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Statistical Inference 386 

RareComb utilizes the p-values of one-tailed binomial tests to establish the magnitude of 387 

enrichment for each rare variant combination (Figure 1). For each combination, RareComb 388 

formulates null and alternate hypotheses for the binomial test by considering the event of 389 

observing all constituent variants together within a group of individuals as success and all other 390 

possibilities as failure in a binomial trial: 391 

H0 : 𝜋 = 𝜋0 392 

Ha : 𝜋 > 𝜋0 393 

where,  394 

𝜋  = Probability of observing all constituent rare variants of a combination together within 395 

a cohort, i.e., P(A=1 & B=1) 396 

𝜋0 = Expected probability derived from the frequency of individual variants of a 397 

combination, under the assumption of independence, i.e., P(A=1) * P(B=1). 398 

RareComb then compares the null binomial distribution derived using the sample size of the 399 

group (n) and the expected probability (𝜋0) (i.e., X ~ Binom(n, p = 𝜋0)) with the observed 400 

probability (𝜋), and calculates the probability of observing rare variants occurring together at 401 

least as frequently as they were observed within the cohort (i.e. p-value).  402 

 In case-control analyses, this method is applied independently to each group, and the p-403 

values between them are compared. The combinations exhibiting enrichment in both cases and 404 

controls, likely due to proximity of variants in linkage disequilibrium, are eliminated, following 405 

which the p-values in cases are adjusted for multiple-testing to identify statistically significant 406 

combinations that exhibit enrichment in cases but not in controls. Finally, the effect sizes are 407 

calculated using Cohen’s d and the statistical power is measured using 2-sample 2-proportion 408 

tests, as additional metrics to prioritize the final set of significant rare variant combinations. In 409 

genotype-comorbid phenotype association analyses, the method is applied just once to the entire 410 

cohort, with multiple-testing adjusted p-values serving as a sufficient metric to identify high 411 

quality associations between genotypes and two or more co-occurring phenotypes.  412 

 413 

Statistical power and computational performance of the method  414 

We measured the relationship between sample size and statistical power for both binomial and 2-415 

sample 2-proportion tests used in the framework. It took 1,356 samples for the binomial test to 416 
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achieve a statistical power of 80% to establish statistical enrichment between expected and 417 

observed co-occurrence frequencies of 0.1% and 0.5% (Supp. Figure 13). This number 418 

increased to 6,469 when the test needed to be more sensitive to compare frequencies of 0.3% and 419 

0.5%. Similarly, it took 7,840 samples for the 2-sample 2-proportion test to achieve 80% power 420 

to establish statistical difference between co-occurrence frequencies of 2% and 0.5% observed in 421 

two groups (Supp. Figure 14). The sample size requirement increased to 14,633 to differentiate 422 

frequencies of 1.5% and 0.5% at 80% statistical power. These results align with the known 423 

relationship between sample size and statistical power, and indicate that our method can be 424 

reliably applied to analyze reasonably modest-size cohorts. 425 

 We also measured the run times for the case-control analysis to identify significant pairs 426 

and triplets of mutated genes using simulated data of three discrete sizes of samples (5,000, 427 

10,000, and 50,000 individuals) and genes (5,000, 10,000, and 15,000 genes). The apriori 428 

algorithm was run on single-core CPUs with 256 GB memory and was constrained to analyze 429 

combinations observed in at least 0.15% of the samples. Given the memory-intensive nature of 430 

the apriori algorithm implemented in the ‘arules’ package, 256 GB was chosen to maintain 431 

uniformity51. However, smaller input files could be processed successfully using much less 432 

memory. As expected, the runtimes were proportional to the size of the combination (pairs 433 

versus triplets) and the number of input variables (Supp. Figure 15). While the increase in run 434 

time with the increase in sample size is apparent for pairs, lower runtimes observed with running 435 

50,000 samples compared to 5,000 samples for triplets can be attributed to stochasticity of the 436 

input data. Overall, the analysis of gene pairs took between one minute and 12 minutes while 437 

triplets took between two minutes and 150 minutes. Since several factors influence the runtime 438 

of the method, a trial-and-error approach to determine an optimal minimum frequency threshold 439 

for co-occurring events can help identify relevant combinations without resulting in insufficient 440 

memory due to combinatorial explosion. 441 

 442 

Samples 443 

We used whole exome sequencing data from 6,189 affected males from the Simons Foundation 444 

Powering Autism Research (SPARK)21 and 1,878 affected males from 2,247 simplex families 445 

from the Simons Simplex Collection (SSC)52 cohort from the Simons Foundation Autism 446 

Research Initiative (SFARI)53. We selected only male probands for our analysis to avoid any 447 
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confounding effect due to gender or ascertainment bias54,55. While diagnosis information for 448 

intellectual disability (ID), anxiety, attention deficit hyperactivity disorders (ADHD), 449 

schizophrenia, language and sleep disorders were encoded as binary variables for the SPARK 450 

samples, full-scale intelligence quotient (IQ) scores were available for the SSC cohort.  451 

 452 

Data preparation and quality control 453 

Variant Call Format (VCF) files obtained from exome sequencing data were annotated using 454 

ANNOVAR56 for rsID information and variant frequency using ExAC57 and gnomAD58. To 455 

overcome the limitations of using a single method to predict pathogenicity, the effects of non-456 

synonymous mutations were annotated using 11 prediction methods: SIFT59, Polyphen260 457 

(HDIV), Polyphen2 (HVAR), LRT61, MutationTaster62, MutationAssessor63, FATHMM64, 458 

MetaSVM65, PROVEAN66, REVEL67, and CADD68. Briefly, all missense, stop-loss/gain, and 459 

start-loss/gain variants within exonic, 3’, and 5’ UTR regions with minor allele frequencies ≤1% 460 

identified based on both ExAC and gnomAD databases were selected. Then, variants with allele 461 

depth of ≥15 and allele balance between 25% and 75% for heterozygous variants and > 90% for 462 

homozygous variants were selected as high-quality variants. Deleteriousness of the variants were 463 

measured and reported differently by each prediction method. REVEL provided a score between 464 

0 and 1, with higher scores indicating higher level of deleteriousness, while Polyphen2 and 465 

MutationAssessor classified variants into one of three categories. For example, Polyphen2 466 

classified variants as ‘Deleterious’, ‘Possibly damaging’, or ‘Tolerated’, while MutationAssessor 467 

classified variants as ‘High’, ‘Medium’, or ‘Low’. The other nine methods classified variants as 468 

either ‘Deleterious’ or ‘Tolerated’. Pathogenicity reported by each tool was encoded as a binary 469 

variable, with the categories ‘Possibly damaging’ and ‘Medium’ encoded as 0.5. Thus, the 470 

composite pathogenicity score derived from the 10 tools could range between 0 and 10. Missense 471 

variants with a cumulative score of ≥4 and stop-loss/gain predicted as ‘deleterious’ either based 472 

on CADD score (CADD phred >30) or MutationTaster were considered deleterious for all 473 

analyses. Indels and other smaller structural variants were not considered, as their functional 474 

impact could not be easily assessed.  475 

 476 

 477 

 478 
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Gene Ontology (GO) and Human Phenotype Ontology (HPO) enrichment analyses 479 

Gene Ontology term enrichment analyses were performed using the ‘Gene Ontology API’ 480 

accessed using the ‘post’ command of the python package ‘requests’ (python version 3.7)31. All 481 

analyses were performed using parameters for homo sapiens (organism = ‘9606’) to identify 482 

biological processes enrichment (annotDataSet = ‘GO:0008150’) using binomial tests. HPO 483 

enrichment analyses were performed using data from the ‘genes_to_phenotype’ file obtained 484 

from the HPO website32. Since enrichment of phenotypes is not automatically evaluated by HPO, 485 

we used customized R scripts to derive baseline expectations that could be compared against the 486 

actual observations to determine significance using the p-values from binomial tests.  487 

 488 

Statistical analysis 489 

All statistical analyses were performed using R v3.6.1 (R Foundation for Statistical Computing, 490 

Vienna, Austria)69 and Python (v3.7)70. All data-related plots were generated using the R 491 

package ggplot271. 492 

 493 

Software Availability 494 

RareComb is available as an open-source (https://github.com/girirajanlab/RareComb) R package 495 

that can be downloaded from the Comprehensive R Archive Network (CRAN) repository72. It 496 

can also be installed into development environments via interfaces such as Rstudio73 using the 497 

command install.packages(‘RareComb’). The tool provides several functionalities that allow 498 

users to run the types of analyses described in this manuscript. The functionalities are as follows: 499 

(1) Identify rare event combinations statistically enriched within a single group; (2) Identify rare 500 

event combinations statistically enriched in cases but not in controls; (3) Identify rare event 501 

combinations enriched in cases but depleted in controls; (4) Identify statistically enriched rare 502 

event combinations that include at least one element from an user-supplied list; and (5) Identify 503 

genotypes statistically enriched within individuals manifesting two or more comorbid 504 

phenotypes. Each functionality takes a Boolean matrix as input and provides a set of user-505 

adjustable parameters to customize the analysis, and delivers the results in a tabular format as csv 506 

files. Detailed instructions on the available functionalities and parameters built into RareComb 507 

and their usage can be found on the GitHub page or CRAN website. A shiny app illustrating the 508 

ideas behind RareComb is available online at https://girirajanlab.shinyapps.io/RareComb/ 74. 509 
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MAIN FIGURES 726 

 727 
Figure 1: Conceptual overview of combinatorial analyses using RareComb. A Boolean 728 

representation of genotype (mutated genes, G1, G2, etc) and disease status for probands (P1, P2, 729 

etc) is shown. In step 1, the apriori algorithm is applied to the Boolean input matrix to calculate 730 

the frequencies of individual (for example, G1) and simultaneous occurrences of events (G1 and 731 

G2) that meet the user-specified criteria, including the size of combinations (pairs, triplets, etc.) 732 

and minimum frequency threshold of simultaneous occurrences. In step 2, independently in case 733 

and control groups, for each combination, the binomial test is applied to compare the observed 734 

frequency of simultaneous occurrence of events with its corresponding null binomial distribution 735 

of the expected frequencies calculated under the assumption of independence. Binomial test for 736 

gene pair G3 and G4 is shown as an example. 737 
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 741 
Figure 2: Combinations of rare variants contributing to intellectual disability (ID) 742 

phenotype. (A) An outline of the approach used to identify and validate mutated gene pairs and 743 

triplets enriched in probands with ID is shown. We tested whether mutated gene pairs identified 744 

as significant in one cohort (SPARK) are also associated with severe phenotypes in an 745 

independent cohort (SSC). To test this, we obtained the mean IQ score of individuals from the 746 

SSC cohort carrying significant combinations identified from the SPARK cohort. Empirical p-747 

values were then calculated based on the deviation of the mean IQ from the distribution of mean 748 

IQ scores obtained from 10,000 random draws in the simulation.  (B) The mean IQ of individuals 749 

with mutated gene pairs in the SSC cohort was significantly lower (empirical p-value=0) when 750 

compared to the distribution of mean IQ scores obtained from the simulation. (C) Histogram 751 

shows the distributions of IQ scores of SSC probands who carried mutations in either genes 752 

versus both constituent genes of the significant gene pairs. The distributions were significantly 753 

different from each other (p-value = 1.302´10-6, Kolmogorov-Smirnov test). 754 
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 758 
Figure 3: Analysis of parental and sibling inheritance patterns of significant gene pairs 759 

associated with ID. (A) Fraction of all instances of significant gene pairs observed within each 760 

of the six possible parental inheritance patterns (red) compared against 1,000 simulations is 761 

shown (blue). During each simulation, random mutated gene pairs from the SSC cohort were 762 

selected, the inheritance status of the mutations was identified, and the fraction of those instances 763 
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belonging to one of the six pre-defined categories was calculated. Comparing the observed 764 

fractions with the simulated fractions indicate statistical enrichment for two specific inheritance 765 

patterns based on empirical p-values: both variants being de novo, and one variant being de novo 766 

and the other transmitted from the mother. (B) Histograms show the carrier status of significant 767 

gene pairs in siblings of carrier probands (red) compared against 1,000 simulations (blue). 768 

Among significant pairs, both genes were mutated in only 24.2% of all siblings (compared to 769 

28.4% in simulations), whereas one of the two genes was mutated in 46.6% of all siblings 770 

(compared to 38.5% in simulations). These results show that mutations are more likely to be 771 

observed in just one of the two genes within the gene pairs and are less likely to be observed 772 

simultaneously in siblings of carrier probands. 773 

 774 
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 776 
Figure 4: Analysis of comorbid phenotypes using RareComb. We analyzed the genotypes of 777 

probands with anxiety/depression, ID, or schizophrenia. The heatmap shows combinations of 778 

two or three mutated genes that were significantly enriched in individuals with specific patterns 779 

of comorbid phenotypes compared to the expected frequency under the assumption of 780 

independence.  781 
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 787 
Figure 5: Rare variant models for complex disorders. The schematic shows two models for 788 

the genetic etiology of complex disorders. Circles represent rare variants present that are either 789 

de novo or inherited from a parent. On the left, individual high-effect de novo variants are 790 

strongly associated with a phenotype of interest. On the right, rare variants within an individual 791 

combine in multiple ways and contribute towards distinct phenotypes. The thickness of the 792 

connecting lines denotes effect sizes, and an affected individual can carry multiple oligogenic 793 

combinations of rare variants, each of which contributes to the same or distinct phenotypes. This 794 

extension of the oligogenic model enables further dissection of the genetic architecture of 795 

complex disorders. 796 
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