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Reliable phenotyping methods that are simple to operate and in-
expensive to deploy are critical for studying quantitative traits
in plants. Traditional fruit shape phenotyping relies on human
raters or 2D analyses to assess form, e.g., size and shape. Sys-
tems for 3D imaging using multi-view stereo have been imple-
mented, but frequently rely on commercial software and/or spe-
cialized hardware, which can lead to limitations in accessibil-
ity and scalability. We present a complete system constructed
of consumer-grade components for capturing, calibrating, and
reconstructing the 3D form of small-to-moderate sized fruits
and tubers. Data acquisition and image capture sessions are
9 seconds to capture 60 images. The initial prototype cost was
$1600 USD. We measured accuracy by comparing reconstructed
models of 3D printed ground truth objects to the original digi-
tal files of those same ground truth objects. The R2 between
length of the primary, secondary, and tertiary axes, volume, and
surface area of the ground-truth object and the reconstructed
models was > 0.97 and root-mean square error (RMSE) was
<3mm for objects without locally concave regions. Measure-
ments from 1mm and 2mm resolution reconstructions were con-
sistent (R2 > 0.99). Qualitative assessments were performed on
48 fruit and tubers, including 18 strawberries, 12 potatoes, 5
grapes, 7 peppers, and 4 Bosch and 2 red Anjou pears. Our
proposed phenotyping system is fast, relatively low cost, and has
demonstrated accuracy for certain shape classes, and could be
used for the 3D analysis of fruit form.
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Introduction1

Fruit appearance is a key trait for many crops and can condi-2

tion market viability of fruit products and the success of cul-3

tivars (1–3). Taken together, the shape and color, or appear-4

ance, of fresh fruit are often associated with quality as they5

reveal condition and impact consumer perception of taste (1).6

Fruit shape is a heritable, complex trait that is difficult to as-7

sess due to the complex nature of data acquisition, which can8

be both time consuming and computationally laborious (4–9

11). Fruit shape in agricultural studies have primarily been10

assessed subjectively, placing fruit into qualitative bins rang-11

ing from ‘deformed’ to ‘uniform’ or by using 2D geometric12

morphometrics (4, 7, 12–19).13

Publicly available methods for 2D phenotyping of plants and14

plant organs have increased in recent decades to support high15

quality analysis of leaves, roots, shoots, stems, tubers, and16

fruits (6, 20–27). Computer vision has shown great potential17

to quantify external fruit quality and 2D imaging has been18

successfully implemented to measure the shape and size of 19

fruits such as strawberries (4, 12), apples (5), carrot (6, 14), 20

mangoes (28), and many others. More recently, methodolo- 21

gies for 3D reconstruction of plant organs have been devel- 22

oped with approaches that vary in speed, scale, cost, and ac- 23

curacy; including laser scanners, x-ray computed tomogra- 24

phy, and reconstruction from sequences of 2D images from 25

digital cameras (8, 29–41). Methods that rely on sequences 26

of 2D images are numerous and variable with their own com- 27

plexities and nuances that provide different strengths and 28

weaknesses(8, 27, 37, 40–44). 29

Modern technologies and analyses can be used to assess these 30

physical characteristics and ultimately provide researchers 31

with the tools necessary to support genetic inquiries and bi- 32

ological discoveries, expand what is known about modern 33

germplasm, and enhance breeding practices in fruit and veg- 34

etable crops (4, 6, 8, 45–52). Multivariate and spatial statis- 35

tics can be used to determine parameters that identify and 36

quantify fruit defects (53), differentiate between marketable 37

and non-marketable fruit (12, 50), and understand fruit phe- 38

notypes that impact markets requiring long shelf-life and sus- 39

tained fruit quality through harvesting, handling, and ship- 40

ping. 41

This paper describes a rapid (9 s), low-cost ($1,600), 42

turntable-type system for 3D reconstruction of fruit and tu- 43

bers. Fruit rotates on an automated pedestal while a remote- 44

controlled digital camera acquires images, as shown in Figure 45

1. We use a multi-camera calibration method (54) to compute 46

the calibration parameters of the camera at every time step. 47

Fruit are segmented from non-fruit regions in the images. Fi- 48

nally, a reconstruction method using silhouettes as features 49

(55) reconstructs the fruit or vegetable shape using the cali- 50

bration and silhouette information (Figure 2). 51

Contributions. Our contributions to the state-of-the-art in 52

fruit phenotyping and estimating 3D reconstructions are a 53

high-throughput (9 second data acquisition), modular recon- 54

struction system that can be used in lab or field settings (on 55

a table) with high accuracy for objects that do not have lo- 56

cal concavities. Our work is most similar to that of (40) and 57

(8). In (40), a turntable system is used and the cameras rotate 58

around the target object, rice inflorescences. Relative cam- 59

era calibration parameters are estimated by detecting features 60

and estimating matches from color checkerboard pages and a 61

structure from motion approach generates point clouds. This 62

approach works well for the target crop, but has an unknown 63
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scale factor that is not solved for. Consequently, the physi-64

cal units such as a mm or cm are unknown, and comparison65

with another system of a different size may be difficult. In66

our system, we calibrate directly from patterns in the scene,67

so the physical size of the sample is estimated. The work of68

(8) uses a turntable system in the configuration that we do,69

where the fruit is rotating and the camera is stationary, to ac-70

quire images for 3D reconstruction. They use a commercial71

software package to reconstruct point clouds, and then pro-72

cess point clouds to extract fruit features. Our work differs73

from both of these in that we use silhouettes and directly use74

voxel representations instead of point clouds.75

Core Ideas76

• A low-cost 3D fruit phenotyping system is presented.77

• Image capture using the proposed approach lasts for78

only 9 seconds.79

• Accuracy is measured against 3D printed ground-truth80

objects.81

• Camera calibration, background segmentation, and re-82

construction does not rely on commercial software.83

• An RMSE less that 3mm was obtained for ground truth84

objects without locally concave regions.85

Materials and Methods86

The 3D phenotyping system consists of multiple parts: the87

physical system for data acquisition and the algorithms for88

reconstructing shape from that data. Briefly, one or multiple89

digital cameras are mounted on an aluminum frame and re-90

motely triggered at a frame rate of 7 frames per second (FPS)91

for 9 seconds while a stepper motor controlled by a micro-92

controller rotates an object. Captured images are calibrated93

using CALICO, a multi-camera calibration method (54) that94

relies on a combination of arUco and chArUco markers (56–95

58). The fruit foreground is segmented from the non-fruit96

background in each calibrated image. Segmented silhouettes97

of fruit are then used as features to reconstruct 3D models.98

Hardware. The physical system is composed of an alu-99

minium frame, digital cameras and camera control units, a100

USB barcode scanner, a microcontroller, and a microcom-101

puter.102

Frame. The frame’s design is an inverted "T" shape struc-103

ture with a 1.22m (4ft) horizontal base and a 1.22m vertical104

arm (Figure 1). The main structure is composed entirely of105

80/20 t-slotted aluminum. We chose this material because it106

is lightweight, strong, and inexpensive. The t-slot design and107

the availability of different fasteners provides rigidity while108

remaining modular. The arm is connected to the base using a109

side-mount and hand brake. The side-mount and hand-brake110

combination means that the vertical arm can be positioned111

anywhere along the length of the horizontal base. The cam-112

era is mounted to the vertical arm using the same side-mount113

and hand brakes, again allowing it to be positioned continu-114

ously along the vertical span of the arm.115

Fig. 1. Imaging system hardware. From left to right: the arUco marker backdrop;
a stepper motor with a metal pedestal, chArUco tagged cubes, and a target object,
a strawberry; the 80/20 t-slotted aluminum inverted T (⊥) frame; a digital camera
is mounted on the vertical limb of the frame and attached to a PocketWizard Multi-
Max II radio transceiver; reverse facing LED light sources; Arduino microcontroller
connected to stepper motor and power supply. Best viewed in color.

Cameras and controllers. We used one Sony α6000 mirror- 116

less digital camera for this project. The camera was set to 117

medium speed continuous image capture ( 7 frames per sec- 118

ond), manual focus, and aperture priority mode with the aper- 119

ture set to f/8. We controlled the camera with a PocketWiz- 120

ard MultiMax II transceiver unit. These units attach to the 121

camera’s multi-port and digitally control the camera’s shutter 122

button and can be programmed to "hold" the shutter button 123

to allow for variable duration. We used 9 seconds of hold 124

to match the rotation rate of our stepper motor. Two Pock- 125

etWizard MultiMax II units are required: one unit to transmit 126

a signal and one unit to receive a control signal for multiple 127

cameras. With these, the camera is controlled from a single 128

source which is triggered by the input of a barcode scanner. 129

Microcomputers and stepper motor. The data acquisition 130

process consists of rotating the fruit on the pedestal and ac- 131

quiring images of that fruit. To automate this process, we 132

used a Raspberry Pi 3 microcomputer as well as an Ar- 133

duino Uno Rev3 microcontroller. To rotate the objects on 134

the pedestal, we used a Nema 17 stepper motor controlled us- 135

ing an Arduino Uno Rev3 and an Arduino Rev3 motor shield. 136

The pedestal is a thin metal rod approximately 20cm in length 137

and 5mm in diameter. The Nema 17 stepper motor has 200 138

steps per rotation (1.8º per step). The motor is programmed 139

to take 1 step every 45ms, which is a full rotation every 9 140

seconds. 141

Lighting. We used 4 LED lamps to illuminate the scene. 142

These lights are all directed away from the object towards 143

a reflective white sheet to reduce the intensity of the light 144

on the scene. This enabled us to dramatically reduce, and in 145

some instances eliminate, the glare on the surface of more 146

reflective objects such as strawberries. The lights chosen do 147

not have any temperature control and are likely not ideal for 148

color accurate measurements. 149
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Fig. 2. Representative model reconstructions of the six types of fruit or tubers imaged in this study. The resulting 3D reconstructed models from the hardware and software
presented in this study, including: (A) a baby yellow potato, (B) a strawberry, (C) a Bosch pear, (D) a sweet mini pepper, (E) a green table grape, and (F) an Anjou pear where
the segmentation failed All models shown are at 1mm resolution. Images are not to scale. Best viewed in color.

Calibration Targets. Calibration is performed on image data150

that also contains the data for reconstruction. To accomplish151

one-step calibration and data acquisition, the workspace is152

prepared with calibration targets, which are shown in Figure153

1. The fruit or tuber is mounted on the pedestal. A pair of154

offset cubes are mounted on the pedestal directly below the155

fruit or tuber (56). Each cube is 2.5cm× 2.5cm× 2.5cm with156

a small hole in the center for mounting onto the pedestal, and157

are rigidly attached.158

On the cube faces without holes, chArUco markers are159

printed and attached to the cubes. The chArUco patterns160

are a 3×3 checkerboard with each square unit measuring161

6.67mm×6.67mm. The two cubes have eight faces with162

chArUco patterns on them, and multiple cube faces should be163

visible in any frame providing enough information such that164

the calibration method CALICO can compute camera poses.165

We use a scene background, a 0.71m2 (26in2) aluminum166

panel, composed of arUco markers (57, 58). This type of167

background allows us to refine internal camera calibration168

parameters using the multi-camera calibration method, CAL-169

ICO. Each arUco marker is 2.25cm2 and adjacent markers170

are separated by 2.75cm of white space. Each image con-171

tains between 60-70 unobscured arUco markers, depending172

on the size of the object.173

Object

Object ID is
scanned by USB
barcode scanner

Object ID barcode

Object mounted on
pedestal

Object ID written to
TXT file

2s timer triggered

Cameras capture images for 9
seconds at 7 frame sec-1

Arduino board is activated
by user starting stepper

motor

Camera finishes writing
frames to SD card

Motor begins rotating
at 6.67 rev min-1

Arduino board is deactivated
by user stopping stepper

motor

Fig. 3. Flow diagram of data acquisition strategy and steps. Input (yellow): A
physical object with an associated barcode ID, e.g., QR code or data matrix. Stag-
ing (white): The object is placed on the pedestal. Camera Triggering (red): The
object ID barcode is scanned using a USB barcode scanner attached to a Rasp-
berri Pi, starting a 2 second timer before triggering the cameras for 9 s at 7 FPS.
Intermediate output (green): The scanned barcode is written into a TXT file. Motor
control (blue): During the 2 second timer, the Arduino board is activated by sup-
plying power to the board initiating rotation of the object at 6.67 RPM (1 revolution
every 9 seconds). Once the image capture is complete, the user deactivate the
Arduino board, stopping the motor. Staging (white): The camera will need upwards
of 15 seconds to finish writing the images to storage, during which time the next
object can be staged on the pedestal, initiating the following session. During this
process, the user is responsible for mounting the objects to the pedestal, scanning
the barcode ID, and activating/deactivating the stepper motor. Best viewed in color.
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Data Acquisition control. For every object, the Arduino board174

is first activated by the user, who starts the stepper motor’s175

rotations. The cameras are triggered once the motor begins176

to rotate using a barcode scanner and a custom python script177

that sends a serial signal through the general-purpose input178

output (GPIO) of the Raspberry Pi to the transmitter unit.179

The cameras stop firing after 9 s and Arduino board is de-180

activated manually. Including swapping objects, the time for181

each sample is less than 25 s. In this time period, each cam-182

era captures approximately 60 frames during one complete183

rotation of the object. Following each session, the camera184

must be allowed to clear its on-board cache and to write the185

images to an SD card. Depending on the camera and the SD186

card, write speeds may vary. In our setup, this typically took187

about 10 s.188

Reconstruction Pipeline. The 3D reconstruction pipeline189

consists of three stages: calibration, segmentation, and re-190

construction. In this work, the stages consist of independent191

modules but they have been selected based on the assump-192

tions of the reconstruction module.193

We use a Shape from inconsistent Silhouette method from194

Tabb (2013) (55) that requires camera calibration information195

and uses silhouettes – or segmentations – of the target object196

to generate reconstructions. This reconstruction method tol-197

erates calibrations with small camera calibration error and198

small image segmentation error. The methods used for cali-199

bration and segmentation are discussed in the Calibration and200

Segmentation sections, respectively.201

Calibration. The reconstruction method depends on camera202

calibration. Camera calibration usually means the internal203

camera parameters as well as the external pose (rotation and204

translation) of cameras relative to a world coordinate system.205

In the context of this work, by ‘computing the calibration,’ we206

mean determining the internal camera parameters as well as207

the external pose of the camera with respect to the calibration208

object at each image acquisition.209

We use an existing method for multiple-camera calibration,210

CALICO (54), to compute the desired calibration parame-211

ters. To use CALICO in this context, chArUco tags have to212

be rigidly attached to the pedestal and multiple tags visible at213

each time instant, which is why the physical system is pre-214

pared as in the Hardware section. Some datasets had signif-215

icant error in the camera pose because not enough chArUco216

tags were detected in each frame, so we extended the ‘ro-217

tation’ option of CALICO to also detect and use the arUco218

corners within the chArUco boards.219

A successful calibration estimates internal camera calibration220

parameters, selects one of the chArUco boards as a world co-221

ordinate system, and estimates the relative pose of the cam-222

era at each image acquisition with respect to that world co-223

ordinate system. For instance, see Figure 4, which shows an224

example of an input image, (Figure 4(A)) and the chArUco225

markers below the pedestal. The reconstructed chArUco226

board poses, camera poses at each image acquisition, and a227

reconstructed strawberry are shown in Figure 4(C).228

Segmentation. The reconstruction method depends on seg- 229

mented images, where the fruit, tuber, or ground truth object 230

is separated from the image background as in Figures 4A- 231

4B and 6A-6B. The backgrounds consist of arUco tags and 232

the pedestal with chArUco tags. With this background, con- 233

sisting of dark and light intensities, we took an approach of 234

modelling the actual intensities of the calibration tags per im- 235

age as a Gaussian Mixture Model with two components, and 236

then used background subtraction to determine the location 237

of target objects. 238

First, the arUco tags are located in the image. Then, the 239

dark and light regions of each tag are identified using Otsu’s 240

segmentation algorithm (59). The dark and light regions of 241

all of the tags are used to estimate six Gaussian distribu- 242

tions (masks are shown in Figure 6C and 6D): Nd,r(µ,σ2), 243

Nd,g(µ,σ2), Nd,b(µ,σ2), the distributions representing the 244

dark intensities for red, green, and blue channels, and the 245

same for all three channels of the light intensities. 246

Each image pixel x is evaluated against the distributions as 247

in Equation 3. We use a typical background subtraction tech- 248

nique in that we subtract the mean and compare with a thresh- 249

old; here the threshold is a constant multiplied by the stan- 250

dard deviation. The user provides constants kd and kl, and 251

from the distributions computes Boolean values yd and yl 252

for each pixel x. The segmentation result of whether the 253

pixel represents the background (0) or not (1) is stored in 254

z = yl∧yd. 255

yd =
∨

ch∈{r,g,b}

|µd,ch−xch|> kdσd,ch (1)

yl =
∨

ch∈{r,g,b}

|µl,ch−xch|> klσd,ch (2)

z = yl∧yd (3)

In our experiments, kd = 2.0 and kl = 2.5 for all tests. 256

Reconstruction. We used a Shape from Inconsistent Silhou- 257

ette (SfIS) method (55) for 3D reconstruction of the plant or- 258

gans and ground truth objects. With camera calibration and 259

segmentation or silhouette provided, SfIS is a voxel-based 260

method that searches for a labeling of voxels as occupied 261

or empty such that the voxels match the provided segmen- 262

tations. The match does not need to be exact, so some small 263

camera calibration and segmentation errors can be present. 264

A key feature of the SfIS method is that it will not recon- 265

struct concavities in 3D space. As examples of these types 266

of shapes, the tetrahedron, sphere, and F ground truth objects 267

(Figure 7A-7C) can all be reconstructed because they do not 268

contain concavities, while the 6-sided spherical die cannot 269

(Figure 7D). The stem or calyx region of an apple is also an 270

example of a locally concave region on a surface. The reason 271

that the SfIS method is not able to reconstruct locally con- 272

cave regions if because of its dependence on segmentations 273

as features. 274

We use the extension to SfIS of hierarchical search described 275

in (60); the user specifies an initial voxel size, finds a solution 276
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(A) Image from data acquisition, sample 53 (B) Segmented image (C) Reconstructed strawberry, calibration patterns (+ shaped forms), and estimated
camera poses.

Fig. 4. An example of successful camera calibration results. Overview of image data and results. Images of fruit and calibration objects are captured while the pedestal
rotates (a). Each image is segmented (b). The calibration and segmentation information is used to reconstruct the fruit shape, 1 mm voxel resolution shown in (c). A camera
pose is represented as a pyramid, where the camera center is the tip of pyramid. Best viewed in color.

(A) 4 mm (B) 2 mm (C) 1 mm

Fig. 5. Reconstructions of a strawberry at 3 different resolutions. Strawberry re-
construction from Figure 4 during the hierarchical reconstruction process, with esti-
mated calibration pattern positions below. The SfIS reconstruction method starts at
a large voxel resolution (here, 4 mm), and refines the reconstruction at finer resolu-
tions using the prior level’s results. Best viewed in color.

with SfIS, divides the voxel size by eight and continues with277

search with SfIS, using the previous voxel size’s result as an278

initial solution. In this work, we performed experiments on279

all of the samples with two different parameter sets. In the280

first, the initial voxel size is 4 mm, the number of voxel divi-281

sions is two, and the final voxel size is 2 mm. In the second282

set of experiments, the initial voxel size is 2 mm, the number283

of voxel divisions is two and the final voxel resolution is 1284

mm. An additional parameter is the factor that the the input285

image is resized down, that value is 4 for both experiments.286

The initial image size is 6000 by 4000 pixels.287

Experiments. We focus on two primary experiments. The288

first is to quantitatively measure and evaluate our 3D model289

reconstructions against objects with a known shape. These290

objects with a known shape are the ground truth samples,291

with 3D model files that are 3D printed. The second exper-292

iment is to qualitatively assess the system’s ability to recon-293

struct various fruit models across different scales. We recon-294

structed the objects in both experiments at 1mm and 2mm 295

resolution. 296

Ground Truth Samples. Fruit form, especially in 3 dimen- 297

sions, can be difficult to quantify. To assess the accuracy of 298

our system, we selected shapes for which we had 3D model 299

files, printed those files, and then reconstructed the models 300

from image data with the phenotyping system. Through this 301

process we can characterize the performance of our method 302

on reconstructing different shape types with durable objects 303

versus individual fruit measurements, where the fruit decays 304

quickly and the human-made measurement cannot be pre- 305

cisely replicated. 306

A motivation for using 3D printed objects is to have a way to 307

quantitatively assess the performance of the phenotyping sys- 308

tem, with a durable artifact that can be stored indefinitely and 309

re-printed and/or scaled if needed. Since we have the origi- 310

nating 3D model file, we can compare the reconstruction and 311

the ground truth object in ways that human-made measure- 312

ments are unable to, by assessing differences in surface area 313

and volume. This is in contrast to measurements on fruits 314

or tubers that will not persist past a single session and may 315

suffer from measurement error. 316

We identified 4 digital objects from Thingiverse (https: 317

//www.thingiverse.com) that had good representa- 318

tion of many different shapes that are both common and un- 319

common in 3D biological structures, such as fruit and tubers: 320

convex regions, saddle regions, and locally concave regions, 321

shown in Figure 7. We scaled these 4 objects prior to printing 322

so that we would have different size representations. We 3D 323

printed these 11 object×scale stereolithography (STL) for- 324

mat files (61–64) using a commercial-grade 3D printer. The 325

3D printed objects were then imaged in our system and re- 326

constructed from the 2D images. 327
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(A) Typical image from data acquisition (B) Desired segmented image (C) Tag dark intensities mask (D) Tag light intensities mask

Fig. 6. An example of successful background segmentation. Segmentation process from sample 1, one of the 3D printed objects. arUco tags are detected in individual
images in the data acquisition step (a). Background subtraction generates the segmented image (b). Individual tags are segmented to separate the dark (c) and light (d)
intensities; these regions are used to model the background. Notice a small segmentation error from shadow on the bottom of the tetrahedron. See text for more details. Best
viewed in color.

(A) Tetrahedron (B) Sphere (C) F-Object (D) 6-sided Spheri-
cal Die

Fig. 7. Ground truth objects. The four classes of ground truth objects used in this
study. The 3D model files were used to print out physical copies, which were then
imaged with our phenotyping system and reconstructed. 7A, 7B, and 7C can all be
reconstructed with our system because they do not have locally concave regions,
while the depressions in 7D cannot.

Quantitative Analysis. Once the ground truth objects are328

reconstructed, some postprocessing is done to align the re-329

constructed 3D model with the digital ground truth 3D model330

files. Specifically, we used R 4.1.0 (65) to perform quanti-331

tative comparisons between ground-truth objects and recon-332

structed models with the packages Morpho and Rvcg (66), rgl333

(67), Lithics3D (68), and mesheR (69). The reconstructed334

models are in Polygon (PLY) file format and were read us-335

ing Rvcg::vcgPlyRead(). STL objects, e.g., the ground-truth336

objects, were read using rgl::readSTL() and converted to337

mesh3d using rgl::as.mesh3d(). The mesheR::icp() func-338

tion was used to perform the iterative closest point algorithm339

between the reconstruction and the ground-truth triangular340

meshes, with 100 iterations and allowing for reflection.341

For these quantitative analyses, we chose to measure the342

magnitude of the primary, secondary, and tertiary axes, e.g.,343

X, Y, and Z, the surface area SA, and the volume V ol. the344

difference in magnitude between two models, δX , δY , and345

δZ , are calculated as the difference between the magnitude346

of the first, second, and third axes of the reconstruction and347

ground-truth following ICP alignment:348

δX = (XR,max−XR,min)− (XG,max−XG,min) (4)
δY = (YR,max−YR,min)− (YG,max−YG,min) (5)
δZ = (ZR,max−ZR,min)− (ZG,max−ZG,min) (6)

whereXG,min andXG,max are the minimum and maximum 349

value of the first dimension of the ground-truth object G, re- 350

spectively, and XR,min and XR,max are the minimum and 351

maximum value of the first axis of the reconstructed object 352

R, respectively. The Morpho::meshDist() function was used 353

to calculate and visualise distances between 3D objects. The 354

distance of the reconstructed model from the ground truth is 355

summarized using root mean square error (RMSE). RMSE is 356

calculated as: 357

RMSE =
(

1
n

n∑
i=1

δ2
i

)1/2

(7)

where δi is the distance between i-th pair of n cor- 358

responding points on the surface of the reconstruction 359

and ground-truth objects. The volume and surface area 360

of models was extracted using Lithics3D::mesh_volume() 361

and Lithics3D::mesh_area(), respectively The rgl::shade3d() 362

function was used to visually compare 3D objects. All regres- 363

sions were performed using stats::lm(). 364

Sample Collection. We purchased fresh fruit and produce 365

from a local grocery store in Davis, CA, USA for qualita- 366

tive assessment. In total we purchased, scanned, and recon- 367

structed 48 objects; including 18 strawberries, 12 potatoes, 5 368

grapes, 7 peppers, and 4 Bosch and 2 red Anjuo pears. We 369

want to test our approach for robustness, and so chose fruit 370

and produce with different scales, colors, levels of glossiness, 371

and other features. 372

6 | bioRχiv Feldmann and Tabb | 3D Fruit Phenotyping

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.30.462608doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462608
http://creativecommons.org/licenses/by/4.0/


Qualitative Comparisons. Reconstructed fruit were ori-373

ented using principal components analysis (PCA) with the374

stats::prcomp() function. PCA orientation of the 3D recon-375

structed models orients results in 3 axes corresponding to the376

primary (X), secondary (Y), and tertiary (Z) axes ordered by377

magnitude, e.g., X ≥ Y ≥ Z. PCA oriented models were378

visually inspected using rgl::shade3d() functions. Quantita-379

tive measurements (Volume, Surface Area, X, Y, and Z) were380

measured from the PCA oriented reconstructed models.381

Results382

Overall assessment of platform. Our combination of383

hardware and software was able to accurately reconstruct384

models of fruit (Figure 2) and ground-truth objects (Figures385

8 and 9; Table 1). Image acquisition occurs in 9 s sessions386

and is buffered by approximately 15 seconds while the cam-387

eras finish writing photos to storage and the following object388

is staged on the pedestal (Figures 1 and 3). It is possible to389

achieve about two sessions per minute with current parame-390

ters and hardware.391

The image calibration, segmentation, and reconstruction392

steps then proceed remotely following data organization and393

storage, which is an important consideration in practice. Us-394

ing the 1 mm experiment to compute average run times, over395

all objects it took on average 27 seconds for calibration, 33.4396

seconds for segmentation, and 413 seconds (6:53 minutes)397

for reconstruction, for an average total time of 7:53 minutes.398

All of these run times steps included load and write times of399

results and were generated on a workstation with one 12-core400

2.70GHz processor and 192 GB of RAM.401

The calibration, segmentation, and reconstruction steps are402

automated, and each of those steps are parallelized to some403

extent. Once the bounding box size was determined, the404

whole directory of samples was processed with a program405

that called each of the calibration, segmentation, and recon-406

struction steps, and was not supervised other than starting407

the process. Still, with new configurations or objects, or in408

case of failure, examining the output of each of the steps can409

indicate where there are problems, such as in the case of cal-410

ibration or segmentation, on which the reconstruction step411

depends. For instance, in this hardware setup the calibrated412

camera poses should form a ring as in Figure 4C. Accurate413

segmentations may be problematic for some objects, such as414

in Figure 8(F), the segmentation had false negatives at the415

bottom of the pear. Consequently, that part of the fruit is not416

reconstructed.417

Quantitative assessment of ground truth samples. In418

general, our approach performed very well on the ground-419

truth examples (Table 1) and only failed in ways that are were420

expected given the assumptions and constraints of our sys-421

tem. 1 Major deviations between reconstruction and ground-422

truth in the major axis are typically small (maximum 4.74423

mm) and RMSE for the entire surface is ≤ 2.70 mm, for424

1These assumptions are discussed in the Materials and Methods section,
’Reconstruction’ subsection.

A

B

C

D

E

F

Fig. 8. Reconstructions of six ground-truth objects. (Left Column) Reconstructed
model (green) overlaid by ground-truth (blue) following ICP alignment. (Right col-
umn) Heat map showing difference between reconstructed model and ground-truth
object. Red represents regions where the ground-truth is larger than the model.
Blue represents regions where the ground-truth is smaller than the model. Teal rep-
resents regions where there is no difference between ground-truth and model. (A)
A representative tetrahedron (Tetra_1), (A) a representative sphere (Sphere_1) (A)
the smaller "F" shaped object, (D) the three sided die, (E) the six sided die, and (F)
the twelve sided die. Only 1mm resolution models are shown. Best viewed in color.

the models without concavities. We found a strong corre- 425

lation R2 ≈ 0.99 for most measurements between the recon- 426

structed models and the ground-truth objects without concav- 427

ities (Figure 9). The surface area (SA) R2 was 0.979 for the 428

models without concavities, and this R2 value is the lowest 429

value for the traits we examined on objects without concav- 430

ities. We found that SA of the reconstructed models were 431

upwardly biased relative to the ground-truth objects (110- 432
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Table 1. Accuracy metrics, including RMSE, difference in major axis length, and
ratios of volume and surface area, from two experiments with eleven ground-truth
objects. Differences in mm and ratios are reported between model and ground-truth
object. Die_3, Die_6, and Die_12 have local concavities, while the other objects do
not.

Object Resa RMSEb δc
X δd

Y δe
Z δf

V ol
δg

SA
Tetra_2 1 0.62 -0.12 -0.14 -0.14 0.97 1.20

2 0.76 0.04 1.17 -1.17 0.96 1.18
Tetra_3 1 1.17 0.61 0.21 -0.93 0.96 1.24

2 1.21 1.32 0.35 0.97 0.95 1.23
Tetra_4 1 1.62 -0.29 -0.83 0.05 0.96 1.26

2 1.69 1.51 0.31 0.06 0.95 1.25
Sphere_2 1 0.97 0.47 -0.26 -0.53 0.96 1.23

2 1.07 0.97 0.21 1.38 0.95 1.21
Sphere_3 1 1.54 -3.27 -1.01 -1.25 0.96 1.27

2 1.57 -4.74 -1.07 -1.20 0.95 1.26
Sphere_4 1 2.61 -0.70 -1.70 -1.81 0.95 1.33

2 2.70 0.33 -1.19 -0.90 0.94 1.33
F_2 1 0.84 0.73 -0.55 0.84 0.98 1.13

2 1.03 1.10 0.75 1.17 0.98 1.12
F_3 1 0.66 4.66 0.82 1.93 1.01 1.16

2 0.79 4.11 1.45 2.09 1.00 1.15
Die_3 1 7.05 -3.16 -9.64 5.68 1.17 1.13

2 6.64 -2.70 -5.18 1.14 1.16 1.10
Die_6 1 6.31 8.71 2.45 6.52 1.29 1.03

2 6.00 9.77 8.25 7.97 1.28 1.03
Die_12 1 9.34 0.28 -4.21 8.61 1.20 1.02

2 8.70 0.27 -2.02 9.57 1.20 1.00
aReconstruction resolution in mm.
bRMSE of the model surface against the ground-truth surface mm.
cDifference between the X axis length of the model and the ground-truth mm.
dDifference between the Y axis length of the model and the ground-truth mm.
eDifference between the Z axis length of the model and the ground-truth mm.
f Ratio of the volume (Vol1/3) of the model over the volume of the ground-truth.
gRatio of the surface area (SA1/2) of the model over the SA of the ground-truth.

120%). This bias is most likely to do that fact that our mod-433

els, which are made of voxels (Figure 5), have rough surfaces434

while the ground-truth objects are perfectly smooth (Figure435

8). In general, the size measurement of these objects are very436

accurate, albeit imperfect, at both 1mm and 2mm resolutions437

(Figure 9).438

We noticed minor segmentation false negative errors from439

shadows at the lower portion of the object in the images; in440

the reconstruction, these segmentation errors are realized as441

jagged portions where the printed object was attached to the442

pedestal, especially visible in Figure 8(A), (B), and (D). Re-443

construction errors, resulting from small segmentation errors,444

do not have a large impact on the overall accuracy based on445

the metrics we assessed. However, large segmentation errors446

over multiple images will affect the reconstruction quality,447

such as in Figure 2F.448

Our approach to reconstruction is unable to recover concav-449

ities, as demonstrated by the three spherical die examples450

(Figure 8D-F). The indexed faces of these models are sunken451

into the body of the model, resulting in multiple large de-452

pressions per die (Figure 7D). As is clearly shown in Figure453

8D-F, our reconstructions are more similar to a 3D convex454

hull, yielding a flat surface over the large concavities in the455

true models. This is reflected by the rows corresponding to456

the three die in Table 1. In these cases, the Volume is 115-457

130% greater than the ground-truth model. In general this is458

not an issue for types of fruit that do not have concavities.459

Qualitative assessment. We found that our platform and 460

approach to reconstruction is both quantitatively accurate 461

(Table 1; Figure 9), as well as visually accurate in most cases 462

(Figures 2 and 8). For the peppers, grapes, strawberries, and 463

potatoes, we found no systematic errors in reconstruction. 464

However, the Anjou pears were troublesome to segment lead- 465

ing to the bottom half of the models being severely deformed. 466

The reason for the segmentation error is the use of a general 467

segmentation approach that worked without extensive tuning 468

for the whole set of samples. However, if one were to have a 469

large batch of objects with particular color features, fine tun- 470

ing the user/session specific parameters for segmentation is 471

important for yielding accurate models. Segmentation errors 472

of this severe type appeared in 3 out of 59 objects that we im- 473

aged and the rest of the models appear to reflect the physical 474

objects that were imaged. 475

Discussion 476

We have described a low-cost ($1,600 USD), high- 477

throughput (9 s data acquisition), modular reconstruction sys- 478

tem that can be used in lab settings or in the field on a table, 479

with a fast data acquisition speed of 9 seconds per object. We 480

will discuss several design decisions that lead to flexibility. 481

The use of consumer grade materials results in a relatively 482

inexpensive system; multiple systems could be built and in- 483

crease sample throughput during high-volume times of the 484

year. This means that larger experiments can be executed 485

enabling more robust studies. Our system is modular, allow- 486

ing users with different interests to experiment and explore 487

different cameras, sensors, or lights. This system is easily re- 488

paired and replaced if any damages are incurred by the hard- 489

ware components. 490

The system has short session times and it only takes 9 sec- 491

onds to acquire images on a single sample, regardless of the 492

number of cameras. In fact, we found that were frequently 493

rate limited by the write speed from the cameras on board 494

cache to the SD card. More often than not, the next ob- 495

ject was prepped around the same time that the cameras had 496

cleared their on-board cache. 497

This system calibrates the camera from the image data ac- 498

quired for the samples. The calibration is an absolute (as op- 499

posed to relative one, with an unknown scale factor), so the 500

physical units of voxels are known. 501

Key assumptions and considerations. We highlight 502

some key assumptions of the methodologies used in our sys- 503

tem that are important for those considering it for a range of 504

objects not treated in this paper. 505

Shape classes. Users who want to accurately represent lo- 506

cally concave shapes — shapes with egg-shaped depressions 507

as demonstrated by the 3, 6, and 12-sided die in our calibra- 508

tion objects (Table 1; Figure 9; Figure 7D)— will need to 509

substitute some portions of this system to recover such fea- 510

tures. Shape from Silhouette is not able to recover locally 511

concave regions. However, most of the types of objects we 512
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Fig. 9. Ground-truth calibration experiment results. In silico measurement of reconstructed 3D models and ground-truth objects. Measurements include length of primary
(X), secondary (Y), and tertiary (Z) axes, the cube root of the volume (Vol1/3), and the square root of the surface area (SA1/2). (Top row) All 1mm reconstructed models
against ground-truth objects including the three dice, (Middle row) 1mm reconstructed models against ground-truth objects excluding the three dice, and (Bottom row) all
reconstructed fruit models in 1mm (x axis) and 2mm (y axis). All measurements are reported in mm. The adjusted R2 from linear regression is reported in the plot. The
solid black line is the identity line. The solid red line is the linear regression of y regressed onto x identity line.

envisioned imaging with this system, fruits and tubers, hap-513

pen to be mostly non-concave.514

Large or fragile objects. The stepper motor is non-continuous515

and takes "steps" to provide rotation which causes vibrations516

through the object. When objects are unbalanced, those vi-517

brations can cause movement of the object out of the center of518

the scene between different frames. Users should pay close519

attention to lateral movement of the object during rotation.520

Similarly, if the larger fruit are of interest, some additional521

modifications will be required to stabilize the pedestal during522

rotation. If these issues are a concern, it may be beneficial523

to construct a multi camera network that surrounds the tar-524

get (54) or a platform that enables the camera to move easily525

around a fixed target (40). The same is true for rice panicles526

or maize tassels, because they are not rigid body objects and527

the vibrations of the stepper motor are more likely to lead528

to changes in relative position of parts of the object between529

frames causing issues during reconstruction. These types of530

objects are better suited for systems where the cameras move531

relative to the object or in a multi-camera network (40, 54).532

Measurement of chArUco markers. Third, accuracy is inti-533

mately tied to the measurement of the arUco and chArUco534

markers and any inaccuracies in those measurements will535

lead to systematic biases in the measurement of the 3D recon-536

struction. For example, if chArUco markers are declared to537

be 10mm, when they are really 20mm, all of the models will 538

2x smaller than the real object than they measured. Users 539

should print all calibration targets (aruco or chArUco) and 540

ground-truth samples with a high quality 2D or 3D printer to 541

ensure sharp corners and well-defined edges. Further, users 542

are encouraged to verify the proportions of the printed cali- 543

bration targets with high-precision calipers prior to calibra- 544

tion. 545

Segmentation quality. Model quality is directly linked to seg- 546

mentation quality (Figure 6A and 6B) as we have mentioned 547

throughout this paper. If an object is only partially seg- 548

mented, and this false negative error happens in multiple 549

frames, part of the model may end up distorted or completely 550

missing (Figure 2F). It is vital, as in any system, that users 551

examine the quality of reconstructions prior to measurement 552

and go back to calibration and segmentation outputs to iden- 553

tify the source of errors. In this work, we chose one set of 554

segmentation parameters that performed reasonably well for 555

all objects, but we recommend that users perform segmen- 556

tation with parameters optimized for their research samples 557

and imaging conditions. 558

Conclusions 559

In conclusion, we presented a phenotyping system for cap- 560

turing, calibrating, and reconstructing 3D models of small- 561
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to-moderately sized fruit and tubers. The low-cost and re-562

liance on consumer-grade materials makes it obtainable to563

almost any program; short session times allows researchers564

to increase the number of samples per hour, and high accu-565

racy means that the digital representations will yield abso-566

lute measurements on objects that do not degrade over time,567

yielding a viable option for research and breeding programs568

interested in pursuing 3D fruit phenotyping.569
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