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Abstract

Predicted growth in world population will put unparalleled stress on the need for sustainable energy and
global food production, as well as increase the likelihood of future pandemics. In this work, we identify
high-resolution environmental zones in the context of a changing climate and predict longitudinal processes
relevant to these challenges. We do this using exhaustive vector comparison methods that measure the climatic
similarity between all locations on earth at high geospatial resolution. The results are captured as networks,
in which edges between geolocations are defined if their historical climates exceed a similarity threshold. We
then apply Markov clustering and our novel Correlation of Correlations method to the resulting climatic
networks, which provides unprecedented agglomerative and longitudinal views of climatic relationships across
the globe. The methods performed here resulted in the fastest (9.37× 1018 operations/sec) and one of the
largest (168.7 × 1021 operations) scientific computations ever performed, with more than 100 quadrillion
edges considered for a single climatic network. Correlation and network analysis methods of this kind are
widely applicable across computational and predictive biology domains, including systems biology, ecology,
carbon cycles, biogeochemistry, and zoonosis research.

1 Introduction 1

With a projected human population of 9 billion by 2050 [1], there is a rapidly increasing demand for food 2

and energy resources. Furthermore, urbanization, human encroachment, and changes in land-use patterns 3

have caused the vast degradation of natural ecosystems and wildlife habitats. This leads to the emergence of 4

multiple zoonotic diseases (diseases caused by microbes or viruses that spread between animals and humans) 5

and thus to an ever increasing frequency of epidemics and pandemics. While Sustainable Development Goals 6

(SDG) 2030 has given high priority to food security, sustainable agriculture, sustainable energy, climate 7

change, and sustainable use and management of terrestrial ecosystems [2], the implementation thus far has 8

not been successful. Therefore, understanding the patterns related to global climate change and predicting 9

future climate patterns are exceedingly important for the future of sustainable agriculture, bioenergy, and 10

maintainable biodiversity. 11

Climate is the main driver of organismal adaptation. With a change in climate, species must (i) adapt 12

to the changing climate, (ii) migrate to favorable climatic regions (i.e., range shift), or (iii) face the risk 13

of extirpation from their local habitat [3]. The effects of such climatic changes can be more pronounced 14

in developing countries, where the traditional agricultural practices do not provide enough yield to feed 15

the expanding population. Further, large amounts of agricultural land are under drought stress, and the 16

susceptibility to plant diseases has increased due to altered temperature and precipitation regimes. Thus, the 17

development of climate-resilient, high-yielding, disease resistant crop varieties that can cope with a wide range 18

of environments is of utmost importance. Additionally, lands that are not suitable for agriculture, including 19
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marginal lands, can be used for growing bioenergy feedstocks (e.g., lignocellulosic biofuel, an alternative source 20

of sustainable energy). Perennial grasses and fast-growing tree species that can sustain extreme environmental 21

conditions are suitable for this purpose [4]. However, developing high-yielding cultivars/varieties of food 22

and bioenergy crops that are resilient to climate change and pathogens requires careful assessment of global 23

climate patterns. 24

The shortage of food and energy resources has also compelled human populations (especially in developing 25

countries) to rely on forest resources for food, fodder, and firewood, causing ecosystem imbalance, habitat 26

fragmentation, and loss of biodiversity. High species turnover due to these factors and the changing climate 27

has disrupted the food chain and ecological niches, such environmental stress and habitat fragmentation 28

provides new avenues for viral shedding and zoonotic spillover to human hosts [5]. The major challenge here 29

is to address the need for food and bioenergy while maintaining barriers to zoonotic transmission (i.e., to 30

prevent subsequent pandemics) in the face of climate change. 31

To address these global crises, understanding the relationships that define climate zones on earth is crucial 32

for future research and planning. Traditionally, climatic analysis has been carried out using the Köppen–Geiger 33

climate classification system [6]. However, it has been suggested that the classical Köppen–Geiger method, 34

with its reliance on heuristic decision rules, should be replaced by a data-driven approach [7]. The primary 35

alternative considered thus far has been the k-means algorithm for clustering environmentally similar 36

geolocations into distinct groups [8]. However, obtaining exact solutions of the k-means problem is NP-hard. 37

Furthermore, the basic k-means algorithm can provably converge to spurious local minima for as few as three 38

clusters [9], and the number of iterations required for convergence is exponential in the number of vectors [10]. 39

Fundamentally, in high dimensions, methods such as k-means and locality sensitive hashing (i.e., methods 40

that are not performing an exhaustive search), are incapable of finding all sets of similar vectors in a data 41

set reliably and efficiently. Furthermore, dimensionality reduction techniques such as Principle Component 42

Analysis (PCA) can lose fine-grained information. 43

1.1 Climate analysis 44

Our goal here is to enable fine-grained climatic analysis with highly accurate methods that are only achievable 45

by exhaustive similarity search. In this regard, we integrate multiple layers of environmental information 46

to identify climatic zones that share similar environmental relationships around the world and detect how 47

those relationships are changing over time. We take an unbiased, data-driven approach that integrates 48

historical time series observations from 1958 to 2017 of 14 different climate variables extracted from the 49

open-source TerraClimate database [11]. These data are carefully pre-processed to ensure quality control, 50

including cross-variable correlation analysis and distribution normalization (see Section 4.2). We conduct 51

correlation studies using 2-way (all pairs) and 3-way (all triplets) similarity comparisons of equally spaced 52

points of land on earth at high geospatial resolution. Notably, we consider 3-way vector similarities to explore 53

the higher-order interactions of vector triplets compared to 2-way vector pairs, which are traditionally used 54

in correlation studies. We perform (i) a static comparison using an agglomerative 60-year historical view 55

(i.e., 1958-2017) of the environment at all points of land on earth as well as (ii) a longitudinal analysis by 56

considering a series of 10-year time-windows in 1-year step sizes (i.e., 1958-1967, 1959-1968, . . . , 2008-2017), 57

which results in 51 total time-windows. Specifically, for the 60-year agglomerative view, we use a geospatial 58

grid resolution of 500,710 land coordinates (∼19 km2), and for the 10-year longitudinal view, we consider 59

152,100 land coordinates (∼35 km2). 60

Due to the massive number of vector comparisons that must be performed (e.g., more than 1.2×1017 3-way 61

comparisons for the agglomerative case), we leverage the capabilities of two of the world’s top computing 62

systems. Specifically, we use the Oak Ridge Leadership Computing Facility (OLCF) system, Summit, which 63

is currently the fastest computing system in the United States, and the Jülich Supercomputing Centre (JSC) 64

system, JUWELS Booster, which is currently the fastest computing system in Europe. See S1 Appendix for 65

a detailed description of each. To further increase computational efficiency, we utilize the Combinatorial 66

Metrics (CoMet) library, a data analytics application previously used in comparative genomics studies [12,13]. 67

The efficiency of CoMet is partly afforded by use of ultralow precision mathematics, meaning that data 68

compression is critical to optimize CoMet performance. Thus, we encode the continuous-valued climate 69

variables that comprise each geolocation into optimal binary representations that (i) retain data context and 70

(ii) maximize performance (see Section 4.2). Finally, to measure similarity between binarized geolocation 71
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vectors, we utilize the DUO metric, which is similar to the Sörensen-Dice Index (see Section 4.1). This 72

proportional similarity metric, of which the Sörensen-Dice Index is a special case, has desirable mathematical 73

properties not shared by most other vector similarity measures, hence its attractiveness for this use case [14]. 74

The results of the vector similarity comparisons are captured as networks, in which edges are defined 75

between geolocations if their DUO similarity exceeds a threshold. To identify high-resolution climate zones, we 76

utilize Markov Clustering (MCL), an unsupervised graph clustering algorithm, to define groups of geolocations 77

that share similar environmental relationships. To track how these relationships change over time, we also 78

develop and apply the Correlation of Correlations (Cor-Cor) algorithm, a novel methodology that measures 79

similarity between climatic networks corresponding to distinct 10-year time-windows. These methods are 80

used to provide an unprecedented global view of climatic relationships and how they are changing over time 81

(see Section 4.4). An overview of the complete data workflow is shown in Figure 1 and described further in 82

Section 4. 83

Figure 1. Climate analysis workflow. a) Data extraction from the TerraClimate database into
geolocation (longitude, latitude) vectors composed of 14 climate layers spanning 720 months of observations.
b) Vector encoding starts by partitioning raw continuous climate values into discrete bins, followed by
binarization using a modified one-hot encoding scheme. The binary representations are concatenated over
months and years to produce agglomerative time-windows of historical environmental data. c) Exhaustive
vector comparisons are performed using highly efficient 2-way and 3-way binary vector comparisons. d)
Results are translated into network representations of each time-window. e) Network analysis and
visualization methods are performed, including MCL and the novel Cor-Cor algorithm.

2 Results 84

2.1 Scientific results 85

The scientific results of this work are demonstrated with two viewpoints: (i) climatic clustering and (ii) 86

tracking longitudinal environmental change. Each objective is addressed by formulating a network analysis 87

problem. Climatic networks are constructed by assigning edges between geolocations if their DUO similarity 88

exceeds a threshold. The thresholds are chosen to maintain as many nodes in the network as possible 89

while promoting network sparsity. In particular, the 2-way DUO comparison of the 500,710-coordinate 90

agglomerative data set yields a climatic network with 489,123 nodes and 24,013,802,230 (∼24 billion) edges. 91

Similarly, the 3-way DUO comparison applied to the same data set produces a network with 482,987 nodes 92

and 1,620,642,946 (∼1.6 billion) edges. 93
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For climatic clustering, in order to cluster the globe according to environmental similarity, we apply the 94

MCL algorithm to the agglomerative climatic networks that span the 60-year range of climate data. The 95

MCL algorithm applied to the 2-way network identifies 830 clusters, while the algorithm with identical 96

tuning parameters applied to the 3-way network reveals 5,238 clusters. A consequence of the different 97

edge counts between 2-way and 3-way climatic networks is seen in the granularity of the resulting clusters, 98

and is visualized in Figure 2. We additionally repeated this analysis for different parameterizations of the 99

MCL algorithm. For climatic clusters between 2-way and 3-way networks across all parameter sets, see 100

https://compsysbio.ornl.gov/. 101

(a) Global 2-way Markov clustering results

(b) Global 3-way Markov clustering results

Figure 2. Markov clustering results. Results of applying the MCL algorithm, which indicates
high-resolution climatic zones related by environmental similarity. (a) 830 climatic clusters arising from
2-way comparisons. (b) 5,238 climatic clusters arising from 3-way comparisons.

To track longitudinal environmental change, we apply the Cor-Cor method to the series of 51 10-year 102

time-windows ranging from 1958-1967 to 2008-2017. In particular, we use Cor-Cor to measure the maximum 103

cumulative change over all 10-year time-windows with respect to the first time-window (i.e., 1958-1967), 104

thereby tracking total environmental change over the 60-year period for which there are environmental 105

observations. This analysis was applied to the series of 2-way networks and 3-way networks, and is visualized 106
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in Figure 3. We have also produced animations from the Cor-Cor analysis ranging from 1958 to 2017 which 107

highlight global periodicities in the changes detected by the Cor-Cor algorithm over the time series considered 108

here, see https://compsysbio.ornl.gov/. 109

(a) Global 2-way Correlation of Correlations results

(b) Global 3-way Correlation of Correlations results

Figure 3. Correlation of Correlations results. Cor-Cor results between the 1958-1967 and 2008-2017
time-windows, indicating areas around the globe experiencing rapid environmental changes. (a) shows the
Cor-Cor results from 2-way networks and (b) shows the Cor-Cor results from 3-way networks. Blue color
indicates little-to-no changes in environmental relationships while red indicates large changes.

With the Cor-Cor method using global time series climate data, we are able to highlight regions of earth 110

where the environmental relationships are rapidly changing. These regions may have severe implications 111

for climate change and future zoonotic spillover events. In particular, the Cor-Cor results highlight that 112

the Northern Hemisphere’s high-latitudes are hot-spots for changing environmental relationships, which 113

has consequences related to climate change (see Section 3 for more details). Further, the analysis also 114

reveals potential hot-spots for bat-borne diseases, in particular, Ebola in Africa [15, 16], Hendra virus in 115

Australia [17,18], and Nipah virus in South and Southeast Asia (especially Bangladesh) [19–21]. The dramatic 116

environmental change in northern latitudes and potential fragmentation of the bat habitats are shown in 117

Figure 4. 118
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(a) Correlation of Correlations results related to CO2 and methane release in Arctic regions

(b) Correlation of Correlations results related to zoonotic spillover in Central Africa, Bangladesh, and
Eastern Australia

Figure 4. Correlation of Correlations implications. Longitudinal Cor-Cor analysis on 3-way climatic
networks between the 1958-1967 and 2008-2017 time-windows reveals rapid environmental changes in (a)
Arctic regions and (b) Central Africa, Bangladesh, and Eastern Australia. Blue color indicates little-to-no
changes in environmental relationships while red indicates large changes.

2.2 Computational results 119

Owing to the superior efficiency of computing 3-way comparisons over 2-way, performance data is presented 120

here for 3-way runs using JUWELS Booster. Large DUO comparison runs are split into multiple stages, with 121

each stage writing its own output files that are subsequently combined during post-processing. The 3-way 122

vector comparison was performed on 833 compute nodes of JUWELS Booster, requiring approximately 6.1 123

hours total wallclock time. The 3-way DUO method was performed in its entirety on the 500,710-coordinate 124

agglomerative dataset with each geolocation vector containing 504,000 binary elements (see Section 4.2 for 125

more information). The computation completed 13 out of 20 stages, after which a node hardware failure 126

occurred. The computation was then restarted to complete the final seven stages. We report on the second 127

part of the computation, for which statistics that were printed at the end of the run were captured. 128

The operation rate for the core computation was 7.82× 1018 operations per second (ops/sec), and the 129

rate for the entire code execution time was 7.47 × 1018 ops/sec. Furthermore, the average rate for the 130

general matrix-matrix multiplication (GEMM) operations alone was 3,866 TeraOps/sec per GPU, 95.4% of 131

the achievable peak 4,050 TeraOps/sec per GPU, and representing GEMM-only performance of 12.88×1018 132

ops/sec across all GPUs used. The entire calculation for the two runs executed a total of 168.7 × 1021
133

operations and ran in 6.1 hours. The equates to an output rate of 585.9× 1015 vector element comparisons 134

per second, 7.21X faster than the figure reported in a similar application [22]. The proportion of time spent 135

for each component of the calculation is shown in Table 1. Each stage is composed of long periods of mostly 136

GPU computation with utilization near 100%, with some overhead for CPU and communication operations. 137

After each of the seven stages, the GPUs are temporarily inactive while output is written. See S1 Fig for 138

GPU utilization over time. 139

The algorithms used here exhaustively compute all 2-way or 3-way comparisons, but only write a small 140
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Table 1. Computational performance. Timings for execution components during the CoMet vector
comparison.

Component Time (sec.) Percent
Core Computation 7465.02 95.43
Vectors Init 1.11 0.01
Metrics Init 0.03 0.00
Input 34.49 0.44
Output 321.29 4.11
Other 0.24 0.00
TOTAL 7822.17 100.00

fraction of significant results to output files based on a given DUO similarity threshold (i.e., 0.70 for 2-way 141

and 0.55 for 3-way DUO). The corresponding number and size of input and output files for the four cases 142

considered here are shown in Table 2. 143

Table 2. Data set characteristics. Number and size of input and output files for 2-way and 3-way vector
comparisons of the agglomerative 60-year climate data set and the series of 51 10-year time windows.

Data set Input files Input size Output files Output size
3-way agglomerative 1 file 59 GB 15,120 files 31.8 TB
2-way agglomerative 1 file 59 GB 1,632 files 15 TB
3-way time series 51 files 500 GB 6,744 files 4.6 TB
2-way time series 51 files 500 GB 32 files 295 GB

2.3 CoMet scaling 144

To measure scaling on JUWELS Booster, a weak scaling study was conducted using artificial data derived 145

from a realistic climate data set containing 500,710 vectors of length 1,008,000 elements each, corresponding 146

to full coverage of the earth’s land mass (excluding Antarctica) at ∼ 19 km2 resolution. The 3-way DUO 147

comparisons were computed at up to 825 compute nodes of JUWELS Booster. For benchmarking purposes, 148

we only consider one of five compute stages, with each run taking approximately two hours of wallclock time. 149

At the largest node count, the CoMet core computation achieved 9.37× 1018 operations per second (ops/sec), 150

and the entire application, including I/O, ran at 9.21× 1018 ops/sec. The core computation GEMM rate is 151

3.97X the rate of 2.36× 1018, which was previously reported [22]. The average GEMM-only performance was 152

3,985 ops/sec, very near to the 4,050 achievable peak for the A100 GPU (i.e., the GPU used on the JUWELS 153

Booster computing system). Individual GEMMs have the form C = ATB where A and B have dimensions 154

roughly 1, 008, 000× 16, 704, each performed in approximately 0.14 seconds on an A100 GPU. See S2 Fig for 155

a visualization of the weak scaling performance on JUWELS Booster. 156

To measure performance on Summit, we solved the 2-way DUO correlation problem using an additional 157

climate data set with 8,834,910 vectors of length 504,000, corresponding to a resolution of ∼4 km2. Here 158

we achieved 2.09 × 1018 GEMM operations for the core algorithm calculation on 4,624 nodes of Summit, 159

equaling 66.2% of achievable mixed precision peak on Summit. The mixed precision FP16/FP32 GEMMs 160

alone ran at 104.65 TeraOps, or 92.6% of the achievable peak. The entire core calculation required 75 seconds 161

to execute on Summit. 162

Note that the data sets used for performance studies are not used for downstream network analysis since 163

they differ in number and length of geolocation vectors. In particular, we utilize the 152,100-coordinate and 164

500,710-coordinate data sets to compare differences between the 2-way and 3-way climatic networks using 165

identical data sets and algorithm parameters. 166
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3 Discussion 167

The use of 3-way vector comparisons to generate climatic networks has produced significant scientific insights 168

into the time-dependent environmental processes and shifts around the globe. These improvements are directly 169

related to the features of the resulting climatic network. An important observation is the trade-off between 170

computational burdens. Clustering the 2-way network, with more than 24 billion edges, is significantly 171

more computationally expensive compared to the 3-way network with just over 1.6 billion edges. However, 172

computing a 3-way vector comparison is orders of magnitude more expensive compared to computing 2-way 173

vector similarities. Yet, the increased computational burden of the 3-way vector comparison is offloaded to the 174

extremely efficient CoMet library, which enables broader scientific use and analysis of the emergent graphs. 175

The differences between 2-way and 3-way comparisons are also highlighted in the MCL and Cor-Cor results, 176

in which the 3-way climatic networks reveal rapidly changing regions with significantly higher sensitivity 177

and granularity compared to the 2-way graphs, as shown in Figure 2 and Figure 3. These results suggest 178

that the 3-way DUO metric captures more higher-order interactions among geolocations, thereby yielding 179

networks that are richer in information content (i.e., have a higher signal/noise ratio), and, thus, are better 180

data-driven models of the global environment. 181

The MCL results shown in Figure 2 highlight different regions around the globe that share similar climates. 182

Importantly, the clusters naturally form into geospatially auto-correlated groups, despite the observation that 183

the DUO vector comparisons and MCL algorithm are not given coordinate-level information (e.g., latitude, 184

longitude, elevation, etc.). This phenomenon emerges from the inherent auto-correlation structure of the 185

climate data, in which adjacent points of land share similar environmental features. Thus, the global clusters 186

exhibit expected grouping in both the 2-way and 3-way cases. In particular, cluster granularity increases as a 187

function of elevation and climatic extremes. For example, in mountainous regions, small changes in latitude 188

or longitude can have dramatically different climates, which results in a larger number of small clusters (e.g., 189

the Himalayan mountain range in Central Asia). In contrast, other areas with more consistent climates are 190

captured as larger clusters that can span continents (e.g., the Sahara Desert in Northern Africa). 191

The Cor-Cor results highlight that the Northern Hemisphere’s high-latitudes are hot-spots for environmental 192

change, as seen in the top of Figure 4. It is reported that 25% of the world’s soil carbon is stored as 193

recalcitrant peat [23]. Thus, as the permafrost melts, these frozen stores of recalcitrant peat are being exposed 194

to microbiotic conversion (via methanogenic bacteria) from peat to methane and CO2. Of note is that 195

methane has a 21-fold higher global warming potential than that of CO2 [24]. As such, rapid environmental 196

changes in these areas have the potential to significantly impact global carbon fluxes, and therefore further 197

accelerate climatic changes [25,26]. 198

The Cor-Cor results also align with the hypothesis that changes in land-use patterns cause fissioning of 199

bat populations, leading to nutritional stress, which in turn facilitates viral shedding and spillover to human 200

and livestock hosts [27], as seen in the bottom of Figure 4. The high-resolution time series data, together 201

with other data sources such as genomic, phenotypic, societal and behavioral data, can have important 202

implications for a better understanding of the zoonotic reservoir host and pathogen biology, and also for 203

detecting the factors driving the cross-species transmission. 204

Broadly speaking, the analyses of these networks allows the scientific examination of the relationships 205

between micro-, mezo-, and macro-climates, and the processes that they drive, including carbon sequestra- 206

tion/release as greenhouse gases, glacier/ice retreat, sea-level rise, sustainable agriculture, and changes in 207

taxonomic composition and ecosystem stability. 208

3.1 Computational innovations 209

This work takes advantage of the continuing trend of GPU accelerators to deploy more hardware features 210

to increase processing rates on increasingly large workloads. The Nvidia Ampere GPU computes matrix 211

products on 64 individual 1-bit inputs at a rate 4X faster than one 64-bit double precision input using 212

tensor cores, and 8X faster than using the standard double precision compute units. Our previous methods 213

employed FP16/FP32 arithmetic, which runs 16X slower than 1-bit GEMMs on the Ampere architecture; 214

without the new 1-bit GEMM capability, the runs completed in this work would require the same number of 215

GEMM operations, however would run roughly 16X slower. The use of lower precision capabilities enables 216

substantially higher throughput and accuracy from the use of larger models as well as greater power efficiency 217
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and cost reduction for these computations. 218

The 6-hour DUO calculation documented here executed a total of 168.7 low precision ZettaOps, or 1,952 low 219

precision PetaOp/s-days. This is in the same magnitude range as training the massive GPT-3/large language 220

model, which required 314 mixed precision ZettaOps [28] at estimated training cost of $4.6 million [29], and 221

AlphaGo Zero, which required 1,860 Petaflop/s-days [30]. These are some of the largest calculations ever 222

completed to date. It is suggested that within a few years, a billion dollars could be spent on training a single 223

deep learning model [31]. It is clear that heterogeneous hardware features must be exploited in every way 224

possible to support these large-scale projects. 225

Processor heterogeneity is driven in part by the enormous requirements of deep learning workloads as well 226

as the post-Moore’s Law era of computing. Reduced precision arithmetic is now supported on processors 227

from all major HPC processor vendors, including Nvidia, AMD, and Intel; these should be directly usable by 228

the methods described in this work. Upcoming HPC systems such as NERSC’s Perlmutter and CINECA’s 229

Leonardo will also use Ampere GPUs and support the 1-bit GEMM methods described here. 230

Mixed precision computing has gained significant interest in HPC in recent years. One lesson learned from 231

this work is the need to optimize all parts of the application workflow to keep up with the performance boost 232

from reduced precision, from both compute and data transfer speed improvements. Accelerating GEMM 233

operations by 16X suddenly exposes other parts of application runtime that must be optimized. Additionally, 234

careful attention must be paid to accuracy and algorithmic stability issues. The accuracy of the algorithms 235

treated here is not impacted by lower precision methods, however some algorithm classes require careful 236

numerical analysis considerations to ensure reliability. 237

The optimization of data motion and management of data within the workflow are critical. Had the 238

output data not been filtered, the 6-hour simulation described here would have written 2.68 exabytes of 239

output data; the actual figure after filtering by threshold was 4.85 TB. Important data-related themes we 240

encountered in this work include: filtering the data as early as possible after creation; considering how to 241

perform more in situ streaming analytics before filtering; bringing the compute closer to the data, for example, 242

by moving more of the computation to the GPU; optimizing algorithm data motion to keep up with radically 243

increased processor speed; optimizing processing and transfer costs for the most expensive compute resource 244

and offloading pre- and post-processing to other resources; and organizing data/compute workflow processes 245

and tools to manage the data pipeline. 246

Data analytics methods and machine learning techniques are playing an increasing role in HPC workloads. 247

The word “data” does not occur in the text of the 2004 High-End Computing Revitalization Act [32], 248

however, is clearly visible in the 2015 executive order creating the National Strategic Computing Initiative [33]. 249

Scientific discovery at large scale using data-driven methods is becoming more common, as evidenced by the 250

recent AlphaFold2 results and SARS-CoV-2 spike dynamics findings [34]. Interest is also growing in coupling 251

large computing resources to devices at experimental facilities. 252

The methods developed here are applicable to many other problem domains for which it is required to 253

identify networks of similarity relationships between elements in large quantities of data, representable by 254

vector similarity measures. These problem domains include systems biology as well as ecology, materials 255

science, carbon cycles, biogeochemistry, additive manufacturing, and zoonosis research, to name a few. 256

3.2 Conclusions 257

Traditional climatic analyses have relied on the use of heuristics and climate models to draw scientific 258

conclusions about global climate patterns. A major contribution of this work is our unbiased, model-free, 259

data-driven approach, which minimizes model discrepancy and helps ensure the objectivity of the results 260

herein. Further, each climate variable is carefully pre-processed to reduce cross-variable correlations, account 261

for extreme outliers, and ensure an even variable distribution for the DUO similarity metric. Taking these 262

pre-processed variables together with exhaustive 2-way and 3-way all-against-all vector comparisons produces 263

extreme-scale climatic networks that are comprised of deeply complex environmental relationships. We exploit 264

these relationships using (i) MCL to divide the globe into environmentally similar high-resolution zones, and 265

(ii) our novel Cor-Cor method, which tracks environmental changes over time across each location on the 266

planet. The conclusions drawn from this work affect a number of critical scientific use cases ranging from 267

sustainable bioenergy and food production to detecting the areas of the world most susceptible to zoonotic 268

spillover events and subsequent deadly pandemics. 269
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In contrast to typical dense vector similarity calculations, which compare all vector pairs in a given data 270

set, we consider a 3-way vector similarity calculation between all vector triplets. This comparison reveals 271

higher-order interactions that are otherwise missed using pairwise comparisons. Further, the thresholded 272

climatic networks that emerge from the 3-way DUO comparison are more sparse (i.e., include fewer edges) 273

compared to the 2-way comparison, which reveals more granular and scientifically relevant features related to 274

climatic regions. 275

A primary aspect of this work is the analysis of time-dependent trends across the earth using a sliding 276

10-year window. The addition of a longitudinal dimension by which we can reason about temporal processes 277

is a crucial step in the analysis of historical environmental patterns as well as making projections about 278

future climate trends. Enabled by such longitudinal climatic networks, this work introduces Cor-Cor, a novel 279

method for measuring environmental change at every location across the globe by directly comparing climatic 280

networks throughout history. This allows scientists to track shifts in complex environmental relationships at 281

global scale to identify which areas on earth are experiencing the most rapid changes. These analyses have 282

important implications on sustainable agriculture (food and bioenergy) and zoonotic spillover events that can 283

lead to pandemics, and thus multiple impacts on human health and well-being. 284

Additionally, the computational innovations developed in this work are aligned with the confluence of 285

two trends in scientific computing. On one hand, observational, experimental, and simulation data are 286

increasingly fueling scientific discovery, with data volumes growing at a rate that outstrips available compute 287

capacity, thereby increasing the need to bring the compute closer to the data. On the other hand, the “end 288

of Moore’s law” theme is leading to new approaches, custom processors, and heterogeneous on-die compute 289

units to continue the growth in computing capacity. These changes necessitate the relentless optimization 290

of codes in order to keep pace with the shifting balances of performance rates for the different compute 291

components. To meet these challenges, the CoMet application was developed as a data analytics code for 292

unsupervised clustering based on vector similarity methods for large volumes of data [12, 13, 22]. Alternative 293

vector similarity methods based on locality-sensitive hashing [35] are unable to find all important similarities 294

between vectors in an efficient way. Such methods suffer from curse of dimensionality issues, and thus costs 295

grow exponentially with required accuracy. Thus, CoMet enables accurate vector similarity clustering through 296

complete, exhaustive search. 297

The work presented here makes use of publicly available data and software. In particular, we utilized 298

the open source TerraClimate data repository [11] for historical climate data, the CoMet software library 299

(see https://github.com/wdj/comet) to conduct 2-way and 3-way vector comparisons, and HipMCL for 300

large-scale unsupervised climatic clustering [36]. 301

4 Methods 302

4.1 DUO similarity metric 303

The large number of computations required by the exhaustive similarity search necessitates the use of 304

high-performance computing (HPC) systems. Thus, in this work, we leverage the capabilities of two of the 305

world’s top computing systems to scale 2-way and 3-way global climate vector comparisons: Summit and 306

JUWELS Booster. Additionally, we use the CoMet library, which takes advantage of ultralow precision 307

mathematics (e.g., 1-bit GEMMs, which are roughly 16X faster than FP16/FP32), and requires that the 308

geolocation vectors are converted to binary. To measure similarity between binary geolocation vectors, we 309

consider the DUO metric, now implemented in CoMet. The DUO metric resembles the Sörensen-Dice Index 310

of vector similarity (a statistic for comparing discrete distributions), however, it has been adapted to compute 311

multiple correlation statistics between vectors. For computational efficiency, DUO calculates the similarity 312

between two binary vectors by binning matrix values into low or high (0 or 1) categories [37–40]. DUO 313

comparisons produce four possible combinations for a 2-way comparison: (1, 1), (1, 0), (0, 1), and (0, 0). The 314
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DUO metric between binary vectors i and j is given by the equation: 315

DUOi,j(t) = 4Di,j(t)

(
1− fi(t)

q

)(
1− fj(t)

q

)
(1a)

Di,j(t) =
1

N

N∑
n=1

1{in=t1,jn=t2} (1b)

fi(t) =
1

N

N∑
n=1

1{in=t1} (1c)

fj(t) =
1

N

N∑
n=1

1{jn=t2} (1d)

where t = {(t1, t2) | t1, t2 ∈ {0, 1}} represents one of the four possible combinations, q ∈ [1,∞) is a scaling 316

factor, 1 represents the indicator function (e.g., 1{in=t1} is equal to 1 when the nth element of vector i is 317

equal to t1 and 0 otherwise), and N is the total length of the geolocation vectors. The term Di,j(t) represents 318

the proportion of elements exhibiting relationship t, while fi(t) and fj(t) model the probability of observing 319

the corresponding binary element (t1 or t2) in vector i and j, respectively. In other words, Dij(t) is equal 320

to the fraction of vector lengths of when t1 and t2 co-occur, and fi(t) and fj(t) are the fraction of vector 321

elements in i and j that are equal to t1 and t2, respectively. This metric calculates the correlation (and 322

effectively anti-correlation) values between all compared vectors. For example, a region of high values in 323

vector i and high values in the same region in vector j could correlate. Conversely, a region of high values in 324

vector i and low values in the same region in vector j could also correlate. Additionally, DUO accounts for 325

frequency effects by scaling the resulting values according to the fraction of high/low values in vectors being 326

compared. Following [37], we set the scaling factor, q, equal to 1.5. 327

The DUO metric is also extended to 3-way vector comparisons, which result in eight possible comparison 328

combinations (i.e., (1, 1, 1), (1, 1, 0), (1, 0, 1), . . . , (0, 0, 0)). The 3-way DUO metric for binary vectors i, j, 329

and k is given by the equation: 330

DUOi,j,k(t) = 4Di,j,k(t)

(
1− fi(t)

q

)(
1− fj(t)

q

)(
1− fk(t)

q

)
(2)

with t = {(t1, t2, t3) | t1, t2, t3 ∈ {0, 1}} and the terms Di,j,k(t), fi(t), fj(t), fk(t), and q following similarly 331

from Eqs (1a-1d). Notably, vector pairs/triplets with DUO scores approaching 1 indicate environmental 332

similarity, and those with DUO scores near 0 are considered dissimilar. 333

4.2 Data generation and pre-processing 334

The climate data we consider in this work are extracted from the TerraClimate database, which contains 14 335

layers of continuous-valued climate data: minimum temperature, maximum temperature, vapor pressure, 336

precipitation accumulation, downward surface shortwave radiation, wind-speed, reference evapotranspiration 337

(ASCE Penman-Montieth), runoff, actual evapotranspiration, climate water deficit, soil moisture, snow water 338

equivalent, and the Palmer drought severity index [11]. Each climate layer spans 62 years, corresponding to 339

744 monthly observations, and ranges from January, 1958 to December, 2019 between −90 and +90 latitude 340

and −180 and +180 longitude. 341

In this work, climate data is extracted at two geospatial grid resolutions: 152,100 land coordinates (∼35 342

km2), and 500,710 land coordinates (∼19 km2). See S3 Fig for an example coordinate grid over the contiguous 343

United States. Geolocations corresponding to bodies of water and Antarctica are not considered in this 344

work (i.e., we exclude geolocations between −90 and −60 latitude). For each grid coordinate, we extract 345

the corresponding climate data using the xarray software package in Python, which utilizes a geometric 346

transformation to convert between world and pixel coordinates, and utilizes a nearest neighbor search to 347

locate corresponding values of a given climate layer [41]. Further, we take additional steps to ensure that 348

grid coordinates are never sampled twice and we discard any coordinates with missing observations. Using 349
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this strategy, for each geolocation in the 500,710-coordinate set, we construct agglomerative data vectors 350

that span the full time range of observations. For the 152,100-coordinate data set, we construct a series of 351

data vectors composed of 10-year time-windows in 1-year increments. The agglomerative data set is used 352

to provide a full view of correlated geographic locations while the time-windows are used for a longitudinal 353

study that reveals how climatic relationships are changing over time. 354

Multiple data pre-processing steps are taken to ensure quality control, including cross-variable correlation 355

analysis, distribution-agnostic variable partitioning, and conversion to binary. To test for correlations between 356

climate layers, we performed a pairwise correlation analysis using Pearson’s correlation coefficient across all 357

62 years of data (the total number of years of data currently available in the TerraClimate database) over 358

the 500,710-coordinate grid. This analysis revealed strong correlations between the minimum and maximum 359

temperature (e.g., median Pearson’s correlation of 0.97 across all 62 years). Thus, to avoid duplicated 360

information arising from strong correlations, we derived a new climate layer: temperature range (i.e., the 361

difference between maximum and minimum temperature) to replace the maximum temperature layer. In this 362

way, we retain the same level of information (i.e., maximum temperature can be derived from temperature 363

range and minimum temperature), but the median correlation was reduced to 0.373. Further, the correlation 364

analysis revealed that the final two years of data (i.e., 2018 and 2019) contained layers that were highly 365

skewed compared to the rest of the climate variables. See S4 Fig for a snapshot of the pairwise correlations. 366

Therefore, we removed these two years of data from all climate layers and analyses to avoid biases that may 367

have been introduced. Thus the total time range is reduced to 60 years, or 720 monthly observations, meaning 368

that for the longitudinal study, we consider 51 time-windows (i.e., 1958-1967, 1959-1968, . . . , 2008-2017). 369

In order to carry out an efficient large-scale 1-bit GEMM vector comparison, a precise variable encoding 370

scheme (i.e., conversion from continuous-valued to binary-valued data) is essential. Encoding begins with the 371

partitioning of the raw continuous climate variables into discrete bins. Due to the wide range of distributions 372

and scales that span the climate layers, we apply an equal-frequency binning methodology (similar to a 373

uniform quantile transform) to standardize each layer. This process transforms the distribution of each 374

climate layer into a uniform distribution and seamlessly accounts for extreme outliers. 375

To balance computational efficiency with scientific accuracy, we encode each bin into a binary representation 376

with 50 bits. The binary encoding scheme is a modified one-hot encoding, where, for a binary representation 377

with n bits and a given bin, k, the binary assignment is 0n−k1k. For example, for bins k = 1, 2, . . . , 5 378

using n = 5 bits, the binary representations are 00001, 00011, 00111, 01111, and 11111, respectively. This 379

encoding scheme is harmonious with the DUO metric since the high and low values of climate layers between 380

geolocations are aligned. For example, consider adjacent bins 3 and 4 of a climate layer. Since the bins are 381

close to one another, they should correlate more strongly. In our encoding scheme (with n = 5 for simplicity), 382

the corresponding binary representations are 00111 and 01111, which correlate since the two representations 383

differ by only one bit. Note that the bit encoding approach used here could be converted into a method that 384

more directly operates on floating-point or integer arithmetic, as described in [14]. However, such methods 385

would require an absolute value or scalar minimum operation, and since these are not implemented in GPU 386

tensor core hardware, such methods would run at significantly slower speeds. Finally, to create agglomerative 387

time-windows for each geolocation, the binary representations of the 14 climate layers are concatenated over 388

months and years. This produces binary vectors of length 504,000 for the 60-year view (i.e., 14 layers × 12 389

months × 60 years × 50 bits), and similarly 84,000 for the 10-year time-window view. 390

4.3 Vector comparison 391

Using the binarized climate data for both the agglomerative 60-year data set with 500,710 geolocations and 392

the longitudinal series of 51 10-year time-windows with 152,100 geolocations, we perform both 2-way and 393

3-way vector comparisons using the DUO vector similarity metric implemented in CoMet. In the 2-way 394

comparison, the similarity between all unique pairs of geolocations are measured using Eq 1a. Similarly, for 395

the 3-way comparison, all unique triplets of geolocations are compared using Eq 2. The total number of 2-way 396

and 3-way comparisons for N vectors is N2 and N3, respectively. Thus, the 152,100-coordinate produces 397

more than 2.3× 1011 2-way and 3.5× 1015 3-way comparisons. Similarly, the 500,710-coordinate data set 398

results in more than 2.5× 1011 2-way and 1.2× 1017 3-way comparisons. The extreme scale and computing 399

requirements of such numbers requires multiple computational innovations. 400

Previous versions of CoMet embodied multiple innovations to adapt the targeted methods to modern 401
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leadership-class systems [22], enabling up to a five orders of magnitude improvement over the previous state 402

of the art, including multidimensional hierarchical parallelism, use of GPU accelerators, reformulation of 403

the targeted algorithms to use high performance GEMM operations, asynchronous overlap of compute and 404

transfers, load balancing methods, and use of reduced precision compute units (e.g., tensor cores). However, 405

solving the extreme-scale problems addressed in this work requires further innovations that also align with 406

expected future hardware trends. 407

Largely motivated by requirements for training deep learning (DL) models, recent GPUs feature special- 408

purpose compute units for matrix product operations (e.g., Nvidia GPU tensor cores and AMD MI-series 409

GPU matrix core engines [42]). Most recently, Nvidia Turing and Ampere architectures offer hardware for 410

computing GEMM matrix-matrix products on ultralow-precision 1-bit inputs accumulated to INT32 outputs. 411

These are already being exploited for some computational problems [43, 44]. The Turing architecture offers a 412

non-conventional XOR-based matrix product that we have adapted to computing the standard GEMM result 413

in CoMet. The Ampere architecture additionally offers a standard 1-bit GEMM that is usable by CoMet 414

directly. The 1-bit GEMMs offer theoretical peak performance 16X faster than the standard half-precision 415

GEMMs, and 256X faster than double-precision matrix product performance [45]. The DUO algorithm 416

takes 1-bit indicator values as inputs, making it directly amenable to this kind of computation. Since these 417

GEMMs are computed, accumulated, and stored as full INT32 values, exact bit-for-bit equivalence with 418

higher precision implementations is maintained. 419

The extreme speed of 1-bit GEMMs must additionally be matched by increasing the effective transfer 420

speeds in other parts of the computation. To achieve this, the process used to discard thresholded connections 421

between vectors (i.e., pairs/triplets of dissimilar geolocations) is reimplemented on the GPU, and the values 422

not thresholded are losslessly compressed before returning to the CPU by using the Nvidia CUB library. This 423

makes the implementation more throughput-friendly and frees up large amounts of CPU memory, enabling 424

much longer asynchronous pipeline depths and lower overheads. Additionally, other calculations such as 425

matrix formation have been moved to the GPU, resulting in faster speed and less CPU-GPU communication. 426

The original CoMet communication pattern, identical to the mpiGraph benchmark [46], required every rank 427

to communicate with every other rank at some point in the computation. For the communication-intensive 428

2-way vector comparisons, this has been changed to a simpler persistent ring (circular shift) pattern, which is 429

more embeddable into common interconnects such as dragonfly topologies with less risk of network congestion. 430

Additionally, GPU-aware MPI has been deployed for use with systems that benefit from it. Further, the 431

original 3-way comparison algorithm described in [22] and [12] was based on computing 3 GEMMs to populate 432

the 8 possible comparison values for each vector triplet. An algorithmic modification has been made requiring 433

only 2 GEMMs, each of these computing 4 of the 8 relevant comparisons for the three geolocation vectors. 434

This method gives results identical to the previous method but increases the throughput rate by up to 50%. 435

We use the methodology described in [22] to measure computational performance. Timings are collected for 436

parts of the computation with the gettimeofday function, using cudaDeviceSynchronize and MPI Barrier 437

to synchronize nodes. This is done infrequently to avoid unnecessarily interrupting asynchronous operations. 438

Unless otherwise specified, the core algorithm computation time is measured without I/O. Data input time is 439

typically a small fraction of runtime. Output time is highly dependent on the chosen output threshold factor, 440

however this setting is calibrated to minimize the impact of output time cost while maintaining scientific 441

fidelity. Operation counts are accumulated manually in the code during execution. The standard definition 442

of a GEMM operation is used: for the product C = AB and matrices A and B of dimensions m × k and 443

k × n, the GEMM operation count is 2mnk, for the given precisions of the matrix entries of A, B, and C. 444

GEMM-only results are reported based on this operation count. For the core metrics computation and vector 445

comparisons, only operations meaningful to the scientific results are counted; for example, calculations on 446

matrix size padding and required computations of unused values of the result matrix are not counted as part 447

of the total. 448

Finally, in order to complete the vector comparisons on the encoded data sets with CoMet, the input 449

files were transferred from OLCF to JSC. After performing the 3-way global climate vector comparisons on 450

JUWELS Booster, the resulting output data was then transferred back to OLCF for post-processing. Due to 451

the large amount of data that needed to be transferred, we leveraged the multi-stream capabilities of UFTP 452

to transfer the entire CoMet output from JSC with a transfer rate of over 140MB/s using eight streams. For 453

example, UFTP allowed a complete data transfer for the 4.6TB data set in approximately 10 hours. Without 454

a multi-stream capable tool, the same transfer would have taken more than 81 hours using scp or rsync, 455
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which could only achieve a bandwidth of approximately 17MB/s. 456

4.4 Network analysis 457

In order to construct climatic networks from the set of DUO vector comparisons (where each vector corresponds 458

to a point of land on earth), vector pairs/triplets whose DUO similarity exceeds a given threshold are stored 459

in a graph as nodes (i.e., geolocations) with edges linking the pair/triplet. An edge is created for each vector 460

pair passing the threshold, while three edges are created for each vector triplet. Further, we use the DUO 461

similarity scores as edge weights. By using a threshold to retain edges between geolocations with high DUO 462

similarity scores, a sparse network structure emerges that is then used for downstream scientific analysis. 463

Since the results from large numbers of 2-way and 3-way combinations can quickly lead to writing exabytes 464

of data, care must be taken in choosing an appropriate threshold that balances network sparsity with output 465

size. Thus, we apply a sub-sampling scheme inspired by sparse grids to quickly test thresholds and resulting 466

output sizes in order to extrapolate to the full vector comparison. See S5 Fig for as example sparse grid 467

sample over the contiguous United States. The sub-sampling scheme is chosen to reduce the total number of 468

geolocations while also preserving the auto-correlation structure of nearby geolocations (i.e., adjacent locations 469

on earth have similar climates). By computing comparisons over the sub-sample of geolocation vectors, we 470

approximate the DUO similarity distributions over all points on earth and define which proportion of DUO 471

correlations are saved, thereby defining the size of the data that will be stored. Through this experimentation, 472

the thresholds are determined to be 0.70 for 2-way DUO and 0.55 for 3-way DUO for the data sets considered 473

here. 474

To identify high-resolution climate zones, we apply Markov Clustering (MCL), an unsupervised graph 475

clustering algorithm, to the 500,710-coordinate agglomerative 60-year climatic networks that emerge from 476

CoMet using the HipMCL [36] high-performance clustering package on the Summit supercomputer at OLCF. 477

MCL is an iterative method that groups nodes into clusters based on the graph topology. Since nodes in a 478

climatic network represent geolocations and edges represent environmental similarity, the clusters derived 479

from MCL highlight areas around the globe that share similar climatic features. We use MCL in this work 480

since, unlike k-means, the number of clusters is not assumed to be known a priori. Further, the granulatity 481

of the clusters can be controlled by adjusting parameters of the MCL algorithm (e.g., inflation rate). For the 482

results shown here, we set the inflation rate to 4.0. The results for inflation rates 2.0, 4.0, and 6.0 can be 483

seen at https://compsysbio.ornl.gov/. 484

Next, we conduct a longitudinal analysis of the 152,100 coordinate 10-year time-window networks by 485

developing and applying the Cor-Cor algorithm, a novel methodology to track environmental changes at 486

every geolocation across the globe. Formally, the Cor-Cor algorithm uses the Sörensen-Dice Index to measure 487

changes in a node’s adjacency vector between two corresponding climatic networks. This comparison is 488

possible because the nodes (i.e., geolocations) between any two climatic networks are the same, however, 489

the neighborhoods of each node (as defined by the edge set) can vary depending on the environmental 490

relationships of each location to all other locations on earth. In this way, areas with Sörensen-Dice scores 491

near 1 indicate little-to-no change in environmental relationships, whereas areas with scores near 0 indicate 492

large changes. Applying this methodology to the series of longitudinal climatic networks reveals which areas 493

around the globe are experiencing the most rapid environmental changes. 494
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