𝑡𝑡

− 𝛽𝛽𝑡𝑡′Δ𝑥𝑥
Δ𝑡𝑡

�]⟩. 756 

Then, 𝐶𝐶(𝑥𝑥′, 𝑡𝑡′) = 1 when 𝑥𝑥
′

𝑡𝑡′
= 𝛽𝛽Δ𝑥𝑥

Δ𝑡𝑡
 – i.e., the correlation matrix has a diagonal or antidiagonal 757 

structure for 𝛽𝛽 = 1 and 𝛽𝛽 = −1, respectively. These stimuli are a class of glider stimuli with a two-758 
point correlation structure. Visually, these gliders are a frozen pattern of random light dark bars 759 
moving statically at constant speed in the 𝛽𝛽𝑥𝑥 direction. 760 

 761 

HRC output for correlated noise stimuli  762 

Here we calculate the HRC output for correlated noise stimuli. Assume that the antennae are held 763 
at approximately the spacing of the correlation shift Δ𝑥𝑥 (see last section), and that the correlation 764 
direction is +𝑥𝑥 (rightward over the fly body), so 𝛽𝛽 = 1 from the last section. Then one arm of the 765 
HRC gives: 766 

 767 

𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡) = 𝑠𝑠𝑅𝑅(𝑡𝑡)
1
𝜏𝜏
� 𝑒𝑒−

𝑡𝑡−𝑡𝑡′
𝜏𝜏 𝑠𝑠𝐿𝐿

𝑡𝑡

−∞
(𝑡𝑡′)𝑑𝑑𝑡𝑡′ 769 

 768 

Averaging over time gives: 770 
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⟨𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡)⟩ = ⟨𝑐𝑐(𝑥𝑥, 𝑡𝑡)
1
𝜏𝜏
� 𝑒𝑒−

𝑡𝑡−𝑡𝑡′
𝜏𝜏 𝑐𝑐

𝑡𝑡

−∞
(𝑥𝑥 − Δ𝑥𝑥, 𝑡𝑡′)𝑑𝑑𝑡𝑡′〉   771 

Since 𝛽𝛽 = 1, then only the last term in the correlation equation applies: 772 

⟨𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡)⟩ = ⟨𝑐𝑐(𝑥𝑥, 𝑡𝑡)
1
𝜏𝜏
� 𝑒𝑒−

−𝑡𝑡′′
𝜏𝜏 𝑐𝑐

0

−∞
(𝑥𝑥 − Δ𝑥𝑥, 𝑡𝑡 + 𝑡𝑡′′)𝑑𝑑𝑡𝑡′′〉   773 

⟨𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡)⟩ =
1
𝜏𝜏
� 𝑒𝑒−

−𝑡𝑡′′
𝜏𝜏 𝛼𝛼

1
3
𝛿𝛿𝑡𝑡′′,−Δ𝑡𝑡

0

−∞
𝑑𝑑𝑡𝑡′′   774 

⟨𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡)⟩ = 𝛼𝛼
1

3𝜏𝜏
𝑒𝑒−|Δ𝑡𝑡|/𝜏𝜏 ,Δ𝑡𝑡 > 0  775 

This equation holds for Δ𝑡𝑡 being positive. The other arm is analogous, for Δ𝑡𝑡 < 0. 776 

𝑠𝑠𝑅𝑅𝐿𝐿(𝑡𝑡) = 𝑠𝑠𝐿𝐿(𝑡𝑡)
1
𝜏𝜏
� 𝑒𝑒−

𝑡𝑡−𝑡𝑡′
𝜏𝜏 𝑠𝑠𝑅𝑅

𝑡𝑡

−∞
(𝑡𝑡′)𝑑𝑑𝑡𝑡′ 777 

⟨𝑠𝑠𝑅𝑅𝐿𝐿(𝑡𝑡)⟩ = ⟨𝑐𝑐(𝑥𝑥, 𝑡𝑡)
1
𝜏𝜏
� 𝑒𝑒−

𝑡𝑡−𝑡𝑡′
𝜏𝜏 𝑐𝑐

𝑡𝑡

−∞
(𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡′)𝑑𝑑𝑡𝑡′〉   778 

⟨𝑠𝑠𝑅𝑅𝐿𝐿(𝑡𝑡)⟩ = ⟨𝑐𝑐(𝑥𝑥, 𝑡𝑡)
1
𝜏𝜏
� 𝑒𝑒−

−𝑡𝑡′′
𝜏𝜏 𝑐𝑐

0

−∞
(𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡 + 𝑡𝑡′′)𝑑𝑑𝑡𝑡′′〉   779 

⟨𝑠𝑠𝑅𝑅𝐿𝐿(𝑡𝑡)⟩ =
1
𝜏𝜏
� 𝑒𝑒−

−𝑡𝑡′′
𝜏𝜏 𝛼𝛼

1
3
𝛿𝛿𝑡𝑡′′,Δ𝑡𝑡

0

−∞
𝑑𝑑𝑡𝑡′′   780 

⟨𝑠𝑠𝑅𝑅𝐿𝐿(𝑡𝑡)⟩ = 𝛼𝛼
1

3𝜏𝜏
𝑒𝑒−|Δ𝑡𝑡|/𝜏𝜏 ,Δ𝑡𝑡 < 0 781 

Thus, the full correlator output is  782 

�𝑟𝑟(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡

= ⟨𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡)⟩ − ⟨𝑠𝑠𝑅𝑅𝐿𝐿(𝑡𝑡)⟩ = 𝛼𝛼 ⋅ sgn(Δ𝑡𝑡)
1

3𝜏𝜏 
𝑒𝑒−

|Δ𝑡𝑡|
𝜏𝜏  783 

 784 

Note that the correlator output response switches sign if the correlation polarity 𝛼𝛼 flips – this is the 785 
reverse phi response. There is a slight artificiality in this expression, in that the response is 786 
discontinuous at Δ𝑡𝑡 = 0. We have assumed an exponential filter, which technically has an 787 
immediate response time, violating causality. In addition, the optimal response occurs for an inter-788 
frame interval Δ𝑡𝑡 that is arbitrarily small. As a more realistic filter, one can use 𝑡𝑡

𝜏𝜏2
 𝑒𝑒−𝑡𝑡/𝜏𝜏, which has 789 

zero response at time zero and maximal response at 𝑡𝑡 = 𝜏𝜏. Then: 790 

�𝑟𝑟(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡

= ⟨𝑠𝑠𝐿𝐿𝑅𝑅(𝑡𝑡)⟩ − ⟨𝑠𝑠𝑅𝑅𝐿𝐿(𝑡𝑡)⟩ = 𝛼𝛼 ⋅ sgn(Δ𝑡𝑡)
1

3𝜏𝜏2 
Δ𝑡𝑡𝑒𝑒−|Δ𝑡𝑡|/𝜏𝜏 791 

This filter is continuous at Δ𝑡𝑡 = 0, and the maximum correlator output occurs when the filter 792 
timescale 𝜏𝜏 matches the interframe interval Δ𝑡𝑡. In either case, the salient point is that the response 793 
is antisymmetric in both the temporal shift Δ𝑡𝑡 and the correlation polarity 𝛼𝛼, as expected.  794 
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 795 

Analysis of imaged plume 796 

We re-analyzed behavioral data previously extracted from Drosophila navigating an imaged 797 
complex plume of smoke (Demir et al., 2020) in the same walking assay used throughout this 798 
study. The signal in the virtual antenna was quantified as described previously; briefly, the virtual 799 
antenna is defined as an ellipse perpendicular to the body axis with the long axis given by the 800 
size of the fly (1.72 ± 0.24 mm) and the small axis equal to one-fifth the minor axis of the fly (0.46 ±801 
0.24 mm). We re-analyzed the imaged fly and signal data to resolve the virtual antenna signal into 802 
14 pixels along its long axis (averaged along its short axis). Thus, the signal is a vector 𝒔𝒔ant(𝑡𝑡) =803 
[𝑠𝑠(𝑥𝑥1, 𝑡𝑡), 𝑠𝑠(𝑥𝑥2, 𝑡𝑡), … , 𝑠𝑠(𝑥𝑥14, 𝑡𝑡)] defined at locations along the antenna’s long axis 𝒙𝒙ant = [𝑥𝑥1, … , 𝑥𝑥14] 804 
for a given time 𝑡𝑡. 805 

The overall concentration in the antenna was calculated as the average signal over the center of 806 
the virtual antenna – at the locations [𝑥𝑥5, 𝑥𝑥6,𝑥𝑥7,𝑥𝑥8]. The gradient ∇𝑐𝑐ant in the virtual antenna at a 807 
given 𝑡𝑡 was calculated by regressing 𝒔𝒔ant against 𝒙𝒙ant and extracting the slope. The odor velocity 808 
in the virtual antenna was estimated by calculating correlations of the virtual antenna signal over 809 
space and time. For a given 𝑡𝑡, we calculated Δ𝑥𝑥� = argmaxΔ𝑥𝑥⟨𝑠𝑠(𝑥𝑥𝑖𝑖 , 𝑡𝑡)𝑠𝑠(𝑥𝑥𝑖𝑖 + Δ𝑥𝑥, 𝑡𝑡 + Δ𝑡𝑡)⟩𝑥𝑥𝑖𝑖, where 810 
Δ𝑥𝑥 spanned integers from -7 to 7, and Δ𝑡𝑡 is the interframe interval (11 ms), and 𝑠𝑠(⋅) were mean 811 
subtracted. This gives the signed number of pixels for which the correlation between two 812 
successive frames is maximized, up to the length of the antenna. The odor velocity was then 813 
defined as Δ𝑥𝑥� ⋅ frame rate ⋅ resolution, where the frame rate is 90 frames per second and the 814 
spatial resolution is 0.153 mm per pixel. We disregarded points for which Δ𝑥𝑥�  was ±7, since those 815 
may not represent local maxima but were instead limited by the size of the antenna. All three 816 
quantities – total concentration, gradient, and odor velocity – were smoothed in time using a 817 
Savitsky-Golay filter of order 2 and smoothing window of 25 timepoints ∼ 270 μs. 818 

To remove boundary effects from the arena extent, we only used for Fig. 1c-e points for which 819 
the fly was in the central region of the arena, 100 < 𝑥𝑥 < 250 mm, |𝑦𝑦 − 𝑦𝑦0| < 40 mm, where 𝑦𝑦0 is 820 
the plume’s central axis, and only points for which fly speed was greater than 0.1 mm/s. Angular 821 
velocity was calculated as the average orientation change over 200 ms.   822 

 823 

Analysis of simulated plume 824 

The simulation generated concentration fields 𝑐𝑐(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑡𝑡) and flow velocity fields vwind(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 𝑡𝑡) 825 
defined on grid points (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) of a non-uniform mesh. We first generated values on a 0.5 mm 826 
square lattice, by triangulating the data and performing barycentric linear interpolation over each 827 
triangle (scipy.interpolate.griddata in Python, with method ‘linear’). Fields in Fig. 5 and 828 
Supplementary Fig. 8 were plotted every 1 cm, (i.e. every 20 pixels on the original 0.5 mm lattice). 829 
Wind speed vectors at each point on this 1 cm lattice were generated by averaging vwind over the 830 
20 x 20 values in a 1 cm2 box. The plotted vwind|odor field was generated by only considering wind 831 
vectors for which the odor concentration was above 1e-3. Odor gradients were generated by 832 
calculating local differences ∇𝑐𝑐𝑥𝑥 and ∇𝑐𝑐𝑦𝑦 in the 𝑥𝑥- and 𝑦𝑦- directions, respectively. Specifically, for 833 
∇𝑐𝑐𝑥𝑥, we calculated (𝑥𝑥+ − 𝑥𝑥−)/(𝑥𝑥+ + 𝑥𝑥−), where 𝑥𝑥+ and 𝑥𝑥− were the averages in the right and left 834 
half of a 1 cm2  box centered at each lattice point, respectively. ∇𝑐𝑐𝑦𝑦 was calculated analogously, 835 
using the top and bottom half of the same box. Odor velocities were calculated similarly to those 836 
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in the imaged plume used in Fig. 1, by correlating the values in a given spatial region between 837 
two frames. Specifically, to get v𝑥𝑥, odor at a given time 𝑡𝑡, we calculated argmaxΔ𝑥𝑥�𝑠𝑠�𝑥𝑥𝑗𝑗, 𝑡𝑡�𝑠𝑠�𝑥𝑥𝑗𝑗 +838 
Δ𝑥𝑥, 𝑡𝑡 + Δ𝑡𝑡��𝑥𝑥𝑗𝑗, where 𝑠𝑠(𝑥𝑥𝑗𝑗, 𝑡𝑡) was the odor concentration in a 1 cm2 box averaged over the 𝑦𝑦-839 

direction for each 𝑥𝑥𝑗𝑗 pixel spaced by 0.5 mm. The shifts Δ𝑥𝑥 ran from -20 to 20 pixels (±1 cm). This 840 
quantity was multiplied by the frame rate 100 frames per second and by the spatial resolution 0.5 841 
mm per pixel to get v𝑥𝑥, odor in mm/s. An analogous operation was done for v𝑦𝑦, odor using the same 842 
1 cm2 box. All odor gradient and odor velocity values for very low odor concentrations were set to 843 
Nan, as were any odor velocity values that produced a maximum shift |Δ𝑥𝑥| = 20. The resulting 844 
wind speed, gradient, and odor velocity were all smoothed in time using a Savitsky-Golay filter of 845 
order 1 and window length 11 (110 ms).  846 

In silico virtual agent model and simulation 847 

Virtual agents with 2 spatially separated sensors navigated the simulated plume described above 848 
using a simple algorithm. All agents were initialized at the back of the arena, facing upwind. At 849 
each frame (10 ms), agents turned either left or right 90o (except in one case where they 850 
maintained their heading; see below), depending on the navigation strategy as described in the 851 
main text, and stepped forward 0.75 mm. The sensors were placed 0.5 mm to the left or right of 852 
the agent centroid. The measured odor signal concentration was defined as 𝑐𝑐 = (𝑐𝑐𝐿𝐿+𝑐𝑐𝑅𝑅)

2
, where 853 

the concentration in each sensor was 𝑐𝑐𝐿𝐿 and 𝑐𝑐𝑅𝑅, respectively. We set the detection threshold at 854 
𝑐𝑐0 =1e-3. The odor correlation between the two sensors was defined as 𝑐𝑐odor(𝑡𝑡) =855 
𝑐𝑐𝐿𝐿(𝑡𝑡)𝑐𝑐𝑅𝑅(𝑡𝑡 + Δ𝑇𝑇)− 𝑐𝑐𝐿𝐿(𝑡𝑡 + Δ𝑇𝑇)𝑐𝑐𝑅𝑅(𝑡𝑡), where the delay timescale Δ𝑇𝑇 was chosen as 1 frame. From 856 
𝑐𝑐odor, the odor direction 𝑣𝑣odor was defined +1 if abs�𝑐𝑐odor(𝑡𝑡)� > 1e-8 and sgn�𝑐𝑐odor(𝑡𝑡)� > 0, as -1 857 
if abs�𝑐𝑐odor(𝑡𝑡)� > 1e-8 and sgn�𝑐𝑐odor(𝑡𝑡)� < 0, and as 0 otherwise. In general, odor signals with a 858 
leftward component over the virtual agent in its body frame had 𝑣𝑣odor = 1 and, while those with a 859 
rightward component had 𝑣𝑣odor = −1. Simulations were carried out separately for agents that 860 
could sense (DS+) and could not sense (DS-) odor direction. Agents followed the strategy as 861 
described in the main text. For DS+ flies, whenever 𝑐𝑐odor was below threshold (abs�𝑐𝑐odor(𝑡𝑡)� >1e-862 
8), but the odor was still detectable (𝑐𝑐 > 𝑐𝑐0), the decisions obeyed the DS- strategy.  863 

Theoretical analysis of odor motion in turbulent odor plumes 864 

Here we investigate the motion of odor signals perpendicular to the mean flow using a toy model 865 
of turbulent plume similar in spirit to those used in (Balkovsky and Shraiman, 2002; Goldstein, 866 
1951; Taylor, 1922). Odor packets are released from a point source at a given rate. The 867 
concentration around the center of each packet is given by a local diffusive process that spreads 868 
the concentration via molecular diffusion of the odor. Meanwhile, the packets themselves are 869 
advected downwind by the mean flow, while being dispersed by the fluctuating velocity 𝑢𝑢 (Taylor, 870 
1922). We consider the simple case of an isolated packet and calculate its expected velocity 871 
crosswind to the flow, at different locations throughout the plume. For analytical simplicity, we 872 
model the turbulent velocity 𝑢𝑢 as a telegraph process that switches between left motion and right 873 
motion at speed 𝑣𝑣, where the switching rates from left to right and vice versa are both 𝜆𝜆 = 1/𝑇𝑇. 874 
Thus, 2𝑇𝑇 is equivalent to the Lagrangian integral time scale and the packet speed 𝑣𝑣 to the r.m.s. 875 
of the turbulent velocity field. While the velocity 𝑢𝑢 switches discontinuously between +𝑣𝑣 and −𝑣𝑣, 876 
its time correlation function is the same as that of the Ornstein-Uhlenbeck (O-U) process often 877 
used to model homogeneous isotropic turbulence (Pope, 2011; Taylor, 1922): 878 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.09.29.462473doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462473
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

⟨𝑢𝑢(𝑡𝑡)𝑢𝑢(𝑡𝑡′)⟩ ∝ 𝑒𝑒−
�𝑡𝑡−𝑡𝑡′�
2𝑇𝑇  879 

Our goal is an estimate of the average odor motion velocity at a given lateral distance from the 880 
plume, at a given time 𝑡𝑡, ⟨𝑣𝑣⟩𝑦𝑦,𝑡𝑡. Since packets are advected downwind at some speed 𝑈𝑈 ≫ 𝑣𝑣, we 881 
have 𝑡𝑡 ≈ 𝑥𝑥/𝑈𝑈, so that this is equivalent to finding the average lateral velocity at some 𝑥𝑥,𝑦𝑦 position 882 
in the plume (Pope, 2011). Run times are distributed as 1

𝑇𝑇
𝑒𝑒−𝑡𝑡/𝑇𝑇, so packets reaching a given 𝑦𝑦 883 

will have been traveling for some distance 𝑦𝑦�, where  𝑦𝑦� is distributed as 𝑝𝑝(𝑦𝑦�) = 1
𝑇𝑇𝑇𝑇
𝑒𝑒−𝑦𝑦�/𝑇𝑇𝑇𝑇. If the 884 

packets were originally uniformly distributed, then the average velocity at 𝑦𝑦 would be 0. However, 885 
an asymmetry arises due to the non-uniform packet distribution, which is dispersing laterally from 886 
a delta function at 𝑦𝑦 = 0. For times 𝑡𝑡 ≫ 𝑇𝑇, the distribution of packets is approximately the diffusion 887 
kernel with effective turbulent diffusivity 𝐷𝐷𝑇𝑇 = 𝑇𝑇𝑣𝑣2/2: 888 

𝑝𝑝(𝑦𝑦, 𝑡𝑡) =
1

√2𝜋𝜋𝑇𝑇𝑣𝑣2𝑡𝑡
𝑒𝑒−𝑦𝑦2/2𝑇𝑇𝑇𝑇2𝑡𝑡 889 

Under these assumptions, the average velocity at the fixed point  ⟨𝑣𝑣⟩𝑦𝑦,𝑡𝑡 is: 890 

 ⟨𝑣𝑣⟩𝑦𝑦,𝑡𝑡 =
𝑣𝑣 ∫ 𝑝𝑝(𝑦𝑦′, 𝑡𝑡 − 𝑦𝑦′/𝑣𝑣)𝑒𝑒−

𝑦𝑦−𝑦𝑦′
𝑇𝑇𝑇𝑇 𝑑𝑑𝑦𝑦′ − 𝑦𝑦

−∞ 𝑣𝑣 ∫ 𝑝𝑝(𝑦𝑦′, 𝑡𝑡 − 𝑦𝑦′/𝑣𝑣)𝑒𝑒−
𝑦𝑦′−𝑦𝑦
𝑇𝑇𝑇𝑇 𝑑𝑑𝑦𝑦′ ∞

𝑦𝑦  

∫ 𝑝𝑝(𝑦𝑦′, 𝑡𝑡 − 𝑦𝑦′/𝑣𝑣)𝑒𝑒−
|𝑦𝑦−𝑦𝑦′|
𝑇𝑇𝑇𝑇 𝑑𝑑𝑦𝑦′ ∞

−∞

 891 

The first term in the numerator is for packets reaching 𝑦𝑦 that have come from its left (these are 892 
traveling in the +𝑦𝑦 direction), while the second is for those reaching 𝑦𝑦 that have come from the 893 
right, which are traveling in the −𝑦𝑦 direction. The denominator is a normalization factor given by 894 
the total number of packets reaching 𝑦𝑦 at time 𝑡𝑡. This equation can be integrated numerically. To 895 
obtain an analytical approximation, we neglect the change in the packet distribution over the time 896 
of traveling one correlation time, approximating 𝑝𝑝(𝑦𝑦′, 𝑡𝑡 − 𝑦𝑦′/𝑣𝑣) by 𝑝𝑝(𝑦𝑦′, 𝑡𝑡), since the packet 897 
distribution does not change appreciably over that time (the validity of this assumption was verified 898 
by simulations).  Integrating: 899 

⟨𝑣𝑣⟩𝑦𝑦,𝑡𝑡 = 𝑣𝑣
(𝑅𝑅+ − 𝑅𝑅−)
(𝑅𝑅+ + 𝑅𝑅−)

, 900 

where  901 

𝑅𝑅+ = 𝑒𝑒
𝑦𝑦
𝑇𝑇𝑇𝑇(1− Erf

𝑣𝑣𝑡𝑡 + 𝑦𝑦
√2𝑇𝑇𝑣𝑣2𝑡𝑡

) 902 

𝑅𝑅− = 𝑒𝑒−
𝑦𝑦
𝑇𝑇𝑇𝑇(1− Erf

𝑣𝑣𝑡𝑡 − 𝑦𝑦
√2𝑇𝑇𝑣𝑣2𝑡𝑡

) 903 

for |𝑦𝑦| < 𝑣𝑣𝑡𝑡, and 0 otherwise. We are interested in i) whether the average lateral velocity of the 904 
packets is directed outward from the plume, which would be indicated by an asymmetrical 905 
dependence in 𝑦𝑦, and ii) how this asymmetry depends on the correlation time 𝑇𝑇. The profile of 906 
⟨𝑣𝑣⟩𝑦𝑦,𝑡𝑡 is odd for all 𝑇𝑇 (Supplementary Fig. 9a), indicating that for any 𝑇𝑇, the velocity of odor packets 907 
in the crosswind direction points away from the plume’s central axis. Moreover, for higher 𝑇𝑇, the 908 
velocity component points more strongly outward through a larger portion of the plume, indicating 909 
that correlations in the packet motion underlie this directional cue (Supplementary Fig. 9a). 910 
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We next investigate how the combination of packet diffusion and packet centroid motion together 911 
can influence a spacetime correlation of the odor concentration, as would be computed by time-912 
resolved bilateral measurements. We define a lateral correlator  〈Δ𝑦𝑦Δ𝑡𝑡|𝑦𝑦𝑖𝑖〉 at a position 𝑦𝑦 and time 913 
𝑡𝑡, assuming a packet is traveling nearby with trajectory 𝑦𝑦𝑖𝑖(𝑡𝑡). The correlator has the following 914 
form: 915 

〈Δ𝑦𝑦Δ𝑡𝑡|𝑦𝑦𝑖𝑖〉 = 𝑝𝑝++𝑝𝑝−− − 𝑝𝑝+−𝑝𝑝−+, 916 

where 917 

𝑝𝑝++ = 𝑝𝑝( 𝑦𝑦 + Δ𝑦𝑦/2, 𝑡𝑡 + Δ𝑡𝑡/2| 𝑦𝑦𝑖𝑖(𝑡𝑡)) 918 

𝑝𝑝−− = 𝑝𝑝( 𝑦𝑦 − Δ𝑦𝑦/2, 𝑡𝑡 − Δ𝑡𝑡/2| 𝑦𝑦𝑖𝑖(𝑡𝑡)) 919 

𝑝𝑝+− = 𝑝𝑝( 𝑦𝑦 + Δ𝑦𝑦/2, 𝑡𝑡 − Δ𝑡𝑡/2| 𝑦𝑦𝑖𝑖(𝑡𝑡)) 920 

𝑝𝑝−+ = 𝑝𝑝( 𝑦𝑦 − Δ𝑦𝑦/2, 𝑡𝑡 + Δ𝑡𝑡/2| 𝑦𝑦𝑖𝑖(𝑡𝑡)) 921 

and where 𝑦𝑦𝑖𝑖(𝑡𝑡) is the centroid of a nearby packet and 𝑝𝑝(⋅) is the local concentration at a given 922 
location and time around the packet. Thus, the correlator 〈Δ𝑦𝑦Δ𝑡𝑡〉 is a time-antisymmetrized 923 
quantity that compares the correlation of the odor concentration between two points in the 924 
direction perpendicular to the mean wind, separated by Δ𝑦𝑦 at times separated by Δ𝑡𝑡, given a 925 
packet whose center is at (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) and which is released at 𝑡𝑡 = 0. We stress that we do not imply 926 
that this correlator is being enacted by any circuitry, nor is it a unique definition. However, it has 927 
key features – namely comparisons across space and time, and time antisymmetry – which we 928 
will show to be sufficient to detect the lateral odor velocity. Expanding this correlator gives 929 

⟨Δ𝑦𝑦Δ𝑡𝑡|𝑦𝑦𝑖𝑖⟩ =
Δ𝑦𝑦Δ𝑡𝑡

4
(𝜕𝜕𝑦𝑦𝑝𝑝𝜕𝜕𝑡𝑡𝑝𝑝 − 𝑝𝑝𝜕𝜕𝑡𝑡𝜕𝜕𝑦𝑦𝑝𝑝) 930 

to lowest order. For the packet model, at appreciable times 𝑡𝑡 ≫ 𝑇𝑇, this gives: 931 

⟨Δ𝑦𝑦Δ𝑡𝑡|𝑦𝑦𝑖𝑖⟩ = Δ𝑦𝑦Δ𝑡𝑡
−𝑡𝑡 �̇�𝑦𝑖𝑖 + 𝑦𝑦 − 𝑦𝑦𝑖𝑖

32𝜋𝜋𝐷𝐷𝑝𝑝2𝑡𝑡3
𝑒𝑒−(𝑦𝑦−𝑦𝑦𝑖𝑖)2/2𝐷𝐷𝑝𝑝𝑡𝑡 932 

Note that this is for a single packet, and must be averaged over the packet distribution 𝑝𝑝(𝑦𝑦𝑖𝑖 , 𝑡𝑡) to 933 
get the correlator at a fixed 𝑦𝑦, 𝑡𝑡: 934 

⟨Δ𝑦𝑦Δ𝑡𝑡⟩ = ∫ 𝑑𝑑𝑦𝑦𝑖𝑖⟨Δ𝑦𝑦Δ𝑡𝑡|𝑦𝑦𝑖𝑖⟩𝑝𝑝(𝑦𝑦𝑖𝑖) 935 

where 𝑝𝑝(𝑦𝑦𝑖𝑖 , 𝑡𝑡) = 1
√2𝜋𝜋𝑇𝑇𝑇𝑇2𝑡𝑡

𝑒𝑒−𝑦𝑦𝑖𝑖
2/2𝑇𝑇𝑇𝑇2𝑡𝑡 for 𝑡𝑡 ≫ 𝑇𝑇, as above. We can approximate 𝑦𝑦�̇�𝚤 by ⟨𝑣𝑣⟩𝑦𝑦𝑖𝑖,𝑡𝑡 – the 936 

average velocity for a packet at position 𝑦𝑦𝑖𝑖 as derived above. The expression for ⟨Δ𝑦𝑦Δ𝑡𝑡⟩ does not 937 
lend itself to a closed-form expression due to the complexity of ⟨𝑣𝑣⟩𝑦𝑦𝑖𝑖,𝑡𝑡; we integrate it numerically. 938 
We find that for 𝐷𝐷𝑝𝑝 ≪ 𝐷𝐷𝑇𝑇 = 𝑣𝑣2𝑇𝑇/2, ⟨Δ𝑦𝑦 Δ𝑡𝑡⟩ has a clear asymmetry about 𝑦𝑦 = 0 as expected, and 939 
that the peaks are stronger with increasing correlation time 𝑇𝑇 (Supplementary Fig. 9b). Moreover, 940 
⟨Δ𝑦𝑦Δ𝑡𝑡⟩ increases on average with 𝑣𝑣, while decreasing with 𝐷𝐷𝑝𝑝 (Supplementary Fig. 9c), indicating 941 
that the response essentially derives from correlated motion over the detector rather than 942 
molecular diffusion alone.  943 

 944 

 945 
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Statistical quantification 946 

All error bars, when shown, represent standard error of the mean. Statistical tests used and 947 
significance levels (𝑝𝑝 value) for given comparisons are indicated in the main text. Throughout, *, 948 
**, ***, and **** refer to p-values of < 5e-2, <1e-2, <1e-3, and <1e-4. In some instances, **** may 949 
refer to p < 1e-6, if indicated in the text. 950 

  951 
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SUPPLEMENTARY FIGURES 1141 

 1142 

 1143 

 1144 

Supplementary Figure 1. Verification of odor velocity calculation and distributions of signal-derived 1145 
quantities in measured plume. a, Odor velocity measured in the virtual antenna at all times for navigating 1146 
flies in measured smoke plume, plotted as a function of fly orientation. The sin(𝜃𝜃) trend reflects the fact that 1147 
the main component of odor velocity is parallel to the mean wind direction 0𝑜𝑜, as expected – a consistency 1148 
check on the odor velocity calculation. b, Histograms of signal-derived quantities measured in the fly virtual 1149 
antenna; the x-axis limits in Fig. 1c-e are determined by the extent of these histograms. 1150 

 1151 

 1152 

  1153 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.09.29.462473doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462473
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

 1154 

Supplementary Figure 2. Electrophysiological and behavioral verification of optogenetic activation 1155 
of Drosophila ORNs. a, Extracellular measurements of ab2A firing rates for various odor signals mimicking 1156 
those we use throughout our study. Stimuli (red shades) are delivered using a Luxeon Rebel 627 nm red 1157 
LED (Lumileds Holding B.V., Amsterdam, Netherlands) at 10 uW/mm2. The frequency and duty cycle for 1158 
the stimuli in the first plot are 1.5 Hz and 50% respectively, which mimics what a stationary fly in the 5 cm 1159 
wide, 15 mm/s fast moving bars (Fig. 2b) would perceive. Longer stimuli approximate the experienced 1160 
stimuli in the wide moving bars (Fig. 2e-f). Last plot shows the perceived stimulus and corresponding firing 1161 
rate for one representative measured fly navigating 15 mm/s moving wide bars. b, Illustrative track of fly 1162 
following stationary fictive odor ribbons upwind. Red bars: optogenetic stimulus location – bars are overlaid 1163 
on the figure, but not actually imaged since the image is IR-pass filtered. c, Perceived fictive odor signal for 1164 
fly (red bars) can be simultaneously quantified with fly behavior (teal) by aligning camera and projector 1165 
coordinate systems (Methods). Plotted are the perceived fictive odor signal and behaviors for the track 1166 
shown in b. 1167 
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 1169 

Supplementary Figure 3. Olfactory direction selectivity is abolished in single antenna flies and 1170 
preserved in flies expressing Chrimson in a single Or. a, Component of fly walking velocity along +x 1171 
direction during the 5s stimulus (shaded grey) and blank periods (illustrated in Fig. 2b), in Orco>Chrimson 1172 
flies who have one antenna ablated (compare to Fig. 2d). Blue and orange denote rightward and leftward 1173 
moving bars, respectively. Since it is difficult to distinguish flies walking on the top and bottom surface of 1174 
the assay, right- and left-antenna ablated flies are pooled. n = 307, 304 tracks for rightward and leftward 1175 
bar motion, respectively. b, Distribution of fly orientations during the 5s stimulus (top) and 5s blank periods 1176 
(bottom), for rightward (blue) and leftward (orange) bar motion, Orco>Chrimson flies with one antenna 1177 
ablated (compare Fig. 2d). Orientations are symmetrized over the x-axis. c-d, Same as a-b, for 1178 
Or42b>Chrimson flies (not antenna ablated). n = 80, 96 tracks for rightward and leftward bar motion, 1179 
respectively. 1180 
 1181 
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 1183 

 1184 
Supplementary Figure 4. Turning responses at ON and OFF edges for moving bars at various 1185 
speeds and negative controls are consistent with direction selectivity. Turning bias for all times that 1186 
flies cross the fictive odor ON (green) or OFF (purple) edge, for flies oriented within a 90𝑜𝑜 sector of the 1187 
direction perpendicular to bar motion. Turning bias calculated as sign of fly orientation change from 150 ms 1188 
to 300 ms after the edge hit. All flies are Orco>Chrimson and fed ATR (i.e. optogenetically active) except 1189 
in the 5th plot, which are not fed ATR. Data are shown for bars that move at various speeds (left 4 plots), 1190 
as well as for negative controls (5th and 6th plot). P values calculated using the chi-squared test (****p < 1e-1191 
4, ***p < 1e-3, **p < 1e-2, *p < 0.05). n = 773, 1625, 1877, 1175, 3622, and 1487 tracks for the 6 plots, 1192 
respectively). Direction selectivity is satisfied if both ON and OFF edge responses have the same sign; 1193 
gradient sensing would require opposite signs for the two edges. Data indicate that flies counterturn against 1194 
the direction of fictive odor bars at both edges, provided the bar speed is fast enough. Large ON responses 1195 
for slow bar speeds are likely attributed to gradient sensing.  1196 
 1197 
 1198 
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 1200 
 1201 
Supplementary Figure 5. Fly turning to OFF edges in the presence of laminar wind exhibits no 1202 
directional bias. a, Turning bias versus fly orientation when bilateral optogenetic stimulus is turned off 1203 
(compare first plot in Fig. 3B for flash onset). b-d, Fly turning bias for 15 mm/s bars moving parallel, 1204 
antiparallel, and perpendicular to 150 mm/s laminar wind (compare Fig. 3d). 1205 
 1206 
 1207 
  1208 
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 1209 

 1210 

Supplementary Figure 6. Schematic illustrating calculation of latency 𝚫𝚫𝑻𝑻 between antennae hits for 1211 
moving edges. Correlation-based models for direction selectivity depend on the latency Δ𝑇𝑇 of the time the 1212 
edge hits the two sensors – in this case, the fly’s two antennae. Measuring Δ𝑇𝑇 does not require resolving 1213 
the image or stimulus at antennal resolution (~300 𝜇𝜇m), rather Δ𝑇𝑇 can be inferred with knowledge of the 1214 
fly’s orientation relative to the bar direction 𝜙𝜙, as well as the speeds of the fly and bar – all of which are 1215 
known. See Methods for details of the calculation and an estimate of the uncertainty.  1216 

 1217 

 1218 
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 1220 
 1221 
Supplementary Figure 7. Gliders provide further evidence that direction sensing is enacted using a 1222 
correlation-based algorithm. a, Snapshots of glider stimulus with correlations along +𝑥𝑥 axis, for 3 1223 
consecutive frames. In one instance of time, stimulus is a random pattern of light and dark 1-pixel-wide 1224 
bars perpendicular to 150 mm/s laminar wind. Each 𝑥𝑥-pixel is perfectly correlated with the pixel to its right 1225 
in the next frame; thus the pattern in the next frame is the same as the pattern in the current frame, but 1226 
shifted by one pixel. Visually, this would be perceived as a fixed pattern moving coherently (“gliding”) to the 1227 
right. b, Like correlated noise (Fig. 4 in main text), gliders are defined by their correlation matrix 𝐶𝐶(Δ𝑥𝑥,Δ𝑡𝑡). 1228 
Unlike correlated noise, the correlations i) are exact – i.e. magnitude 1, and ii) exist for many spacetime 1229 
points. That is, for rightward correlated gliders, a given pixel in a given frame is perfectly correlated with the 1230 
pixel to its right one frame later, but also with the second pixel to its right 2 frames later, etc. Thus 𝐶𝐶(Δ𝑥𝑥,Δ𝑡𝑡) 1231 
has values +1 along the diagonal. Similarly, 𝐶𝐶(Δ𝑥𝑥,Δ𝑡𝑡) has values 1 along the anti-diagonal. Since +𝑥𝑥 points 1232 
downwind, we call gliders with correlations to the right “with-wind”, and gliders with correlations to the left 1233 
“against-wind.” c, Turning bias versus fly orientation for with-wind (blue) and against-wind (red) gliders. 1234 
Data using frame rates of 45 or 60 Hz are pooled. Gliders are presented in 4s blocks, interleaved with 4s 1235 
of no stimulus. Turning bias is defined as the sign of the change in orientation from 200 to 500 ms after the 1236 
block onset. We only used flies with speeds < 12 mm/s for gliders, since long-range correlations can 1237 
interfere with the intended correlation if fly walking speed is near the glider speed. n = 597, 661 for with-1238 
wind and against-wind, respectively. d, Turning bias averaged over all orientations for different glider 1239 
speeds. Glider speed is calculated as (pixel width)⋅(pattern update) where the pixel width is 290 µm and 1240 
the pattern rate is some multiple of the inverse frame rate, 1/(180 Hz). n = 537, 289, 275, 440 tracks for 1241 
with-wind stimuli at glider speeds 25, 16, 12, and 10 mm/s, respectively; n = 495, 308, 386, 383 tracks for 1242 
against-wind stimuli at same glider speeds, respectively. e, For correlated stimuli to be perceived in our 1243 
assay, the bar width (size of 𝑥𝑥-pixel, 290 µm), must be on the order of the fly antennal separation (∼300 1244 
µm). f, Glider stimuli experiments repeated for bars that were double the width, 580 µm. Differences now 1245 
disappear for with and against-wind correlations, consistent with bilaterally-enabled direction sensing, since 1246 
these bars are too wide to stimulate antennae differentially. n = 741, 677 for with-wind and against-wind, 1247 
respectively.  1248 
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 1250 
Supplementary Figure 8. Odor velocity and concentration gradients provide complementary 1251 
directional information in complex plumes. a, Vector field of the negative gradient of odor concentration 1252 
−∇𝑐𝑐, averaged over the full simulation (compare to Fig. 5c in the main text). Gradients contain strong lateral 1253 
components near the odor source. b, Time course of an estimate of the direction of odor motion 𝜃𝜃odor =1254 
tan−1  (vy, odor, vx, odor)  at the center of the boxed regions in Fig. 5a, determined by averaging all detectable 1255 
𝜃𝜃 in the past t seconds. Error bars are found by repeating this for 16 different 10 s time windows throughout 1256 
the simulation, and taking the average and standard deviation over these 16 samples – these correspond 1257 
to the mean and standard error of the mean. Dots indicate the time needed to distinguish the direction of 1258 
odor motion from 0o (downwind) with a 68% confidence level for the 3 regions. c, Heatmap of time taken to 1259 
distinguish the direction of odor motion from 0o to within 68% confidence for fixed locations throughout 1260 
plume. Black values include the possibility that the odor motion direction is not distinguishable from 1261 
downwind no matter how long one samples. 1262 
 1263 
  1264 
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 1265 
 1266 
Supplementary Figure 9. Odor velocity in model of turbulent plumes points outward from plume 1267 
centerline and is computed by local space-time correlators. A packet model of turbulent plumes. 1268 
Packets are released from a source and disperse in the lateral direction while being advected downwind 1269 
(see Methods for model and calculation details). a, Packet velocity ⟨𝑣𝑣⟩𝑦𝑦,𝑡𝑡 in the plume model, as a function 1270 
of  𝑦𝑦� = 𝑦𝑦/√𝑇𝑇, for two correlation times, 𝑇𝑇 = 0.2 (purple) and 𝑇𝑇 = 1 (green), at a fixed time 𝑡𝑡 = 4. Here, 𝑣𝑣 is 1271 
set to 1. To directly compare velocity for plumes with different T, (and therefore different diffusivities) we 1272 
plot the velocity versus the normalized length 𝑦𝑦�. Specifically, since ⟨𝑦𝑦2⟩ = 2𝑇𝑇𝑣𝑣2𝑡𝑡 for 𝑡𝑡 ≫ 𝑇𝑇 then at a given 1273 
𝑡𝑡, the packet distribution in terms of  𝑦𝑦� is the same for plumes with distinct 𝑇𝑇. The distribution of packets for 1274 
either 𝑇𝑇 is a function of  𝑦𝑦� is shown in grey. The velocity is an odd function of 𝑦𝑦, i.e. it points outward from 1275 
the plume axis. In addition, the asymmetry is steeper for higher correlation times. b, The value of the 1276 
correlator ⟨Δ𝑦𝑦Δ𝑡𝑡⟩ as a function of lateral distance 𝑦𝑦, for various times 𝑡𝑡 for 𝑇𝑇 = 0.1 (left) and 𝑇𝑇 = 0.3 (right). 1277 
Here, 𝐷𝐷𝑝𝑝 = 0.005. Since the packets are advected downwind with a velocity 𝑈𝑈 ≫ 𝑣𝑣, then the time axis 1278 
proportional to the downwind distance. The packet distribution is shown on the bottom; the limits of the 𝑦𝑦-1279 
axis are chosen such that the plume extents are the same in both plots. c, The total integral of the absolute 1280 
value of ⟨Δ𝑦𝑦Δ𝑡𝑡⟩ at a fixed 𝑡𝑡 = 4, as a function of odor packet speed (𝑦𝑦-axis) and molecular diffusivity (𝐷𝐷𝑝𝑝), 1281 
with 𝑇𝑇 = 1, 𝑣𝑣 = 1. The correlator is higher for greater packet speeds and lower molecular diffusivities (top 1282 
left corner). 1283 
 1284 
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