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1 Abstract
We describe new tools for the processing of electron cryo-microscopy (cryo-EM) images in the
fourth major release of the RELION software. In particular, we introduce VDAM, a Variable-metric
gradient Descent algorithm with Adaptive Moments estimation, for image refinement; a convolutional
neural network for unsupervised selection of 2D classes; and a flexible framework for the design
and execution of multiple jobs in pre-defined workflows. In addition, we present a stand-alone
utility called MDCatch that links the execution of jobs within this framework with metadata
gathering during microscope data acquisition. The new tools are aimed at providing fast and
robust procedures for unsupervised cryo-EM structure determination, with potential applications
for on-the-fly processing and the development of flexible, high-throughput structure determination
pipelines. We illustrate their potential on twelve publicly available cryo-EM data sets.

2 Introduction
Structure determination of biological macromolecules through single-particle analysis of cryo-EM
images has recently reached a milestone by obtaining atomic resolution reconstructions [1, 2]. With
increasing resolutions, the applicability of cryo-EM structure determination continues to improve,
and with many inexperienced scientists entering the field, the need for robust, easy to use image
processing procedures is increasing. Moreover, atomic resolution structure determination opens up
new avenues for cryo-EM structure-based drug design, which often requires high-throughput and
automation to enable the screening of many candidate molecules.

The development of user-friendly cryo-EM image processing software has come a long way.
Early software packages capable of performing cryo-EM structure determination by single-particle
analysis, including SPIDER [3], IMAGIC [4] and the suite of MRC image processing programs [5],
were mostly command-line driven and typically relied on extensive user experience to obtain good
results. The development of graphical user interfaces (GUIs) and more integrated work flows in
the EMAN software [6] reduced this requirement, making cryo-EM image processing accessible to
more scientists. Developments in SPARX [7], BSOFT [8], FREALIGN [9] and XMIPP [10] also
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contributed to improved accessibility. The cryo-EM resolution revolution [11] further accelerated
the focus on user-oriented software developments, with new software packages like SPHIRE [12],
cisTEM [13] and the commercial cryoSPARC [14] implementing robust and easy-to-use pipelines for
cryo-EM structure determination. In addition, overarching software developments like Appion [15]
and Scipion [16] facilitated the combination of the different available software packages.

The first release of the RELION software coincided with the appearance of the first prototypes
of direct electron detectors that would spark the resolution revolution [17]. RELION introduced
a novel empirical Bayesian approach to single-particle analysis, with an explicitly regularised
likelihood optimisation target [18]. In the Bayesian framework, parameters for optimal filtering of
the reconstruction are inferred from the data, thus removing the need for user expertise to tune
related parameters in alternative softwares. Not only did the Bayesian approach lead to higher
quality reconstructions; it also represented a step-change in software accessibility that expedited a
rapid expansion of the field once direct detectors became commonly available [19].

More recently, automation of large parts of the cryo-EM structure determination pipeline has
received increased attention. In particular, various unsupervised protocols for the earlier stages of
image processing, including motion correction in movies, contrast transfer function (CTF) parameter
estimation and particle picking, have been introduced, for example in FOCUS [20], SCIPION [21],
WARP [22], tranSPHIRE [23], SPREAD [24] and cryoFLARE [25]. Automated on-the-fly processing
of cryo-EM data allows spotting problems in the data while they are being acquired, thus providing
opportunities to change data collection and save valuable time on the microscope. In addition,
their standardized procedures lower the barriers for novel users and facilitate the development of
high-throughput structure determination pipelines.

This paper describes new tools for single-particle analysis in RELION-4.0 that aim to make
unsupervised cryo-EM structure determination faster, more robust and easier to automate.

3 Methods

3.1 VDAM: Variable-metric Gradient Descent with Adaptive Moments
estimation

3.1.1 Regularised likelihood optimization

We briefly recapitulate the regularised likelihood optimization algorithm that underlies classification
and refinement procedures in RELION [17, 18].

Let X = x1, .. ., xN ∈ CL denote the Fourier transforms of the experimental particle images.
Each particle image is a noisy 2D projection of a rotated and translated volume, out of an ensemble
of unknown volumes with 3D Fourier transforms V = v1, .. ., vK ∈ CM , typically referred to as
classes. We assume

x = Hq v + e, (1)

where Hq ∈ CL×M is a complex valued matrix that takes a 2D slice out of the 3D Fourier transform
after applying the relevant composite transformation q ∈ Q := SE(3), consisting of a rotation and
translation, as well as a (given) contrast transfer function (CTF). We assume uncorrelated Gaussian
noise, or ei ∈ CL ∼ CN (0, σ), as well as uncorrelated Gaussian signal, or v ∈ CM ∼ CN (0, τ), where
both σ ∈ RL

+ and τ ∈ RM
+ are diagonal co-variance matrices.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.30.462538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462538
http://creativecommons.org/licenses/by/4.0/


We then seek the maximum a posteriori (MAP) estimate of V by maximizing the following
regularised likelihood function:

L(V,X ) :=
N∑
i=1

log
K∑

k=1

∫
Q

P(xi | vk, q) P(q)dq +
K∑

k=1

log P(vk), (2)

where we have assumed that X contains independent observations, and we have marginalised over
the nuisance variables, through an integration over Q and a summation over k. The likelihood
term is calculated as P(xi | v, q) = CN (|xi − Hq

i v|, σ); and the prior term as P(v) = CN (0, τ).
P(q) expresses information about the prior probability of the transformations, e.g. a 2D Gaussian
distribution for the translations and typically a uniform distribution for rotations.

To find the MAP estimate of V, we use the Expectation-Maximization algorithm, where we
denote each iteration with the index (n). Starting from an initial guess, V(0), we apply a fixed-point
iteration approach by fixing V and solving ∇vL(V,X ) = 0 for the parameters of a particular v.
First, in the Expectation step we calculate the gradient of (2) with respect to vk:

∇vk
L(V,X ) =

N∑
i=1

∫
Q

Pk(q | V, xi)
[
Hq

i
∗
σ−2 (xi −Hq

i vk)
]
dq − τ−2vk, (3)

with
Pk(q | V, xi) =

P(xi | vk, q) P(q)∑K
k′=1

∫
Q
P(xi | vk′ , q) P(q)dq

. (4)

Then, in the Maximization step we solve for the parameters of a particular vk, which yields the
closed-form solution:

v
(n+1)
k ←

B
(n)
k

F
(n)
k + τ−2

(5)

where the division is to be evaluated element-wise, and where

B
(n)
k :=

N∑
i=1

∫
Q

Pk(q | V, xi)
[
Hq

i
∗
σ−2xi

]
∈ CM ,

F
(n)
k :=

N∑
i=1

∫
Q

Pk(q | V, xi)
[
diag(Hq

i
∗
σ−2 Hq

i )
]
∈ RM

+ .

(6)

3.1.2 Variable metric gradient descent

Optimisation by gradient descent is an alternative to the Expectation-Maximization algorithm,
where the update formula is generally a step in the direction of the negative gradient weighted with
the learning rate, η ∈ R:

v
(n+1)
k ← v

(n)
k − η

(
G

(n)
k + τ−2v

(n)
k

)
(7)

with G(n)
k := −∇vk

L(V(n),X )|
vk=v

(n)
k

, as in (3). In this approach, the summation over i in (3) and
(6) are typically carried out over a random subset of the data set, called a mini-batch, which is
changed at each iteration.

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.30.462538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462538
http://creativecommons.org/licenses/by/4.0/


We notice that the Expectation-Maximization algorithm can be viewed as a variable metric
gradient descent (VMGD) algorithm, where the gradient in the update formula has been modified
with a positive definite projection matrix, D(n), which changes every iteration [26]. Applying this to
the GD update formula in (7) gives

v
(n+1)
k ← v

(n)
k + ηD

(n)
k

[
G

(n)
k − τ−2v

(n)
k

]
(8)

We seek a positive definite matrix D(n) that equates the gradient descent update to the Expectation-
Maximization update. From (5) and (8) we get

B
(n)
k

F
(n)
k + τ−2

= vk − ηD(n)
k

[
G

(n)
k + τ−2vk

]
. (9)

Solving for D, yields

D
(n)
k = diag

{[
F

(n)
k + τ−2

]−1
}
. (10)

Inserting this into (8) yields the following update formula for the VMGD algorithm:

v
(n+1)
k ← v

(n)
k − η

G
(n)
k + τ−2v

(n)
k

F
(n)
k + τ−2

(11)

Note that, if the gradient was calculated over the entire data set, η can now be set to 1.0, since the
gradient is re-scaled by D to fit the Expectation-Maximization step size. However, if updates are
performed with mini-batches, η should still be smaller than 1.0, because the estimated G from a
subset is noisier. In our implementation, the default values for η range 0.1− 0.9, depending on the
stage of reconstruction.

If a Fourier shell correlation (FSC) can be calculated that assesses the signal-to-noise for v(n)k ,
then, using Eqs (9-10) in [17], (11) can be rewritten as:

v
(n+1)
k ← v

(n)
k − η

[
FSC

(n)
k

G
(n)
k

F
(n)
k + ε1

+ (1− FSC(n)
k )v

(n)
k

]
(12)

where ε1 is a constant added to improve numerical stability.
In our implementation, we calculate FSC(n)

k using two separately reconstructed versions of vk,
each from one half of the data set X . Additionally, we define the rescaled gradient Ĝ := G/(F + ε1),
which is invariant to the mini-batch size, for small values of ε1.

3.1.3 Adaptive learning rate

We also implemented an adaptive learning rate method, similar to methods commonly used in
deep-learning, including Adam [27], Adagrad [28] and ADADELTA [29]. Typically, these methods
accumulate two gradient moments, through running averages: m ∈ CM tracks the momentum of
the gradient (first moment), while u ∈ RM tracks an estimate of the noise or error amplitude in the
gradient (second moment). In particular, the Adam optimiser, tracks |G|2 as the second moment.
Instead, we calculate two gradients, Gh1

and Gh2
, for two separate halves of the data set, h1 and

h2, and accumulate these into two separate first moments. The second moment, which is shared
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among the two halves, tracks |Gh1 −Gh2 |2. Additionally, we avoid having to track F separately by
tracking the rescaled gradient Ĝ instead. Thereby, we consider the following three running averages
for each k:

m
(n+1)
h1

←β1m(n)
h1

+ (1− β1)Ĝ(n)
h1

m
(n+1)
h2

←β1m(n)
h2

+ (1− β1)Ĝ(n)
h2

u(n+1) ←β2u(n) + (1− β2)|Ĝ(n)
h1
− Ĝ(n)

h2
|2.

(13)

The update formula for each half data set then becomes:

v
(n+1)
k,h ← v

(n)
k,h − η

FSC(n)
k

m
(n)
k,h√

u
(n)
k + ε2

+ (1− FSC(n)
k )v

(n)
k,h

 for h = h1, h2, (14)

where ε2 is a suitably small constant. In our implementation, β1 = 0.9 and β2 = 0.999.
Excluding the regularisation term in (12) from the running averages in (13) serves to decouple

the effects of regularisation and the learning rate, which has been shown to improve convergence
efficiency for the Adam optimiser [30].

3.1.4 Replacing inactive classes

In previous releases of RELION, especially in 2D classification, many classes would converge to
contain no or very few particles. This represented a waste of computational resources and often
resulted in suboptimal classification of structural variability in the data. To address this issue we
here propose an algorithm that, throughout the gradient optimisation, substitutes classes with too
small likelihood probabilities with classes that exhibit large variability. This approach is inspired
by methods used in the class of artificial neural network algorithms known as self-organizing maps
and neural gases [31]. At the end of each iteration, before the gradient update is applied, we select
class a, which is the class with the smallest likelihood probability, P(X | va). Next, we select class b,
which is the class with the largest |mb/(

√
ub + ε)|2. The following modified update formula is then

used for the two classes:

v(n+1)
a ←v(n)b − η

FSC(n)
b

m
(n)
b√

u
(n)
b + ε2

+ (1− FSC(n)
b )v

(n)
b


v
(n+1)
b ←v(n)b

(15)

Similarly, the moments of class a are substituted with that of class b. Substitutions are only
performed if P(X | va) < ρ/K, where ρ is a user-defined constant, called the class inactivity
threshold (see section 4.3).

3.1.5 Implementation details

In previous releases of RELION, the initial references for 2D classification and 3D initial model
generation were initialised from averages of random subsets of the particles in random orientations.
In RELION-4.0, the default is to start from randomly positioned Gaussian blobs that are different
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for each class. The primary purpose of this initialisation is to diversify the classes early in the
classification, thus leading to faster convergence and the recovery of more class variability.

To further reduce computational costs for both 2D classification and 3D initial model generation,
VDAM optimisations are started with a high learning rate of 0.9. By default, the learning rate
is then gradually reduced to 0.3 for 2D classification and to 0.5 for 3D initial model generation.
In addition, calculations are started from relatively small mini-batches: 0.5% of the total data set
size (with a minimum of 200 particles, and a maximum of 10,000 particles for 2D classification and
a maximum of 5,000 for 3D initial model generation). After the initial stage the learning rate is
reduced to 0.3 for 2D classification and to 0.5 for 3D initial model generation, and the mini-batch
size is increased to 5% and 10% of the data set size, respectively (with a minimum of 1,000 particles,
and a maximum of 100,000 particles for 2D classification and 50,000 particles for 3D initial model
generation).

Although most of the data sets tested in this paper converge after 100 mini-batches, in order
to obtain good results for a larger number of data sets, we set the default on the GUI to 200
mini-batches, and ran all calculations in this paper using 200 mini-batches. In this way, the total
number of passes through the entire data set, i.e. epochs, is five or less, resulting in a major speed-up
compared to the 25 full iterations that are done by default using the EM algorithm. In the final
iteration, a final pass through the entire data set is performed, where only P(X | k) for each class k is
calculated, further saving time compared to a normal epoch. In addition, we noticed that the VDAM
algorithm is less sensitive to truncation of the marginalisation (i.e. skipping those orientations from
the integral in eq. (2) with low probabilities) than the EM algorithm, leading to additional increases
in speed, in particular during the early stages of refinement.

3.2 Class ranker: automated 2D class selection
The selection of particles that give rise to 2D class average images with recognisable protein features
is often used to discard suboptimal particles from cryo-EM data sets. The selection of suitable 2D
classes was done interactively in previous releases of RELION. RELION-4.0 contains a new program
called relion_class_ranker that automates 2D class selection. This program predicts a score for
each class by combining the output of a convolutional neural network that acts on the 2D class
average images with 18 features (Figure 1A,B).

The convolutional neural network takes as input individual 2D class average images, cropped
to contain only the area defined by the circular mask used in the 2D classification, and re-scaled
to 64× 64 pixels. The feature vector is calculated for each class from RELION’s metadata of the
2D classification job, including the estimated accuracies of rotational and translational alignments,
the estimated resolution (1/d in 1/Å) and a so-called weighted resolution, which is calculated as
d2/ lnN , where N is the number of particles assigned to the class. It also contains features that are
calculated from the 2D class average images, in particular the first to fourth moments of density
values inside an automatically determined mask for the protein region, the solvent region, and
for a ring around the outer diameter of the mask that has been applied to the 2D class average
images. The combined output from the convolutional neural network and the feature vector is
passed through two fully-connected layers, with non-linear (ReLU) activation functions between the
layers, to predict a single, floating point value, score for each 2D class.

The network in the relion_class_ranker program was trained on 18,051 2D class average
images from 233 RELION 2D classification jobs that were performed at the MRC-LMB over a period
of approximately four years. Each of the jobs was assigned a job score, ranging from zero to one, and
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within jobs the class averages images were manually divided into four categories depending on their
quality. For each 2D class, the combination of its job score, its category assigned, and its estimated
resolution compared to the best resolution in its 2D classification job, were used to calculate a target
class score, ranging from zero to one. The target scores were intended to represent a ranking over
all classes in the training set, with a score of one representing the best classes from the best 2D
classification jobs, and a score of zero representing the worst classes. The network was implemented
and optimised with the Adam optimiser [27] for 200 epochs in pytorch [32], using a mean-squared
error between predicted and assigned scores. All 18,051 class average images, plus their metadata
from the 2D classification jobs and their assigned class scores are publicly available through the
EMPIAR data base (entry-ID 10812). The code used to optimise and execute the neural network
are available from the RELION github pages.

3.3 Schemes: planning and execution of multiple jobs
RELION’s pipeliner organizes the execution of RELION jobs, which represent individual tasks, and
often the execution of an individual command-line program, in the overall structure determination
workflow. The pipeliner also keeps track which jobs’ output files are used as input for other jobs,
thus building a directional graph of the processing workflow [33].

RELION-4.0 implements new functionality to plan the execution of multiple jobs in advance,
including functionality to execute branched decision trees, where decisions to follow one branch of
sequential jobs or another are made on-the-fly. A series of planned jobs, possibly including multiple
branches, is called a Scheme.

To allow for flexibility in the design of the execution of multiple jobs, Schemes implement different
types of variables: stringVariables, booleanVariables and floatVariables. The values of these variables
can be changed through the execution of so-called Operators that form part of the Scheme framework.
Multiple Operators have been implemented, for example to perform simple mathematical operations
on floatVariables; to perform logical operations on booleanVariables; and to perform text modifica-
tions on StringVariables. In addition, Operators exist for reading metadata values from RELION
star files; for file handling operations; for sending emails and for waiting a pre-determined amount of
time. A full description of available Operators is available from the RELION documentation, which
has been rewritten, and is available from: https://relion.readthedocs.io/en/release-4.0/ .

Schemes can be thought of in terms of a directional graph, where the nodes of the graph are
either jobs or Operators. Edges connect two subsequent nodes, while Forks connect one input node
to two possible output nodes. Each Fork has an associated booleanVariable, whose value determines
which of the two output nodes is chosen upon execution of the Scheme. The topology of the graph
inside a Scheme can be cyclical, thereby enabling repetitive execution of jobs inside loops.

Schemes are defined by a scheme.star file that describes the different jobs, Operators, Variables,
Edges and Forks. The scheme.star file is stored inside a Schemes/schemename directory, which itself
is inside the standard RELION Project directory. The Scheme directory also contains subdirectories
for each of the RELION jobs that form part of the Scheme. These subdirectories each contain a file
called job.star that contains the parameter values for that job. The Scheme framework is flexible,
in that users can define their own Schemes by manually editing the corresponding star files. The
job.star files for individual jobs can also be saved through the Jobs menu on the RELION-4.0
main GUI.

Schemes are executed through the relion_schemer program, which launches the jobs, and keeps
track of the current status of the Scheme and the values of all its variables. It can also be used to
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abort a running Scheme, to change its current variables or the parameters of its RELION jobs, and
to re-start from the point where it was previously aborted. If any RELION job parameters were
changed, the relion_schemer program will re-execute those jobs from scratch, whereas jobs that
are unaffected by the changes will continue from where they were halted.

RELION-4.0 includes two example Schemes, called prep and proc. The prep Scheme imports
micrograph movies and performs motion correction and CTF estimation. The proc Scheme selects
micrographs based on their estimated CTF resolution limit, performs automated particle picking
(using either RELION’s Laplacian-of-Gaussian (LoG) approach or Topaz [34]), 2D classification,
automated 2D class selection, 3D initial model generation and 3D refinement. A flowchart of both
Schemes, depicting all corresponding RELION jobs and Scheme Operators is shown in Figure 2.

The python script relion_it.py, which already existed in RELION-3, has been modified to
work with Schemes in RELION-4.0. The modified script launches a GUI to gather parameter input
from the user and then executes the prep and the proc Schemes to process cryo-EM data sets in an
unsupervised manner. In addition, a new GUI called relion_schemegui.py has been written to
facilitate the monitoring of Schemes during their execution, as well as their aborting, changing of
variables, and re-starting.

3.4 MDCatch: integration with the microscope
To simplify launching of on-the-fly image processing and minimize user input errors we implemented
MDCatch, a graphical tool that extends relion_it.py functionality by linking microscope data
acquisition with the execution of RELION-4.0 Schemes. MDCatch is written in Python3 and PyQt5
and provides a simple GUI (Figure 3) that fetches acquisition metadata from a running EPU (Thermo
Fisher Scientific) or SerialEM [35] session, and launches a predefined image processing pipeline.
Besides RELION-4.0 Schemes, MDCatch also works with Scipion 3 workflows [21]. MDCatch
supports parsing of metadata from different file formats (EPU’s XML, SerialEM’s MDOC, MRC,
TIF) and associates this information with other microscope parameters (detector type, MTF, gain
reference etc.) that can be configured in advance. In cases where existing metadata is not sufficient,
users can manually input missing information. MDCatch was designed to be installed on a computer
that has access to both the raw data (movies) and its associated metadata, e.g. an EPU session
folder. For SerialEM data acquisitions, both movies and MDOC metadata files are expected to be
in the same directory.

Together with MDCatch we provide example pipeline templates for both RELION and Scipion,
including the prep and proc Schemes described above. By default, users are presented with a choice
between three particle pickers: the Laplacian-of-Gaussian (LoG) approach in RELION, crYOLO [36]
or Topaz [37]. Upon execution of MDCatch, the fetched metadata are saved in a text file and the
image processing progress can be monitored with existing project utilities in RELION or Scipion.

MDCatch is distributed separately from RELION-4.0, under a free, GPLv3 software license, and
its code and documentation are available at https://github.com/azazellochg/MDCatch.

4 Results

4.1 Optimisation of the neural network in relion_class_ranker

During exploration of network architecture and optimisation procedures, 5,850 2D class average
images, from 73 2D classification jobs, were set aside as a validation set to monitor overfitting.
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Data set EMPIAR
entry

Nr
micro-
graphs

super-
resol?

voltage
(V)

Cs phase
plate?

pixel
size
(Å)

Sym-
metry

Particle
diameter
(Å)

ribosome 10028 1,082 no 300 2.7 no 1.34 C1 320
TRPV1 10059 1,200 no 300 2.7 no 1.22 C4 150
TcdA1 10089 97 no 300 2.7 no 1.14 C5 280
apoF 10146 20 no 300 0.01 no 1.5 O 130
ribo-VPP 10153 315 yes 300 0.01 yes 0.545 C1 320
aldolase 10181 659 yes 200 2.7 no 0.46 D2 180
γ-sec 10194 2,922 yes 300 2.7 no 0.7 C1 150
β-gal 10204 24 no 200 1.4 no 0.885 D2 180
CMV 10205 5,619 no 300 2.7 no 1.065 I1 330
GDH 10217 2,491 no 300 2.7 no 0.66 D3 150
CB1 10288 2,754 no 300 2.7 no 0.86 C1 160
INX6 10290 497 no 300 2.7 no 1.23 C8 150

Table 1: Test data set characteristics. ribosome: Plasmodium falciparum 80S ribosome [41]
TRPV1: transient receptor potential channel V1 [42]; TcdA1: Tripartite Tc toxin subunit A [12];
apoF: apoferritin [43]; ribo-VPP: ribosome collected on a Volta phase plate [44]; aldolase: Rabbit
muscle aldolase [45] γ-sec: γ-secretase [46]; β-gal: β-galactosidase [47]; CMV: cowpea mosaic virus
[48]; GDH: glutamate dehydrogenase [49]; CB1: cannabinoid receptor 1G [50]; INX6: innexin-6
hemichannel [51];

Because the final network architecture and optimisation procedure did not induce noticeable amounts
of overfitting (Fig 1C), a final optimisation round was performed using all 18,051 classes. The
resulting network had a mean-square error loss of 0.015 on the predicted class scores. Optimisation of
a network where all feature values were set to zero led to a mean-square error loss of 0.017, indicating
that the features provided useful information in the scoring process. Analysis of 2D histograms of
the assigned and predicted class scores (Fig 1D) and manual assessment of the predicted scores (Fig
1E) confirmed that the final network produces useful predictions over the full range of assigned class
scores. The optimised network was further tested as part of the automated processing of twelve test
data sets through the Schemes and relion_it.py approach, as described below.

4.2 Automated processing with Schemes and relion_it.py

To test the procedures for automated single-particle analysis in RELION-4.0, we processed twelve
data sets from the EMPIAR data base [38], using default parameters from relion_it.py, except
for the experiment-specific parameters and the particle diameter as shown in Table 1. The twelve
data sets were selected at the start of the project; no data sets were added or removed during
the project. Motion correction for movies of these data sets were performed in RELION’s own
implementation of the MotionCor2 algorithm [39]. CTF estimation was performed in CTFFIND4
[40]. Motion-corrected micrographs and extracted particles were saved in IEEE 754 16-bit float
MRC format (mode 12), a new feature in RELION-4.0 to save a factor of two in required disk space.
The proc Scheme was used for automatically processing the data, up to 3D initial model generation
and refinement of down-scaled particle images.

Table 2 gives an overview of the results. Only micrographs with resolutions beyond 6 Å, as
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data set Selected mi-
crographs

Picking
job

Picked
particles

Selected
particles

Correct
map?

ribosome 1,081 Topaz 188,844 161,194 yes
TRPV1 1,199 Topaz 520,020 184,836 yes*
TcdA1 97 Topaz 19,479 11,818 yes
apoF 19 Topaz 2,282 0 no
ribo-VPP 298 LoG 22,895 17,606 yes
aldolase 659 Topaz 369,520 186,327 yes*
γ-sec 2,873 Topaz 1,665,273 601,160 yes
β-gal 24 Topaz 8,173 4,631 yes
CMV 5,526 Topaz 492,981 266,621 yes
GDH 2,427 Topaz 476,563 400,849 yes*
CB1 2,751 Topaz 1,196,915 470,293 yes
INX6 497 Topaz 276,868 76,446 yes

Table 2: Summary of automated processing of the test data sets. Data sets are as defined
in Table 1. LoG: Laplacian of Gaussian; * For the TRPV1 and aldolase data sets, initial model
generation often get stuck in a local minima, leading to an incorrect map. This issue is observed
occasionally also for GDH. See section 4.5 for more details.

estimated by CTFFIND-4, were included in the processing. For all data sets, except for the ribosome
data set collected with a phase plate (ribo-VPP; EMPIAR-10153), particle picking using the pre-
trained model in Topaz yielded reasonable results. For the ribo-VPP data set, the unusually strong
contrast in the phase plate images yielded suboptimal results in Topaz, and we used the LoG-picker
in RELION instead. All particles were extracted in the box sizes suggested by relion_it.py, i.e.
1.5 times the particle diameter, and downscaled to pixel sizes in the range of 2.8-3.5Å (with the
exact pixel size depending on favourable downscaled image sizes for the fast Fourier Transform
algorithm). The extracted particles were subjected to 2D classification with 100 classes, using the
VDAM algorithm, followed by automated class selection in relion_class_ranker with a default
minimum class score of 0.15. Finally, the selected particles were subjected to 3D initial model
generation in symmetry group C1, again using the VDAM algorithm, with three classes, followed by
3D auto-refinement of the largest class after automated detection and alignment of the symmetry
axes.

For all data sets, except the apoferritin data set (EMPIAR-10146), 2D classification with the
VDAM algorithm (see section 4.3) provided adequate information to assess the quality of the data and
the class ranking successfully identified suitable 2D class averages (see section 4.4). Dense packing
of the apoferritin particles in the micrographs caused the appearance of density for neighbouring
particles in the 2D class averages, which resulted in too low class scores. Because only 294 apoferritin
particles were selected, no 3D model generation was attempted. For all other data sets, correct
reconstructions could be obtained in a fully automated manner with resolutions close to the Nyquist
limit for the downscaled particles (but also see section 4.5).

4.3 2D classification with the VDAM algorithm
Figure 4 shows two example comparisons between 2D classifications with the VDAM and the EM
algorithms: for the GDH and CB1 data sets. For each run, we manually selected the best classes
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Selected particles Time (hh:mm) Resolution (Å)
EM VDAM EM VDAM EM VDAM

TRPV1 250,182 203,740 03:26 00:50 3.2 3.3
γ-sec 340,535 350,583 13:49 02:56 3.8 3.8
GDH 476,531 476,559 05:01 00:51 2.5 2.4
CB1 587,385 500,473 12:18 02:46 3.3 3.3
INX6 88,855 89,141 02:04 00:28 4.0 4.0

Table 3: Comparison between the two algorithms for 2D classification. Good classes were
selected manually, and the selected subset was further processed in auto-refine. The number of
manually selected particles are shown for each data set and algorithm, as well as the execution time
for 2D classification and the final resolution achieved with auto-refine using the subset from the
respective subsets.

(highlighted in purple in Figure 4 for GDH and CB1), and subsequently used the corresponding sets of
particles for 3D auto-refinement to asses the relative quality of the classified subsets. Computations
were performed on an Intel Xeon Gold 6242 and four NVIDIA GeForce RTX 2080Ti GPUs. All
VDAM calculations were performed with the default class inactivity threshold of 0.1.

Table 3 shows the results for five test data sets. Each run consists of 25 EM and 200 VDAM
iterations, which corresponds to 25 and approximately 6 epochs, respectively. The final epoch for the
VDAM algorithm is only performed to assess particle class assignment, and is thus faster. On average,
the VDAM algorithm is a factor of 5 faster compared to the EM algorithm for 2D classification,
without affecting the quality of the selected particles, as measured by the final resolution after
auto-refinement.

4.4 Automated 2D class selection with relion_class_ranker

The predicted class score of the relion_class_ranker program was designed to be on an absolute
scale, ranging from a value of zero for useless classes to a value of one for the best classes from the
best data sets. Therefore, because some data sets are better than others, the threshold for class
selection may need to be adjusted in line with the expected quality of the 2D class average images
for a given data set. Table 4 shows an evaluation of the quality of the particle selection for all twelve
test data sets, by comparing the selections based on the indicated class score threshold (t) with a
manual selection of suitable classes. Quality is measured in terms of the false positive rate (FPR)
and the false negative rate (FNR) of the particles from the selected 2D classes, where the particles
from the manually selected classes are considered the correct ones. To reflect that the threshold
value may be changed based on the expected quality of each data set, besides reporting the results
for the default score threshold of 0.15 used in relion_it.py, this table also shows the results for a
freely chosen, i.e. supervised threshold value (t = T ) for each data set.

For the ribosome, CMV, CB1 and γ-sec data sets, a higher threshold than the default leads to
better results, although only for the γ-sec data set the FPR is higher than 0.2 using the default
threshold. For the TRPV1, apoF, β-gal and INX6 data sets, a lower threshold yields better results,
with the default threshold yielding FPRs of 0.25 or higher. Nevertheless, as pointed out above, even
when using the default threshold of 0.15, the particle selection for all data sets, except apoF, allowed
de novo reconstruction of a correct 3D map. Using the supervised threshold, for all data sets the
FPR and the FNR are below 0.25.
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data set manual
selection

class
ranker
(t=0.15)

FPR
(t=0.15)

FNR
(t=0.15)

super-
vised
t=T

class
ranker
(t=T)

FPR
(t=T)

FNR
(t=T)

ribosome 142,373 161,194 0.13 0.00 0.5 139,249 0.00 0.02
TRPV1 268,651 184,836 0.03 0.34 0.055 312,980 0.21 0.05
TcdA1 12,529 11,818 0.00 0.06 0.05 124,69 0.00 0.01
apoF 1,949 124 0 0.94 0.02 1,874 0.04 0.08
ribo-VPP 17,768 17,606 0.00 0.01 0.1 17,740 0.00 0.00
aldolase 170,641 186,327 0.15 0.05 0.129 192,282 0.15 0.02
γ-sec 416,231 601,160 0.44 0.00 0.21 414,086 0.10 0.10
β-gal 6,165 4,631 0.00 0.25 0.035 6,140 0.03 0.03
CMV 229,943 266,621 0.16 0.00 0.32 231,885 0.01 0.00
GDH 416,197 400,849 0.00 0.04 0.08 421,980 0.01 0.00
CB1 420,739 470,293 0.15 0.03 0.225 415,574 0.02 0.03
INX6 113,861 76,446 0.00 0.33 0.0498 140,050 0.24 0.01

Table 4: Analysis of the automated 2D class selection. The second, third and seventh column
show the number of particles in the selected classes after manual selection of the classes, automated
class selection with a threshold of 0.15, and automated class selection with a supervised threshold,
respectively. The sixth column shows the supervised choice for the threshold (t=T). FPR: false
positives rate, i.e. number of particles selected by the class ranking procedure, but not by manual
selection, divided by the number of selected particles in the manual selection; FNR: false negative
rate, i.e. number of particles selected by manual selection, but not by the class ranking procedure,
divided by the number of selected particles by manual selection.
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4.5 Initial 3D model generation with the VDAM algorithm
To evaluate the overall performance of the VDAM algorithm for 3D initial model generation, we
performed ten repeats of 3D initial model jobs for the particle sets that were selected automatically
by the relion_it.py approach of the five data sets shown in Figure 5. Following the relion_it.py
approach in RELION-4.0, we used the VDAM algorithm with three classes and selected the most
populated class after 200 iterations. For each run, we used the selected model as initial reference
for subsequent auto-refinement, and used Fourier shell correlation of the refined structure to the
known target structure, after manual alignment in Chimera [52], as a metric to distinguish between
successful and unsuccessful runs.

Figure 5 shows examples of central slices of initial model reconstructions that converged to
the target structures for the five data sets. For the GDH, CB1 and INX6 data sets, initial model
generation was successful for 8, 9 and 10 out of the 10 runs performed, respectively. For the aldolase
data sets, 5 out of the 10 VDAM calculations were successful. Convergence within 200 iterations
was primarily hindered by heterogeneity, since a large subset of the data set consisted of similar but
incomplete particles. Since the automated procedure picks the most populated class, sometimes
the target structure is missed as it comes in at second place. The target structure, exhibiting D2
symmetry, makes up about 50% of the data set after the automated 2D class selection. Manual
selection might be a necessity to acquire a good final reconstruction for this data set. For the TRPV1
data set, only 4 out of 10 runs were successful. In this case, angular alignment posed the primary
issue, possibly due to the relatively large membrane patch.

5 Discussion
In this paper, we present new features for single-particle analysis in RELION-4.0: the VDAM
algorithm for image refinement, the relion_class_ranker program for automated 2D class selection,
and the Schemes framework with an updated relion_it.py approach for unsupervised execution
of workflows. In addition, we describe the separately distributed MDCatch program that collects
metadata from the microscope to facilitate on-the-fly data processing. The RELION-4.0 release
also introduces new approaches to sub-tomogram averaging, and a tighter integration of its pipeline
approach with the CCP-EM software suite [53]. These two developments will be described elsewhere.

By iterating through the data set fewer times, the VDAM algorithm provides substantial increases
in speed compared to the EM algorithm. For example, we illustrate that 2D classification with
the VDAM algorithm is up to six times faster than the EM algorithm, with larger gains in speed
observed for larger data sets. Even larger speed-ups may be obtained by reducing the default number
of mini-batches from 200 to 100. Although performing fewer iterations may affect the quality of
the results for difficult data sets, the additional speed-ups obtained might be valuable for better
behaved data sets.

Besides speed improvements, our VDAM implementation also replaces inactive classes, which
typically leads to higher numbers of suitable classes that better capture the heterogeneity in the data.
Compared to the standard SGD algorithm, the VDAM algorithm also shows improved convergence
behaviour for 3D initial model generation. Because the VDAM algorithm automatically determines
the regularisation parameters, 3D initial model calculations with the VDAM algorithm no longer
need to be explicitly limited in resolution, as was the case with the SGD algorithm. Thereby,
higher resolution initial models may be calculated without user intervention, which leads to more
straightforward selection of suitable initial models. The freedom to progress to higher resolutions
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may also contribute to better convergence of the VDAM algorithm compared to standard SGD.
Although not illustrated here, the VDAM algorithm can also be used for 3D classification and 3D
auto-refinement. The latter applications may be particularly interesting in the context of injecting
more prior knowledge about protein structures into the 3D reconstruction process [54], which will
be a direction of future research.

In previous release of RELION, manual selection of suitable 2D class average images represented a
hurdle for automated on-the-fly image processing in the typical workflow. The relion_class_ranker
program overcomes this hurdle. We found that a combination of a feature vector with a convolutional
neural network that acts on the 2D class average images yields excellent results in predicting scores
for 2D classes that allow their unsupervised selection. The feature vector contains two types of
features. On the one hand, features like the estimated angular and translational alignment accuracy
and the class sizes contribute information from the RELION refinement process that is not present
in the class average images. On the other hand, hand-crafted features that are calculated from the
class average images, such as moments of pixel values in protein and solvent masks, allow biasing
the scores on information that is assumed to be important.

The class scores from the relion_class_ranker program are on an absolute scale. Although
a default selection threshold of 0.15 allowed automated structure determination for eleven out of
twelve test data sets, in practice many users may choose to tune the threshold value for their specific
type of data. Tuned thresholds gave particle selections with FPRs and FNRs of less than 0.25 for all
data sets tested. Ordering 2D class averages by their predicted class scores may also be useful for
manual selection. In previous releases of RELION, 2D class average images were typically displayed
sorted on their class size. However, the VDAM algorithm often converges to solutions that also
contain relatively large classes with suboptimal particles. Therefore, we have observed that sorting
the classes based on their predicted scores is also helpful for manual selection of suitable 2D classes.
Executing relion_class_ranker typically takes less than a minute.

The development of Schemes for the automated execution of pre-defined, image processing
workflows that represent branched decision trees is a less visible part of the improvements in
RELION-4.0. As an example of what is possible, we distribute the prep and proc Schemes for
automated structure determination inside the new relion_it.py approach. Although we show the
usefulness of this fully automated approach on twelve test data sets, we expect that many users
will want to modify parts of this approach to fit their specific needs. The Schemes are aimed at
providing the flexibility that will be required by the different types of end-users to automate a wide
range of image processing tasks.

In general, as cryo-EM structure determination continues to improve rapidly, we envision that
flexibility in the design of image processing workflows will remain essential for many users. The
RELION tools described here aim to facilitate this flexibility, as well as speed, and to help the
inexperienced user in getting the most of their cryo-EM images, while at the same time providing
the advanced user with all the tools necessary to solve the most difficult structures. Moreover, by
distributing these tools as free, open-source software, we encourage the cryo-EM community to build
on the advances described.
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Figure 1: Class ranker neural network architecture and results. A) The overall architecture of the
scoring network, which consists of three CNN blocks and a final feed forward network that also
incorporates the 18 features. B) The CNN block architecture that incorporates three convolutional
layers. The initial convolutional layer, maps the input channels count C1 to the intermediate channels
count C2 and the final layer preforms a down sampling of the box size through a strided convolution
and doubles the number of channels. C) The mean-square error loss during training, comparing
with and without features. D) A confusion matrix showing labeled scores versus predicted scores,
with bins of 0.1. E) Example of classes with their predicted score.
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Figure 2: Schematics of the prep and proc Schemes that form part of the relion_it.py approach
for automated, on-the-fly processing. Scheme operators are shown with rounded boxes, RELION jobs
with grey boxes; edges with arrows and forks with diamond-shapes. For forks, the BooleanVariable
that controls its outcome is indicated in the centre of the diamond. The WAIT operator waits for a
defined time since it was last executed; the EXIT_maxtime operator terminates the Scheme after
a defined time since the Scheme was started; the SET_has_ctffind operator sets BooleanVariable
has_ctffind to true if the STAR file generated by the CtfFind job of the prep Scheme exists;
the COUNT_mics operator sets the current number of micrographs to the number selected in the
job above it; the SET_mics_incr sets BooleanVariable mics_incr to true if the current number of
selected micrographs is larger than the previous number of micrographs (which is initialised to zero);
the SET_prev_mics operator sets the previous number of micrographs to the current number of
selected micrographs; the COUNT_parts operator sets the current number of particles to the number
of selected particles in the job above it. The SET_enough_parts operator sets BooleanVariable
enough_parts to true if the current number of selected particles is larger than a user-specified
minimum.
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Figure 3: GUI of the MDCatch utility for automated fetching of microscope metadata and launching
of on-the-fly image processing.
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Figure 4: All significant 2D class averages from four different classification runs. Panel A and B show
results for the GDH data set classified using the EM and VDAM algorithm, respectively. Panel C
and D show results for the CB1 data set classified using the EM and VDAM algorithm, respectively.
Classes are sorted according to their score from the relion_class_ranker program, which is also
shown for each class. Classes that were manually selected for subsequent 3D auto-refinement are
highlighted in purple.
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Figure 5: Central slices of initial model reconstruction with 3 classes using VDAM algorithm for 5
data sets.
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