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Abstract13

The brain excels at processing sensory input, even in rich or chaotic environments. Mounting evi-14

dence attributes this to the creation of sophisticated internal models of the environment that draw on15

statistical structures in the unfolding sensory input. Understanding how andwhere thismodeling takes16

place is a core question in statistical learning and predictive processing. In this context, we address17

the role of transitional probabilities as an implicit structure supporting the encoding of a random au-18

ditory stream. Leveraging information-theoretical principles and the high spatiotemporal resolution19

of intracranial electroencephalography, we analyzed the trial-by-trial high-frequency activity repre-20

sentation of transitional probabilities. This unique approach enabled us to demonstrate how the brain21

continuously encodes structure in random stimuli and revealed the involvement of a network outside22

of the auditory system, including hippocampal, frontal, and temporal regions. Linking the frame-23

works of statistical learning and predictive processing, our work illuminates an implicit process that24

can be crucial for the swift detection of patterns and unexpected events in the environment.25

Statistical learning | pattern detection | predictive coding | high-frequency activity | MMN26

Efficient encoding of patterns in ongoing sensory input is critical for survival in an ever-changing27

environment. Pattern encoding involves the continuous updating of internal representations of the envi-28

ronment based on statistical structures derived from the sensory signal (1–7). The brain is not inherently29

aware of the underlying structures in the environment and potential regularities in the sensory stream30

must be assessed with regard to previously encoded regularity (8–10). Sensitivity to conditional regu-31

larity between events has been observed in humans (11–21) and animals (22, 23). Because events in32

the environment rarely occur independently, this pattern extraction is necessary for the fast and efficient33

processing of sensory information.34

A mathematical representation of such conditional regularity is transitional probabilities (TPs). TPs35

describe how likely one event predicts another. That is the ratio of the directional co-occurrence of36

events given their frequency (3, 24–26). As an example, experimental studies in infants and adults have37

shown that the TPs between syllables constitute patterns that facilitate the identification of word-like units38

(11, 26–30), thus making TP encoding essential for language development (3, 4, 25, 28, 31–33).39

While the brain’s sensitivity to conditional regularities has been observed in experimental studies across40

sensory domains, the underlying mechanisms remain poorly understood (3, 27, 28, 34–41). Studies on41

sensory processing and statistical learning have reported engagement of multiple brain structures, sug-42

gesting that the perception or learning of statistical regularities is not performed by one neural region, but43

rather may be supported by multiple regions working in parallel (28, 32, 33, 39, 42, 43, for other hypothe-44

ses, see review 28). Sensory modality-general areas, such as the prefrontal cortex and the hippocampus,45
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as well as lower perceptual or modality-specific regions, are proposed to subserve this capacity. How-46

ever, detailed knowledge about the brain regions contributing to this dynamic and adaptive process is47

limited (3, 14, 29, 33, 39, 40, 44, 45).48

To address this gap, we hypothesized that a core function of the brain is to encode TPs in a continuous49

and online fashion and that this is implemented in a distributed manner. Specifically, we investigated50

how different brain regions contribute to statistical learning by exploiting the high temporal and spa-51

tial resolution of intracranial electroencephalography (iEEG). We estimated the trial-by-trial information52

content of high-frequency activity (HFA; 75 to 145Hz), a correlate of population neuronal spiking, from53

participants that were passively exposed to a sequence of randomly occurring tones. We then evalu-54

ated this information content estimate against the dynamic TPs of the sequence, stemming from an ideal55

observer model. Our results reveal that the brain continuously encodes the TPs in a stream of random56

stimuli through a network that spans areas outside the auditory system, including hippocampal, frontal,57

and temporal regions. Remarkably, this automatic process occurs even in the absence of evident relations58

within the stimuli or behavioral relevance.59

Results60

iEEG Unattended Listening Task61

Participants (n=22;Materials and Methods) listened to a stream of tones where a standard tone alternated62

with deviant tones (P=0.5; inter-stimulus interval 500ms). This stream followed a multi-dimensional63

auditory oddball paradigm, where deviant tones varied relative to the standard in terms of either frequency,64

intensity, perceived sound-source location, a shortened duration, or a gap in the middle of the tone (P=0.165

for each deviant type; Fig. 1, Materials and Methods). Within a set of ten tones (five standard tones and66

five deviant tones), each of the five deviant types was presented once in random order. For deviations67

in location, intensity, and frequency, two stimuli versions were used (P=0.5), namely, location left/right,68

intensity low/high, and frequency low/high. Together with the other two deviants, this resulted in eight69

potential deviants. During recording, participants were asked not to pay attention to the sounds while70

reading a book or magazine. All participants reported that they were able to focus on the reading material71

and did not attend to the tones or noticed any patterns in the stimuli.72
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Figure 1: Overview of the analysis. An unattended listening task was presented to participants while recording their event-related electrical
brain activity through intracranial electrodes. The emerging iEEG signal was then analyzed, resulting in HFA responses to standard and deviant
tones. Based on the standards we computed a channel-specific mean standard response. Differences in normalized encoded information between
deviant and mean standard responses were computed using a compression algorithm. The higher the value of this encoded information measure,
the lower the similarity between the mean standard and a respective deviant tone response. In the next step, linear models between encoded
information and TP estimates were employed, where the latter stemmed from an ideal observer analyzing the stream of sounds. After accounting
for multiple comparisons, these channel-specific slopes were then projected onto the normalized anatomical space to enable comparison across
subjects.

From the 22 participants, a total of 1078 channels (mean: 48, range: 12 to 104) were recorded. The73
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recordings were manually cleaned by excluding noisy or epileptic channels or segments from the analysis.74

HFAwas then reliably extracted from a total of 785 channels within cortical or subcortical structures, and75

HFA event responses (trials) were evaluated in the 400ms time window following the sound onset.76

Encoded Information Peaks in Primary and Secondary Auditory Cortices77

We estimated the information content of each deviant tone HFA response in relation to the HFA re-78

sponses to standard tones. Accordingly, the information content in standard responses was used as a79

reference point to measure the information content in deviant responses, which yielded a normalized80

measure of encoded information for each deviant response (Fig. 1, bottom; Materials and Methods).81

Smaller values of encoded information suggest that the information content in deviants is similar to the82

one in standards, whereas greater values indicate a larger amount of encoded information in the responses83

to deviants compared to standards. To systematically evaluate the involvement level across the cortex,84

we defined regions of interest (ROIs) that typically engage in auditory processing and statistical learn-85

ing tasks (1, 28, 32, 33, 41), comprising temporal, frontal, insular, peri-central sulci, and ACC cortices,86

as well as the hippocampus (Fig. 2a, Tab. S1). We then compared the encoded information across the87

ROIs. The greatest median encoded information values were observed in primary and secondary audi-88

tory cortices (superior temporal plane, insula posterior, and temporal lateral ROIs), suggesting that core89

aspects of deviant processing locate there (Fig. 2b, two-tailed pairwise Mann–Whitney–Wilcoxon tests,90

FDR corrected, p ≤1.12e−2, |z| ≥ 2.5). Each ROI’s median encoded information were significantly91

greater than zero (one-tailed Wilcoxon signed-rank test, FDR corrected, p ≤1.22e−4, z ≥ 4.53). Added92

together, these results indicate that the encoded information in the responses to deviants reflects the local93

sensitivity of specific brain areas to unexpected events in accordance with previous studies on deviance94

detection (46–49). Additionally, we examined the sensitivity to specific deviant types across ROIs. Sta-95

tistical analysis only identified significant differences in the encoded information of specific deviant types96

in the superior frontal area. The statistically significant differences were between the deviant types of97

”location left”, ”intensity up”, and ”frequency down” to ”gap”, respectively (Fig. S6, two-tailed pairwise98

Mann–Whitney–Wilcoxon tests, FDR corrected, p ≤5.30e−4, z ≥ 3.5).99

Encoded Information is Hierarchically Organized100

Previous animal and human studies indicate a hierarchical organization of brain regions behind the detec-101

tion of unexpected events (6, 41, 42, 50). We utilized a proxy measure of anatomical hierarchy to inves-102

tigate to what extent this is reflected in the encoded information values across brain regions. Anatomical103

hierarchy can be defined as a global ordering of cortical areas corresponding to characteristic laminar104

patterns of inter-areal feedforward and feedback projections (5, 51, 52). Proxied cortical hierarchy levels105

that quantify these projections across the cortex were obtained from open-access structural magnetic res-106

onance imaging (MRI) datasets from the S1200 subject release (53; Materials and Methods). Method-107

ological constraints in (53) precluded the mapping of the hippocampus in the present analysis. Areas108

lower in the hierarchy (with predominantly feedforward projections) are primarily associated with pri-109

mary sensory functions, whereas areas higher in the hierarchy are associated with higher cognitive func-110

tions (5, 51, 52). For each contact point, hierarchy level channel estimates were determined by taking the111

average value of all proximal points located within the contact point vicinity. We observed a significant112

negative correlation between the encoded information and the proxied cortical hierarchy levels (Fig. 2c;113

linear mixed-effects model with random effects for subjects: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝑏0 + 𝜖, with proxied hierar-114

chy level 𝑦, the encoded information 𝑥, the random effect for subjects 𝑏0 ∼ 𝑁(0, 𝜎2
𝑏 ) and the observation115

error 𝜖 ∼ 𝑁(0, 𝜎2); 𝛽0 = 0.16, 95% CI [0.13, 0.19], 𝛽1 = −0.33, 95% CI [-0.21 -0.44], p𝛽1=1.22e−7,116

𝜎𝑏=3.94e−2, 95% CI [2.79e−2, 5.64e−2], 𝜖=7.54e−2, 95% CI [7.16e−2, 7.92e−2]).117

Ensemble Activity Exhibits Sensitivity to Transitional Probabilities118

During the time course of the stimuli, we incrementally estimated TPs in the fashion of an ideal observer.119

At each given deviant event (trial), TP estimates were updated based on all previously presented deviant120
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Figure 2: Illustration of the encoded information analysis results. a: Top: ROIs on the inflated brain model (Tab. S1 for full region labels).
Bottom: lateral and medial view of the mean encoded information distribution across 22 subjects projected onto the inflated brain model. The
image on the bottom right shows the transverse plane of the amygdala (gray) and hippocampus (purple). ”A” stands for the anterior direction.
Each sphere represents one channel. b: Distribution of the ROIs’ encoded information. The number of channels (first) and subjects (second)
for each ROI are in the axis labels. The nested brackets indicate a significant difference between median values.

stimuli. Consequently, TPs dynamically evolved along the course of the experiment since a finite stream,121

as opposed to an infinite horizon stream, naturally entails temporal patterns because of the alternating oc-122

currence of deviants (Fig. 1, TP graph, Materials and Methods). To determine which brain area exhibits123

a sensitivity to these temporal relations we evaluated the relationship between HFA encoded information124

and the TPs of deviant tones through robust linear models. Before regression, the trial-specific encoded125

information values were normalized by the channel means to correct the encoded information that solely126

reflects auditory sound processing mechanisms (Fig. S7). For each channel, the resulting slope is defined127

as the channel-specific TP sensitivity. TP sensitivity values acted as an indicator of how sensitive the128

brain tissue around the channel was towards TPs in the stream of tones. Zero value TP sensitivity of a129

channel indicates that the encoded information in the deviant responses is not affected by the TPs of the130

events, whereas lower values imply a higher impact. Fig. 3a shows two example electrodes of high and131

low TP sensitivity (each green dot represents a deviant trial). In the analysis, 61.53% of the 785 channels132

across all subjects showed a significant TP sensitivity (Fig. 3b & S3, permutation-based test, FDR cor-133

rected). These channels tended to increase the amount of encoded information in the HFA response when134

the likelihood of an event occurrence decreased (low TP) and conversely decreased the encoded informa-135

tion for more expectable events (high TP). Notably, the TP sensitivity distributes over the brain (Fig. 3c).136

Therefore we evaluated this distribution in terms of ROIs. Each ROI’s TP sensitivity except for the ACC137

were significantly lower than zero (one-tailed Wilcoxon signed-rank test, FDR corrected, p ≤2.97e−2,138

|z| ≥ 1.89), indicating that most ROIs were involved in the encoding of TPs (Fig. 3d). Importantly,139

our results were consistent across participants. Out of the 22 subjects, an average of 52.10% (95% CI140

[47.19%, 57.04%]) showed a significant TP sensitivity across the ROIs (Fig. 3b & S4). Moreover, we141

studied differences in the TP sensitivity across ROIs, where hippocampus and inferior frontal cortex142

showed the greatest sensitivity to TPs (Fig. 3e, two-tailed Mann–Whitney–Wilcoxon tests, p ≤4.37e−2,143

|z| ≥ 2.02).144
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Figure 3: TP sensitivity results. a: Two example channels resulting from the robust linear regression between TPs and encoded information
(each green dot represents a trial). For each channel, the encoded information values were normalized by their mean. The resulting slope
indicates how sensitive a region underneath a contact point is towards the variation of TPs. The first channel shows a negative slope of -1.05.
Thus, the more frequent a transition, the more the information encoded in the deviant response decreases. b: Ratio of the significant to total
channels (number in brackets) across subjects. The error bars indicate the 95% CI across ROIs. c: Inflated brain model with lateral and medial
views of the right and left hemispheres and a superior view of the amygdala and hippocampus. Each sphere represents a channel projected
onto the surface. The colors indicate its TP sensitivity. TP sensitivities greater than -0.3 or within the first 25% of all values have the lowest
color in the color gradient. The size of the spheres indicates the p-values of the slopes. They are divided such that each interval contains 1/4 of
the p-value set. d: TP sensitivity by ROIs, where the individual TP sensitivities (regardless of significance) are colored. In black, the median
TP sensitivity is shown (see 𝛽 for its numerical value). The number of channels and subjects are given in parentheses in the subtitles. Except
for the ACC, all ROIs show a significant median TP sensitivity (statistical significance of the slopes is indicated with ”ns” p>0.05, * p≤5e−2,
*** p≤1e−3, and **** p≤1e−4). e: Matrix of z-values representing individual statistical differences of TP sensitivity between ROIs.
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Discussion145

We studied how humans passively listening to a multi-feature sequence of random sounds implicitly en-146

code conditional relations between sounds. Crucially, our results show that the auditory system embedded147

in a distributed hierarchical network continuously monitors the environment for potential saliency, main-148

taining and updating a neural representation of temporal relationships between events. This suggests that149

the brain continuously attempts to predict and provide structure from events in the environment, even150

when they are not behaviorally relevant and have no evident relation between them.151

Participants demonstrated remarkable sensitivity to TPs. From a statistical learning perspective (de-152

fined as “all phenomena related to perceiving and learning any forms of patterning in the environment153

that are either spatial or temporal in nature” (54)), these findings suggest an implicit learning process in154

which TPs are internally inferred. On average, more frequent deviant transitions exhibited less encoded155

information in the HFA responses. Conversely, rarer transitions showed an increase in the encoded infor-156

mation (Fig. 3a & 2c). Consequently, these results indicate an encoding of TPs, consistent with previous157

studies using more structured and stationary stimuli in humans and non-humans (4, 11–23, 25, 41, 42, 45).158

In our study, we additionally point out that the brain also is sensitive to dynamic TP courses in a randomly159

structured sequence of varied auditory stimuli. The brain’s sensitivity to TPs within our random sequence160

suggests a more general mechanism that continuously encodes TPs between events in the environment.161

This critical mechanism forms the basis of a statistical learning system wherein the brain integrates ev-162

ery event into an internal representation of the environment based on the statistical relationship between163

events. Since a priori the presence of patterns within stimuli is unknown, the brain might automatically164

encode their TP to detect potential structure and violations of such. Artificial grammar learning studies,165

where subjects learn patterns of nonsense words, confirm the relevance of this TP encoding in language166

learning (16, 28, 29, 33, 55).167

Following the notion of predictive coding, the encoded information in each deviant response can be168

interpreted as a bottom-up prediction error signal, i.e., the amount of information in each novel event169

not explained away by top-down prediction signals (5, 7, 42, 56). Consequently, low TP events, i.e.,170

less expected events, elicited a higher amount of encoded information and hence larger prediction errors171

derived from less accurate predictions. Accordingly, this information is used in higher cortical areas to172

update internal models for future predictions. On the other hand, high TP events, i.e., more expected173

events, elicited a lower amount of encoded information. This generates smaller prediction error signals174

and smaller updates of the internal models. Internal representations of TPs between events are fundamen-175

tal to build useful predictions of upcoming events rather than simpler frequentist representations (12, 24).176

However, there is a lack of studies investigating TPs in predictive processing in general, while in sta-177

tistical learning, there is a need for more neurophysiological studies. Our study takes a step forward in178

both of these directions, and shows that TPs might constitute a central statistic used by internal perceptual179

models at the core of predictive processing and statistical learning.180

Our results provide novel evidence that the encoding of acoustic deviant transitions is anatomically181

distributed and not exclusively concentrated in auditory cortices (Fig. 3c). The automatic process of182

identifying temporal relationships is subserved by a network consisting of the hippocampus in concert183

with the inferior frontal, temporal, and insular cortices. Accordingly, by entailing multiple active brain184

regions, this network bundles findings from various prior statistical learning (28, 32) and predictive pro-185

cessing (6, 41) studies together.186

Specifically, the hippocampus contributes most to temporal transition encoding between salient events.187

In contrast to other areas, hippocampal responses indicate high sensitivity to TPs while having a lower188

sensitivity to deviant tones (Fig. 2b & 3d). Accordingly, hippocampal activity may reflect a more generic189

context sensitivity to the events’ probabilistic structures, i.e., learning about event occurrences within a190

given structure itself instead of encoding actual deviating events (57). Our results provide new evi-191

dence for the role of the hippocampus during implicit learning, consistent with recent suggestions that192

this area is a rapid supramodal learner of arbitrary or higher-order associations in the sensory environ-193

ment (3, 16, 28, 32, 33, 39–41, 45, 58, 59). In a recent iEEG study presenting 12 syllables within an194

auditory stream, Henin et al. (16) observed that TPs are encoded in lower-order areas of the superior195

temporal plane and not in the hippocampus, which uniquely represented the identity (i.e., the specific196
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higher-order chunk such as a word) of their sequences. Therefore, the hippocampus did not appear to197

engage in forming the neural representation of TPs but performed operations that built upon them. We,198

on the contrary, found the hippocampus to be the main contributor among the cortical areas in encoding199

TPs. These differences might emerge because our study used passive listening with pure tones, while200

Henin et al. used active listening with syllables. Our results fit well with previous studies indicating the201

hippocampus’ fundamental role in statistical learning and encoding stimuli uncertainty, both attended and202

unattended (3, 16, 28, 32, 33, 39–41, 43, 45, 57–60). According to that, the hippocampus might operate203

differently depending on task demands. By its domain-general learning mechanisms, possible hippocam-204

pal involvement could comprise indirect modulation of lower-level sensory areas or direct computations205

of hippocampal representations (28, 32).206

We also observed sensitivity to transitions between events in the inferior frontal cortex. Evidence of207

inferior frontal involvement in statistics-driven learning processes is sparse (28, 33, 41) and mainly relies208

on explicit learning studies using fMRI (8, 44). However, it is commonly described in the deviance209

detection literature, where a role of a higher hierarchical node is attributed to this region (46, 48, 49).210

Evidence from non-human primates iEEG studies manipulating the predictability of events also supports211

this involvement by showing a spatially dispersed contribution of regions that includes the prefrontal212

cortex in both passive auditory (42) and active visual paradigms (6).213

Notably, channels in the superior temporal plane showed the highest encoded information and a high214

TP sensitivity (Fig. 3d), suggesting a key role of the supratemporal plane in both the deviance detection215

and the implicit learning of transitions between salient auditory events. This is consistent with previous216

reports about this region being active in conditional statistical learning (17, 33, 44, 45, 61). Thus, per-217

ceptual processing of individual stimuli in low hierarchical areas might be strongly affected by learning218

temporal patterns in streams of stimuli (22, 23, 28, 62). This is possibly due to a local process, top-down219

modulations, or both. However, previous studies have shown that top-down information flow interacts220

with bottom-up information flow at all levels of the hierarchy (5, 6, 48, 49).221

An unexpected observation was the significant TP sensitivity of individual channels in the occipital222

lobe, indicating a contribution to TP encoding of the auditory stimuli. It has been shown that during223

auditory oddball and statistical learning paradigms, attentional processing can activate visual processing224

regions, which are typically engaged in the perception of visual objects (16, 63, 64). When queried,225

all of our participants reported that they could focus on the reading material and did not pay attention226

to the tones. Hence, this leaves open whether this auditory occipital activation might also be observable227

during passive listening tasks and whether this is specific to the sensitivity of our HFA recording. Current228

evidence is sparse, but two previous studies on deviance detection during passive listening showed similar229

occipital effects using fMRI and scalp EEG (64, 65).230

In terms of deviance detection, our results suggest a main involvement of the superior temporal plane231

and posterior insula (Fig. 2b). Previous studies on auditory deviance detection using iEEG, MEG/EEG232

source localization, and fMRI have shown similar responses to deviants over the supratemporal plane233

(1, 34, 47–49, 65–70), but detailed information for the insular cortex is sparse. In line with recent reports234

about its contribution to auditory processing (66, 71), we found that the posterior part showed larger235

encoded information than the anterior part. We also noticed that the ACC, middle frontal and pre-central236

sulcus moderately engaged in change detection. Although not often observed in auditory experiments,237

activation of these regions has been previously reported in the context of pre-attentive oddball paradigms238

with frequency (or duration) deviants using EEG (65, 65, 68, 72) or fMRI (64, 70). In our study, the239

ACC contributes to auditory change detection but did not reach a significant sensitivity to TP, generally240

consistent with previous reports (65, 72). It is presumably more involved in cognitive control or error241

detection, such as recognizing global patterns (47, 67). In our pre-attentive paradigm, we speculate that242

the ACC monitors the high-level structure of individual deviant occurrences rather than the automatic243

TP encoding. Further, areas lower in the hierarchy are more sensitive to deviant tones, and conversely,244

higher hierarchy locations exhibit lower encoded information values (Fig. 2c). Interestingly, our results245

indicate that the encoding of deviants was not strictly confined to specific areas, but distributed across246

multiple brain regions in a hierarchically organized manner. This suggests that lower hierarchical levels,247

which show a preferential representation of the stimuli, are more sensitive to the different deviant tones.248
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Together, these results are in line with studies on the hierarchical visual pathway which indicate that249

expectation suppression scales positively with image preference (73).250

In our present study, we focused on the analysis of HFA, given that it captures fast fluctuations in iEEG.251

Aside fromHFA, it might be especially worthwhile to consider lower frequency bands (e.g., alpha or beta)252

because these bands presumably carry information of predictions (5, 6). However, because iEEG repre-253

sents the population activity of spiking neurons, concerning lower and thus less fluctuating frequencies,254

iEEG macroelectrodes may miss less prominent activity patterns of a minority of neurons (1).255

Our work provides a comprehensive picture of neural correlates of statistical learning, which, before,256

were bundled together from multiple studies (28, 33, 45). Additionally, our setup shares similarities in257

common with language learning studies. Yet, the implications of our findings may be limited because our258

paradigm is implicit and employs pure tones. One possibility to account for this is to replace pure tones259

with syllables or chunks of sounds. Also, given the presumably different roles of brain regions during260

implicit and active learning tasks (16, 28), active exposure to our sound train could potentially allow a261

more direct comparison between brain regions, or to language learning studies.262

Having ascertained implicit learning analytically through algorithmic information theory and having263

determined neural substrates that imply a cortical network of brain regions, we are now in the position to264

explore its underlying mechanisms and regional influences further. Specifically, adding lower frequency265

bands to our analysis would enable us to disentangle the distinct roles in information encoding and pre-266

dictability signaling of sensory inputs. While having a lower HFA, evoked responses to predictable events267

might exhibit a higher alpha or beta activity (5, 6, 42). Accordingly, in the case of more frequently oc-268

curring, and thus more predictable transitions, there might be an alternative cascade of involved regions269

anchored in higher cortical areas. In that respect, it might be especially worthwhile to evaluate the pre-270

onset sound interval of event responses, phase-amplitude coupling or connectivity across ROIs.271

Taken together, direct brain recordings reveal continuous encoding of structure in random stimuli.272

While automatically assessing the deviance of events, the brain simultaneously identifies patterns by273

encoding conditional relations between events, supporting both statistical learning and predictive coding274

frameworks. This implicit process involves, in addition to the hippocampus, inferior frontal cortices,275

pure sensory areas, and other cortical regions.276

Methods277

Stimuli278

An unattended listening task following a multi-dimensional auditory oddball paradigm was used (48, 49,279

74). The task consisted of a standard and five different deviant tones (Fig. 1). Standards had a duration280

of 75ms with 7ms up and down ramps and consisted of three sinusoidal partials of 500, 1000, and281

1500Hz. Deviants varied relative to the standard in the perceived sound-source location (left or right),282

intensity (±6 dB), frequency (550, 1100, and 1650Hz or 450, 900, and 1350Hz), gap (25ms silence in283

the middle), or by a shortened duration (1/3 or 25ms shorter). Thus there were two stimuli versions for284

location, intensity, and frequency deviants. During the sequence, each standard tone was followed by a285

deviant tone. The deviant tone type was set up such that within a set of five consecutive deviants, each of286

the five types was presented once. In consecutive sets, the same deviant type did not repeat from the end287

of one set to the beginning of another. For the three deviants that had two stimuli versions, each version288

occurred equally often (P=0.5). Except for deviants varying in duration, all tones had a duration of 75ms289

and were presented every 500ms in blocks of 5min consisting of 300 standards and 300 deviants. At290

the beginning of each block, 15 standards were played. To capture automatic, stimulus-driven processes,291

participants were asked not to pay attention to the sounds while reading a book or magazine. They292

completed 3 to 10 blocks, providing at least 1800 trials. Tones were presented through headphones using293

Psychtoolbox-3 (75).294
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Participants295

We recorded data from 22 (self-reported) normal-hearing adults with drug-resistant epilepsy who were296

potential candidates for resective surgery of epileptogenic tissue (mean age 31 years, range 19 to 50 years,297

6 female). Patients underwent invasive intracranial electrocorticography (ECoG) or stereoelectroen-298

cephalography (SEEG) recordings as part of their pre-surgical evaluation. Intracranial electrodes were299

temporarily implanted to localize the epileptogenic zone and eloquent cortex. The number and placement300

of electrodes were guided exclusively by clinical requirements. Data were collected at El Cruce Hospital301

(n=15) and Oslo University Hospital (n=7).302

Data Acquisition303

Pre-implantation structural MRI and post-implantation CT scans were acquired for each participant.304

ECoG or SEEG data were recorded using an Elite (Blackrock NeuroMed LLC, USA), a NicoletOne305

(Nicolet, Natus Neurology Inc., USA), or an ATLAS (Neuralynx, USA) system with sampling frequen-306

cies of 2000, 512, and 16 000Hz, respectively.307

Electrode Localization308

Post-implantation CT images were co-registered to pre-implantation MRI images using SPM12 (76).309

MRI images were processed using the FreeSurfer standard pipeline (77), and individual cortical parcel-310

lation images were obtained through the Destrieux atlas (78). Electrode coordinates were obtained with311

the iElectrodes Toolbox (79). Anatomical labels were automatically assigned to each contact based on312

the Destrieux atlas using the aforementioned toolboxes and confirmed by a neurologist/neurosurgeon.313

Coordinates were projected to the closest point on the pial surface (within 3mm) and then coregistered314

to a normalized space using surface-based spherical coregistration (80).315

Signal-preprocessing316

Monopolar intracranial EEG recordings were visually inspected and channels or epochs showing epilep-317

tiform activity or other abnormal signals were removed. Signals from electrodes located in lesional tissue318

or tissue that was later resected were also excluded. Bipolar channels were computed as the difference319

between signals recorded from pairs of neighboring electrodes in the same electrode array. In our study,320

we refer to these bipolar channels as ”channels”. Data were low-pass filtered at 180Hz, and line noise321

was removed using bandstop filters at 50, 100, and 150Hz. Data were then segmented into 2000ms322

epochs (750ms before and 1250ms after tone onset) and demeaned. We manually inspected and rejected323

epochs after bipolar re-referencing. To eliminate any residual artifact, we rejected trials with an amplitude324

larger than 5 SD from the mean for more than 25 consecutive ms, or with a power spectral density above325

5 SD from the mean for more than 6 consecutive Hz. An average of 35% of the trials were rejected,326

resulting in an average of 1592 trials analyzed per patient (range 728 to 3723). Data were resampled to327

1000Hz. Pre-processing and statistical analysis were performed in Matlab using the Fieldtrip Toolbox328

(81) and custom code. To obtain the HFA, preprocessed data were bandpass filtered into eight consec-329

utive bands of 10Hz bandwidth ranging from 75 to 145Hz. The Hilbert transform was then applied to330

each filtered signal to obtain the complex-valued analytic time series, and the modulus of these signals331

computed to retain the analytic amplitude time series. Trials were baseline corrected (−100 to 0ms) for332

each frequency band, and then the bands were averaged, producing a single time series per trial. Finally,333

for each channel, all trial time series were divided by the standard deviation pulled from all trials in the334

baseline period. For more information, see (66, Chap. 2).335

Encoded Information336

We estimated the information content of HFA responses by employing the concept of Algorithmic In-337

formation Theory. This theory anchors in Algorithmic Complexity or Kolmogorov Complexity (K-338

complexity). The K-complexity is the ultimate compressed version or minimum description length of339
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an object, i.e., its absolute information content (82). If the minimum description length is short (long), an340

object is characterized as ”simple” (”complex”). Because it is not possible to compute the theoretically341

ideal K-complexity, it is often heuristically estimated, obtaining an upper-bound approximation. Possible342

estimation approaches are conventional lossless data compression programs, e.g., gzip (82, 83).343

Based on the K-complexity, various metrics were derived. One instance is the Normalized Information
Distance or its estimation counterpart, the Normalized Compression Distance (NCD). The NCD allows
to compare different pairs of objects with each other and suggests similarity based on their dominating
features (or a mixture of sub-features) (82, 83). For a pair of strings (𝑥, 𝑦), the NCD(𝑥, 𝑦) is defined as

NCD(𝑥, 𝑦) = 𝐶(𝑥𝑦) − min(𝐶(𝑥), 𝐶(𝑦))
max(𝐶(𝑥), 𝐶(𝑦)) ,

with 𝐶(𝑥𝑦) denoting the compressed size of the concatenation of 𝑥 and 𝑦, and 𝐶(𝑥) and 𝐶(𝑦) their respec-344

tive size after compression (82, 83). Further, the NCD is non-negative, that is, it is 0 ≤ NCD(𝑥, 𝑦) ≤ 1+𝜖,345

where the 𝜖 accounts for the imperfection of the employed compression technique. Small NCD values346

suggest similar objects, and high values suggest rather different objects.347

For each channel, we defined single-trial encoded information for each deviant response by computing348

the NCD measure between the HFA deviant response and the channel-specific mean HFA standard re-349

sponse (Fig. 1). Before their compression, HFA responses were represented by grouping their values into350

128 discrete steps (bins). The bins covered equal distances and in a range between the global extrema351

of all trials considered. The compressor then received the indices of the bins that contained the ele-352

ments of the signals (84, 85). Compression proceeded through a compression routine based on Python’s353

standard library and gzip. To account for the differences in auditory sound processing across channels354

the trial-specific encoded information values were normalized in terms of the channel mean of encoded355

information for the TP sensitivity analysis.356

Transitional Probability357

We estimated conditional statistics describing the inter-sound relationship through TPs between adjacent
deviant tones. After each deviant tone presentation (Fig. 1), TPs were determined through estimating
their maximum-likelihood (14, 25, 26, 86), i.e., through

TP = P(Y|X) = frequency(XY)
frequency(X) ,

for each event-to-event combination X or Y. For each time step, resulting TPs were then stored in a358

TP matrix (stochastic matrix of size ℝ8×8).359

Anatomical Hierarchy360

Human T1w/T2w maps were obtained from the Human Connectome Project (53). The maps were then361

converted from the surface-based CIFTI file format to theMNI-152 inflated cortical surface template with362

Workbench Command (87). The structural neuroimaging maps are suggested to be a measure sensitive363

to regional variation in cortical gray-matter myelin content (51). One function of myelin might be to act364

as an inhibitor of intra-cortical circuit plasticity. Early sensory areas may require less plasticity, hence365

more myelination, and hierarchically higher association areas, in turn, have less myelination, presumably366

enabling greater plasticity (88). Accordingly, T1w/T2w maps may serve as a non-invasive proxy of367

anatomical hierarchy across the human cortex through an inverse relationship. The anatomical hierarchy368

can be defined as a global ordering of cortical areas corresponding to characteristic laminar patterns of369

inter-areal projections (5, 51, 52). To directly work with the hierarchy ordering, T1w/T2w maps were370

inverted and normalized to the value range of our data set.371

Statistical Analysis372

For the statistical analysis, the first 30 trials of each recording blockwere disregarded. By that we aimed to373

exclude the initial phase of the experiment that potentially biases our correlation analysis. To estimate the374
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TP sensitivity of a channel, the eight distinct tone types were grouped into one regressor. Subsequently,375

robust linear regression was performed in Matlab (Fig. 1 & 3a), where TP values greater than 0.7 were376

excluded. For the regression, an alpha value of 0.05 was considered significant. To correct for multiple377

comparisons, false discovery rate (FDR) adjustment was applied with an FDR of 0.05. Further, our linear378

regression model examined the relationship between information content and TPs of all adjacent deviant379

transitions. For this reason, we performed surrogate data testing for uncorrelated noise on the regression380

models by building shuffled surrogates of the regressor variables encoded information and TP (Fig. S3).381
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