Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus

View ORCID ProfileMichele Nardin, View ORCID ProfileKarola Kaefer, Jozsef Csicsvari
doi: https://doi.org/10.1101/2021.09.30.462269
Michele Nardin
1Institute of Science and Technology Austria, am Campus 1, 3400 Klosterneuburg, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michele Nardin
  • For correspondence: michele.nardin@ist.ac.at
Karola Kaefer
1Institute of Science and Technology Austria, am Campus 1, 3400 Klosterneuburg, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Karola Kaefer
Jozsef Csicsvari
1Institute of Science and Technology Austria, am Campus 1, 3400 Klosterneuburg, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Hippocampal and neocortical neural activity is modulated by the position of the individual in space. While hippocampal neurons provide the basis for a spatial map, prefrontal cortical neurons generalize over environmental features. Whether these generalized representations result from a bidirectional interaction with, or are mainly derived from hippocampal spatial representations is not known. By examining simultaneously recorded hippocampal and medial prefrontal neurons, we observed that prefrontal spatial representations show a delayed coherence with hippocampal ones. We also identified subpopulations of cells in the hippocampus and medial prefrontal cortex that formed functional cross-area couplings; these resembled the optimal connections predicted by a probabilistic model of spatial information transfer and generalization. Moreover, cross-area couplings were strongest and had the shortest delay preceding spatial decision-making. Our results suggest that generalized spatial coding in the medial prefrontal cortex is inherited from spatial representations in the hippocampus, and that the routing of information can change dynamically with behavioral demands.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 02, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus
Michele Nardin, Karola Kaefer, Jozsef Csicsvari
bioRxiv 2021.09.30.462269; doi: https://doi.org/10.1101/2021.09.30.462269
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus
Michele Nardin, Karola Kaefer, Jozsef Csicsvari
bioRxiv 2021.09.30.462269; doi: https://doi.org/10.1101/2021.09.30.462269

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4685)
  • Biochemistry (10362)
  • Bioengineering (7683)
  • Bioinformatics (26344)
  • Biophysics (13536)
  • Cancer Biology (10698)
  • Cell Biology (15446)
  • Clinical Trials (138)
  • Developmental Biology (8502)
  • Ecology (12825)
  • Epidemiology (2067)
  • Evolutionary Biology (16868)
  • Genetics (11403)
  • Genomics (15485)
  • Immunology (10625)
  • Microbiology (25226)
  • Molecular Biology (10225)
  • Neuroscience (54490)
  • Paleontology (402)
  • Pathology (1669)
  • Pharmacology and Toxicology (2898)
  • Physiology (4345)
  • Plant Biology (9256)
  • Scientific Communication and Education (1587)
  • Synthetic Biology (2558)
  • Systems Biology (6781)
  • Zoology (1467)