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ABSTRACT 23 

Genetic studies of complex disorders such as autism and intellectual disability (ID) are often 24 

based on enrichment of individual rare variants or their aggregate burden in affected individuals 25 

compared to controls.  However, these studies overlook the influence of combinations of rare 26 

variants that may not be deleterious on their own due to statistical challenges resulting from 27 

rarity and combinatorial explosion when enumerating variant combinations, limiting our ability 28 

to study oligogenic basis for these disorders. We present a framework that combines the apriori 29 

algorithm and statistical inference to identify specific combinations of mutated genes associated 30 

with complex phenotypes. Our approach overcomes computational barriers and exhaustively 31 

evaluates variant combinations to identify non-additive relationships between simultaneously 32 

mutated genes. Using this approach, we analyzed 6,189 individuals with autism and identified 33 

718 combinations significantly associated with ID, and carriers of these combinations showed 34 

lower IQ than expected in an independent cohort of 1,878 individuals. These combinations were 35 

enriched for nervous system genes such as NIN and NGF, showed complex inheritance patterns, 36 

and were depleted in unaffected siblings. We found that an affected individual can carry many 37 

oligogenic combinations, each contributing to the same phenotype or distinct phenotypes at 38 

varying effect sizes. We also used this framework to identify combinations associated with 39 

multiple comorbid phenotypes, including mutations of COL28A1 and MFSD2B for ID and 40 

schizophrenia and ABCA4, DNAH10 and MC1R for ID and anxiety/depression. Our framework 41 

identifies a key component of missing heritability and provides a novel paradigm to untangle the 42 

genetic architecture of complex disorders.  43 

 44 

SIGNIFICANCE 45 

While rare mutations in single genes or their collective burden partially explain the genetic basis 46 

for complex disorders, the role of specific combinations of rare variants is not completely 47 

understood. This is because combinations of rare variants are rarer and evaluating all possible 48 

combinations would result in a combinatorial explosion, creating difficulties for statistical and 49 

computational analysis. We developed a data mining approach that overcomes these limitations 50 

to precisely quantify the influence of combinations of two or more mutated genes on a specific 51 

clinical feature or multiple co-occurring features. Our framework provides a new paradigm for 52 
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dissecting the genetic causes of complex disorders and provides an impetus for its utility in 53 

clinical diagnosis.  54 
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INTRODUCTION 55 

Recent human population growth has led to a rapid increase in the load of rare variants affecting 56 

functionally important regions of the genome1–3. Thus, rare variants are collectively more 57 

abundant in the population compared to common variants, many of which confer significant risk 58 

for neurodevelopmental disorders such as autism and intellectual disability4. In fact, recent 59 

studies have directly implicated rare damaging mutations that are very recent or de novo in more 60 

than one hundred genes towards neurodevelopmental disorders5–7. The ability to establish robust 61 

associations between rare variants of high effect size and complex disease has made this class of 62 

variants the primary focus of recent studies. However, a much larger class of rare and variably 63 

expressive variants that are individually less deleterious but, in combination, exert large effects 64 

towards disease is often overlooked. Variants in this category are often transmitted across 65 

generations without adverse effects on their carriers until they encounter other similar variants 66 

that, when combined, lead to genetic interactions conferring a higher risk for disease than their 67 

individual risks8,9. While this phenomenon underpins oligogenic models proposed over the years, 68 

studies so far have not focused on detecting combinatorial effects of specific sets of rare variants 69 

towards disease phenotypes10–13. 70 

  Identifying the effects of specific combinations of rare variants towards disease etiology 71 

has been challenging for many reasons. First, combinations of rare variants are rarer, and 72 

extremely large cohorts are required to observe even a few recurrent instances of specific variant 73 

combinations14. Prior studies of oligogenic models for rare variants evaded this problem by 74 

aggregating variant information at the sample level and comparing the overall burden of rare 75 

variants between groups of individuals (such as cases and controls)6,7,15,16. Second, the 76 

combinatorial explosion resulting from even a small set of rare variants makes it difficult to 77 

exhaustively evaluate all combinations. While sophisticated frameworks such as network 78 

analysis and machine learning provide powerful tools to model the composite effects of 79 

thousands of variables on a complex system and predict emergent behaviors and quantitative 80 

outcomes, adapting them to exhaustively search and delineate the effects of specific 81 

combinations of variables is daunting17,18. Furthermore, incorporating an efficient search tool 82 

into these frameworks and extending them to detect higher-order combinatorial effects would be 83 

nearly impossible. Third, even when all combinations of rare variants could be exhaustively 84 

evaluated within a large cohort, there is a lack of methods that are sensitive enough to detect 85 
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small differences between comparison groups to establish statistical significance. Therefore, an 86 

alternate approach that is highly flexible, scalable, and sensitive is necessary to address 87 

computational and statistical challenges associated with assessing rare variant combinations.  88 

 Here, we present a combinatorial framework called RareComb that couples the apriori 89 

algorithm19 with binomial tests to overcome the limitations of data sparsity and high 90 

dimensionality, and systematically analyzes patterns of rare variants between groups of interest 91 

to identify specific combinations that are significantly associated with phenotypes20. We apply 92 

our analysis framework to a discovery cohort of 6,189 children with autism to identify genetic 93 

interactions involving pairs and triplets of mutated genes that are enriched in individuals with 94 

intellectual disability compared to individuals without intellectual disability. We demonstrate 95 

that the carriers of mutations in these specific gene pairs and triplets within an independent 96 

cohort of 1,878 children have significantly lower-than-expected intelligence quotient (IQ) scores. 97 

We also demonstrate the adaptability of our framework by leveraging it to identify mutated gene 98 

pairs and triplets significantly associated with two or more comorbid phenotypes among children 99 

with autism. Finally, we show how this generalizable and modular framework can be easily 100 

extended to identify higher order interactions beyond pairs and triplets of variants. Our stand-101 

alone framework does not depend on a priori knowledge and can detect rare patterns from high-102 

dimensional genetic data to generate interpretable results, making it readily applicable for 103 

analyzing cohorts of all size ranges to dissect the genetic basis of complex disorders. 104 

 105 

 106 

 107 

 108 

 109 

 110 

 111 
  112 
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RESULTS 113 

We hypothesized that two or more genes disrupted simultaneously by rare deleterious mutations 114 

contribute to a highly penetrant phenotype, as in an oligogenic model, or lead to a more severe 115 

phenotype than when each of the same genes are disrupted individually. We developed 116 

RareComb as a framework that combines data mining and statistical analysis to identify specific 117 

combinations (such as pairs, triplets, etc.) of rare variants that show significant associations with 118 

one or more phenotypes. RareComb analyzes an ‘n´p’ sparse Boolean matrix with ‘p’ genes in 119 

‘n’ individuals in three discrete steps (Figure 1). First, it applies the apriori algorithm 120 

independently in cases and controls to enumerate the frequency of all simultaneously mutated 121 

combinations that meet a pre-set minimum frequency threshold (Supp. Figure 1). Second, for 122 

each qualifying combination of variants, the method derives the expected frequency of 123 

simultaneously observing mutations in the constituent genes under the assumption of 124 

independence. It then independently quantifies the magnitude of deviation of the observed from 125 

the expected frequencies using binomial tests in cases and controls, and uses multiple-testing 126 

adjusted p-values to identify combinations that are statistically enriched in cases but not in 127 

controls. Finally, the method calculates effect sizes using Cohen’s d and statistical power at 1% 128 

and 5% significance thresholds, to enable prioritization of a high confidence set of combinations 129 

that contribute to the phenotype in an oligogenic manner. 130 

 131 

RareComb identifies oligogenic combinations associated with ID and autism 132 

We sought to identify pairs and triplets of mutated genes that are significantly associated with 133 

intellectual disability (ID) phenotypes by analyzing 6,189 affected individuals from the 134 

SPARK21 cohort for discovery and 1,878 affected individuals from the SSC22 cohort for 135 

validation. To facilitate cross-cohort comparison, we identified 10,217 rare variants (MAF≤1%) 136 

that were predicted to be deleterious by multiple methods and observed in both cohorts, and 137 

aggregated these variants to genes for the analysis (see Methods). We first categorized 1,215 138 

probands from the SPARK cohort diagnosed with ID as cases and 4,974 probands without ID as 139 

controls (Figure 2A). We then applied RareComb to cases after constraining it to only evaluate 140 

those gene combinations in which simultaneous mutations are observed in at least five probands. 141 

We identified 25,602 pairs involving 1,956 mutated genes in cases that were observed at a higher 142 

frequency than expected under the assumption of independence. Similarly, analyzing the controls 143 
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using only the 1,956 genes mutated in cases, RareComb identified 148 pairs of mutated genes 144 

that were significantly enriched in cases but not in controls (Supp. Table 1), with moderate to 145 

high effect sizes (Cohen’s d, 0.08-0.15) and adequate statistical power (70%-100% at 5% 146 

significance threshold) (Supp. Figure 2). These 148 gene pairs belonged to 142 probands, with 147 

74% (105/142) of them carrying more than one significant pair. These observations suggest that 148 

an individual can carry multiple combinations, each contributing to the same phenotype at 149 

varying effect sizes (Supp. Figure 3).    150 

 We next sought to validate the association of these 148 mutated gene pairs towards 151 

intellectual disability. We hypothesized that if the association of the gene pairs with ID in the 152 

SPARK cohort were truly significant, carriers of mutations in those gene pairs would tend to 153 

have lower than average IQ scores in the independent SSC cohort. We found that 90 of the 148 154 

significant pairs identified in the SPARK cohort were observed in at least one proband in the 155 

SSC cohort. These 90 mutated gene pairs were carried by 91 unique probands, whose average 156 

full-scale IQ scores (average IQ=68.52) were lower than those of all ascertained probands in the 157 

SSC cohort (average IQ=86). To assess the significance of this result, we performed 10,000 158 

random draws of 91 probands from the SSC cohort to generate a simulated distribution of their 159 

average IQ scores. The average IQ of carriers of mutated gene pairs (average IQ=68.52) was 160 

significantly lower than the overall distribution of average IQ derived from simulations (average 161 

IQ ranged from 73 to 92; empirical p=0) (Figure 2B). Furthermore, the average IQ of the 91 162 

SSC probands with both mutated genes was significantly lower than the average IQ of 1,252 163 

carriers of mutations in only one of the two genes (68.5 versus 82.8; Kolmogorov-Smirnov p = 164 

1.302´10-16) (Figure 2C). When each of the 90 combinations was evaluated individually, 165 

carriers of mutations in both genes for 73% (66/90) of the combinations showed lower IQ than 166 

individuals with mutations in individual genes of the same combination, with 39/90 remaining 167 

significant after multiple testing correction (Supp. Table 2; Supp. Figure 4). These results 168 

provide evidence for synergistic effects of deleterious mutations within specific pairs of genes 169 

towards ID phenotypes.  170 

 We also applied RareComb to identify gene triplets associated with intellectual disability 171 

using the two cohorts and repeated the simulations to identify 1,593 significant combinations in 172 

the SPARK cohort. We selected 570 high-confidence triplets (with ≥90% statistical power at 5% 173 

significance threshold; Supp. Table 3) and found that 79 probands in the SSC cohort carried at 174 
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least one of these deleterious triplets. The average IQ score of individuals carrying significant 175 

gene triplets (average IQ score=73) was significantly lower than a distribution of average IQ 176 

scores from 10,000 draws of 79 SSC probands (average IQ score=82.5; min=72, max=94; 177 

empirical p=0.0011; see Supp. Figure 5). This result reiterated that carriers of mutations in the 178 

significant gene combinations have lower IQ than a random group of probands. Our results also 179 

demonstrate the ability of the framework to identify higher order combinations of mutations that 180 

are significantly associated with specific phenotypes in individuals with complex disorders. 181 

 182 

Oligogenic combinations are enriched for specific inheritance patterns 183 

As individual variants can arise de novo or be inherited maternally or paternally, variants in pairs 184 

of genes can have six possible patterns of transmission (Supp. Figure 6A). We identified a total 185 

of 926 occurrences of the 148 pairs of mutated genes enriched among SPARK probands with ID 186 

(n=142 probands), of which inheritance could be determined without ambiguity for 887 187 

instances. We found that one variant occurred de novo and the other variant was inherited from 188 

the mother in 244/887 instances (27.5%). Similarly, both mutated genes were inherited from the 189 

mother in 226/887 instances (25.4%) or occurred de novo in 221/887 instances (24.9%), while 190 

the remaining fraction (~22%) of variant pairs were either inherited from both parents, inherited 191 

from the father, or transmitted de novo and paternally. To assess the significance of our 192 

observations, we performed simulations to establish a baseline expectation of proportions for 193 

each category of parental inheritance pattern. We selected 926 pairs of genes in 1000 random 194 

draws of all possible mutated gene pairs among SPARK probands and calculated the fraction of 195 

instances that fell into each of the six transmission categories. The observed proportion was 196 

higher than the simulated proportions for instances when both variants occurred de novo (24.9% 197 

versus 17%, empirical p=0) and when one variant was de novo and the other was inherited 198 

maternally (27.5% versus 25%, p=0.028) (Figure 3A). We repeated this analysis for 7,596 199 

children affected with autism in the SPARK cohort compared to 11,740 unaffected parents and 200 

identified 110 gene pairs significantly associated with autism (Supp. Table 4). Similar to the 201 

results obtained for the ID phenotype, we found that both variants of a gene pair were more 202 

likely to occur de novo (24% versus 18%, empirical p=0) or one variant occurring de novo and 203 

the other inherited maternally (33% versus 26%, p=0) than expected based on simulation studies 204 

(Supp. Figure 7). The enrichment of de novo or maternally inherited variants for significant 205 
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gene pairs aligns with published reports that severely affected children tend to carry multiple de 206 

novo mutations or inherit pathogenic rare variants from mildly affected or unaffected carrier 207 

mothers16,23,24.  208 

 We then assessed whether the mutated gene pairs associated with ID were also found in 209 

siblings of carrier probands. Restricting our analysis to families with unaffected siblings whose 210 

probands had mutations in ID-enriched gene pairs, we found that both variants were present in 211 

the corresponding sibling for only 53/219 (24.2%) instances of gene pairs, while 102/219 212 

(46.6%) had variants in only one of the two genes and 64/219 (29.2%) instances had no variants 213 

in either of the genes in the siblings (Supp. Figure 6B). Using simulations, we found a 214 

significantly higher proportion of instances with only one of the two variants present in siblings 215 

compared to the expected values (46.6% versus 38.5%, p=0.007). Furthermore, the proportion of 216 

observed instances with neither of the variants present in siblings (29.2% versus 33.1%, 217 

empirical p=0.098) or both variants present in siblings (24.2% versus 28.4%, p=0.079) was 218 

lower than expected (Figure 3B). The observation that only a small fraction of unaffected 219 

siblings carried both mutated gene pairs suggests a strong association of these gene pairs with ID 220 

phenotypes. These results suggest that mutations in pairs of genes significantly associated with a 221 

severe phenotype in probands are more likely to occur individually than simultaneously in 222 

unaffected siblings of the same family. 223 

 224 

Genes forming oligogenic combinations are distinct from canonical autism genes 225 

We expanded our analysis to include all 16,556 mutated genes in the SPARK cohort, as opposed 226 

to genes with mutations present in both the SPARK and SSC cohorts, and identified 52 227 

significant gene pairs (Supp. Table 5) and 230 triplets associated with the ID phenotype (with 228 

≥90% statistical power at 1% significance threshold; Supp. Table 6). Due to the expanded 229 

search space, the mutated gene pairs showed more significant p-values from the binomial tests 230 

when compared to those obtained from the more restricted set of variants overlapping both 231 

SPARK and SSC cohorts (Supp. Figure 8). Mutated genes within these combinations included 232 

several genes related to nervous system development, such as NIN, HDC, NGF, and BRD8. 233 

Furthermore, 5/52 pairs and 59/230 triplets contained at least one gene associated with autism in 234 

the SFARI database, including FGFR1, associated with multiple disorders including Kallmann 235 

syndrome25 and Pfeiffer syndrome26; RELN, associated with temporal lobe epilepsy27; SYNE1, 236 
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associated with spinocerebellar ataxia28,29; and PNPLA7, associated with autism and ID30. Thus, 237 

most genes forming combinations are not involved in canonical autism or ID disorders, 238 

suggesting synergistic effects of these genes without prior association to disease.  239 

We also performed gene ontology enrichment analysis for genes within the combinations 240 

and identified seven out of nine significantly enriched GO terms to be exclusively associated 241 

with nervous system-related functions, including synthesis and metabolism of catecholamines, 242 

axon/neuron regeneration, and neuron generation and differentiation (Supp. Figure 9)31. 243 

Furthermore, the differences in the type and specificity of GO terms enriched for significant 244 

pairs versus triplets were apparent, with genes forming pairs involved in nervous system function 245 

and genes forming triplets associated with both nervous system as well as other biological 246 

processes. We next assessed the enrichment and depletion of Human Phenotype Ontology (HPO) 247 

terms for genes forming significant pairs towards ID phenotypes32. First, we calculated the 248 

fraction of all 4,484 genes within the HPO database associated with each HPO term. For 249 

example, 30% (1,366/4,484) of all genes in HPO were associated with ID. We compared these 250 

expected values calculated for each HPO term with the corresponding fractions observed within 251 

the 95 genes forming 52 ID-associated pairs using binomial tests. Interestingly, genes associated 252 

with HPO terms related to neurodevelopmental phenotypes, such as ID, global developmental 253 

delay, seizure, and microcephaly, were significantly depleted within the set of 95 genes forming 254 

gene pairs (Supp. Table 7). Next, we evaluated whether genes within each of the 52 significant 255 

pairs shared one or more common HPO phenotype or disease. Of the 52 pairs, only one pair 256 

(DNASE1 & MTR) shared an HPO phenotype (“epilepsy”). This was significantly lower than the 257 

expected value obtained from the distribution of the number of shared HPO phenotypes between 258 

all possible pairs of genes in the HPO database (1/52, 1.9% ID gene pairs compared to 31.5% of 259 

all HPO gene pairs shared one HPO phenotype, p= 2.2´10-16; one-sided binomial test) (Supp. 260 

Figure 10; Supp. Table 8). We note that the 4,484 genes within HPO are potentially biased 261 

towards well-studied disorders, making pairs of genes drawn from HPO more likely to share 262 

phenotypes than random pairs of genes from the genome. Overall, GO and HPO analyses show 263 

that genes forming oligogenic combinations are involved in neuronal processes but have not 264 

been previously connected to neurodevelopmental phenotypes, indicating the novelty of the 265 

associations between these genes and ID phenotypes.  266 

 267 
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 268 

Identifying variant combinations towards specific patterns of comorbid phenotypes 269 

We adapted our framework to identify significant associations of two or more genotypes with 270 

multiple comorbid phenotypes. To identify novel comorbid associations, we eliminated 271 

phenotypes that were highly correlated with each other, such as ADHD and reading disorder33. 272 

We analyzed variant profiles of 6,189 autism probands from the SPARK cohort with records of 273 

comorbid features, including 1,215 individuals with ID, 1,825 with anxiety and depression, and 274 

332 with schizophrenia features. We assessed for significant co-occurrences of two or more 275 

mutated genes with two or more of the above phenotypes (Figure 4). Using one-tailed binomial 276 

tests to compare the observed frequency of combinations of genotypes and phenotypes to the 277 

expected frequency, we first identified 169 significant associations between pairs of mutated 278 

genes and two comorbid phenotypes as well as 82 combinations of three mutated genes and two 279 

comorbid phenotypes (Supp. Tables 9 & 10). As some of these significant genotype-phenotype 280 

combinations can be confounded by high degree of co-occurrence of mutated genes, we next 281 

calculated genotype-only p-values using binomial tests for all significant genotype-phenotype 282 

associations. For 32/169 combinations of two mutated genes and two comorbid phenotypes and 283 

5/82 combinations of three mutated genes and two comorbid phenotypes, the composite 284 

genotype-phenotype p-values were significant while genotype-only p-values were not 285 

significant, suggesting stronger associations between these variant combinations and phenotypes. 286 

For example, even when variants in genes COL28A1 and MFSD2B did not co-occur more 287 

frequently than expected under the assumption of independence, these mutated genes co-288 

occurred more frequently than expected among probands with ID and schizophrenia phenotypes. 289 

Loss-of-function and rare missense mutations in COL28A1 have been reported in individuals 290 

with autism34,35, and MFSD2A, a paralog of MFSD2B, has been directly implicated in an 291 

autosomal recessive disorder associated with progressive microcephaly, spasticity and brain 292 

imaging abnormalities36. Similarly, we found ARVCF and FAT1 to be significantly associated 293 

with ID and schizophrenia, with ARVCF mapping within the 22q11.2 DiGeorge syndrome 294 

region37, while rare de novo mutations in FAT1 being associated with autism and 295 

schizophrenia6,38. Finally, we found that the mutations in genes ABCA4, DNAH10 and MC1R 296 

significantly co-occurred in individuals with ID and anxiety/depression phenotypes. These 297 
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results demonstrate the utility of identifying higher-order associations between genotypes and 298 

phenotypes in complex disorders such as autism. 299 

 300 

DISCUSSION 301 

Current rare variant analysis strategies are geared towards either searching for individual variants 302 

of high effect size whose influence on the phenotype is evident, such as de-novo gene-disruptive 303 

mutations, or comparing rare variant burden to explain collective effects on phenotypes7,39,40. 304 

The wider space between these two extremes of the analysis spectrum that involves 305 

combinations of rare variants has largely remained understudied. Although digenic diseases and 306 

multi-hit models of complex diseases have been used to provide post-hoc explanations for an 307 

observed phenomenon, they are not equipped to serve as a framework to actively search and 308 

identify rare variant combinations that fit oligogenic models for specific phenotypes9,12,13. While 309 

machine learning has become the de-facto approach for disease outcome predictions, the lack of 310 

holy-grail predictors and reduced interpretability due to data sparsity makes it less fit to detect 311 

combinatorial effects17. In addition, the common practice of evaluating feature importance 312 

metrics of machine learning classifiers falls short of the objective to identify combinations of 313 

features that exert higher effect on the phenotype than evident from their independent effects17,18. 314 

Furthermore, prior studies to assess combinatorial effects have been inherently biased due to 315 

their need to minimize the search space by restricting the analysis to only a subset of genes 316 

chosen based on a priori knowledge41–43. Here, we provide a proof-of-concept analytical 317 

framework that remains agnostic to prior evidence and performs exhaustive searches to identify 318 

combinatorial effects among rare variants while retaining high granularity of data and 319 

interpretability of results.  320 

We use our framework to identify gene pairs and triplets significantly associated with 321 

intellectual disability and show that several constituent genes are associated with nervous system 322 

processes. These mutated gene combinations are more likely to be inherited maternally or occur 323 

de novo, are depleted in unaffected siblings from the same family, and are less likely to involve 324 

canonical autism or ID genes, suggesting that genes forming significant combinations are less 325 

deleterious on their own but manifest effects only when combined with other similar genes 326 

carrying rare mutations. While previous studies have linked aggregate rare variant burden 327 

towards intellectual disability44,45, our results fine map the association to specific combinations 328 
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of constituent genes contributing to the burden. We propose a novel paradigm for dissecting the 329 

complexity of genetic disorders, where an affected individual carries multiple combinations of 330 

rare variants, and each combination contributes to either the same phenotype or distinct 331 

phenotypes at varying effect sizes (Figure 5). A limitation of our method is that it tends to be 332 

biased towards genes that are mutated frequently enough to be observed in a combination. This 333 

limitation can be addressed by fixing specific primary variants of interest irrespective of their 334 

frequency and screening for “second-hit” modifiers that significantly co-occur with the primary 335 

variant, such as the co-occurrence of RBM8A variants in distal 1q21.1 deletion carriers 336 

manifesting thrombocytopenia-absent-radius syndrome and TBX6 variants in 16p11.2 deletion 337 

carriers with scoliosis46,47. 338 

Our method is fast and scalable, allows for fine-tuning combinatorial searches based on 339 

frequency, statistical power, and multiple testing criteria, and can be adapted to enable 340 

computational approximations to further improve run time and assess higher-order combinations 341 

beyond triplets. While larger sample sizes are generally required for detecting smaller frequency 342 

differences, we note that our framework achieves reliable statistical power even with modest 343 

sample sizes, implying that our framework could be applied to exome sequencing studies of 344 

other neurodevelopmental disorders that have not been explored for combinatorial effects. This 345 

approach can also be used to address a variety of research questions involving rare event 346 

combinations, including searching for protective effects of rare variants where simultaneous 347 

mutations are enriched in controls but not in cases, and finding combinations that exhibit specific 348 

enrichment or depletion patterns in more than two phenotypic groups. In summary, we provide a 349 

conceptual framework and the necessary tools to identify the oligogenic basis for complex 350 

disorders such as autism and intellectual disability, which hitherto was restricted to the analysis 351 

of canonical disorders such as Hirschsprung disease48 and Bardet-Biedl syndrome12.  352 

 353 

  354 
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MATERIALS AND METHODS 355 

We developed RareComb to address computational and statistical challenges associated with 356 

combinatorial analysis of rare variants. RareComb first uses the apriori algorithm to efficiently 357 

count the frequencies of co-occurring variant combinations. It then uses one-tailed binomial tests 358 

to compare the observed frequency of each variant combination to the expected frequency 359 

derived under the assumption of independence among the constituent variants within each 360 

combination (Figure 1). This method can be applied to identify variant combinations that are 361 

significantly enriched in cases but not in controls. In studies involving multiple comorbid 362 

phenotypes, this method can also be used to detect associations between specific combinations of 363 

variants and one or more (comorbid) phenotypes (see Supplementary Note). The general 364 

principles of our method, built using the basic axioms of probability theory, can be easily 365 

extended to a variety of problems involving rare higher-order combinations (Supp. Figure 11). 366 

 367 

Identifying frequencies of rare variant combinations 368 

RareComb utilizes the apriori algorithm to efficiently calculate frequencies of variant 369 

combinations from sparse Boolean matrices (of 0s and 1s) (Supp. Figure 12A). The apriori 370 

algorithm has been successfully applied to analyze consumer behavior, where identifying 371 

products frequently purchased together could benefit a company49,50. While an algorithm that is 372 

used to derive insights from patterns within highly frequent events (i.e. frequent itemset mining) 373 

might not seem like a good fit to analyze rare variant combinations, its ability to perform 374 

disciplined search based on both built-in and user-specified constraints makes it an ideal 375 

counting tool. For example, the apriori algorithm avoids enumerating each of the 50 million pairs 376 

or 167 billion triplets from just 10,000 variants, and instead prunes the search-space based on 377 

user-defined criteria such as minimum frequency threshold and size of combinations (pairs, 378 

triplets, etc.) (Supp. Figure 12B). RareComb applies an additional constraint to the algorithm to 379 

limit its search to co-occurring events, which further reduces the search space (see 380 

Supplementary Note). For example, when considering variants A and B, only the frequency of 381 

the presence of both variants (A=1 & B=1) is counted, and not absence of either or both variants 382 

(A=1 & B=0; A=0 & B=1; or A=0 & B=0).  383 

 384 

 385 
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Statistical Inference 386 

RareComb utilizes the p-values of one-tailed binomial tests to establish the magnitude of 387 

enrichment for each rare variant combination (Figure 1). For each combination, RareComb 388 

formulates null and alternate hypotheses for the binomial test by considering the event of 389 

observing all constituent variants together within a group of individuals as success and all other 390 

possibilities as failure in a binomial trial: 391 

H0 : 𝜋 = 𝜋0 392 

Ha : 𝜋 > 𝜋0 393 

where,  394 

𝜋  = Probability of observing all constituent rare variants of a combination together within 395 

a cohort, i.e., P(A=1 & B=1) 396 

𝜋0 = Expected probability derived from the frequency of individual variants of a 397 

combination, under the assumption of independence, i.e., P(A=1) * P(B=1). 398 

RareComb then compares the null binomial distribution derived using the sample size of the 399 

group (n) and the expected probability (𝜋0) (i.e., X ~ Binom(n, p = 𝜋0)) with the observed 400 

probability (𝜋), and calculates the probability of observing rare variants occurring together at 401 

least as frequently as they were observed within the cohort (i.e. p-value).  402 

 In case-control analyses, this method is applied independently to each group, and the p-403 

values between them are compared. The combinations exhibiting enrichment in both cases and 404 

controls, likely due to proximity of variants in linkage disequilibrium, are eliminated, following 405 

which the p-values in cases are adjusted for multiple-testing to identify statistically significant 406 

combinations that exhibit enrichment in cases but not in controls. Finally, the effect sizes are 407 

calculated using Cohen’s d and the statistical power is measured using 2-sample 2-proportion 408 

tests, as additional metrics to prioritize the final set of significant rare variant combinations. In 409 

genotype-comorbid phenotype association analyses, the method is applied just once to the entire 410 

cohort, with multiple-testing adjusted p-values serving as a sufficient metric to identify high 411 

quality associations between genotypes and two or more co-occurring phenotypes.  412 

 413 

Statistical power and computational performance of the method  414 

We measured the relationship between sample size and statistical power for both binomial and 2-415 

sample 2-proportion tests used in the framework. It took 1,356 samples for the binomial test to 416 
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achieve a statistical power of 80% to establish statistical enrichment between expected and 417 

observed co-occurrence frequencies of 0.1% and 0.5% (Supp. Figure 13). This number 418 

increased to 6,469 when the test needed to be more sensitive to compare frequencies of 0.3% and 419 

0.5%. Similarly, it took 7,840 samples for the 2-sample 2-proportion test to achieve 80% power 420 

to establish statistical difference between co-occurrence frequencies of 2% and 0.5% observed in 421 

two groups (Supp. Figure 14). The sample size requirement increased to 14,633 to differentiate 422 

frequencies of 1.5% and 0.5% at 80% statistical power. These results align with the known 423 

relationship between sample size and statistical power, and indicate that our method can be 424 

reliably applied to analyze reasonably modest-size cohorts. 425 

 We also measured the run times for the case-control analysis to identify significant pairs 426 

and triplets of mutated genes using simulated data of three discrete sizes of samples (5,000, 427 

10,000, and 50,000 individuals) and genes (5,000, 10,000, and 15,000 genes). The apriori 428 

algorithm was run on single-core CPUs with 256 GB memory and was constrained to analyze 429 

combinations observed in at least 0.15% of the samples. Given the memory-intensive nature of 430 

the apriori algorithm implemented in the ‘arules’ package, 256 GB was chosen to maintain 431 

uniformity51. However, smaller input files could be processed successfully using much less 432 

memory. As expected, the runtimes were proportional to the size of the combination (pairs 433 

versus triplets) and the number of input variables (Supp. Figure 15). While the increase in run 434 

time with the increase in sample size is apparent for pairs, lower runtimes observed with running 435 

50,000 samples compared to 5,000 samples for triplets can be attributed to stochasticity of the 436 

input data. Overall, the analysis of gene pairs took between one minute and 12 minutes while 437 

triplets took between two minutes and 150 minutes. Since several factors influence the runtime 438 

of the method, a trial-and-error approach to determine an optimal minimum frequency threshold 439 

for co-occurring events can help identify relevant combinations without resulting in insufficient 440 

memory due to combinatorial explosion. 441 

 442 

Samples 443 

We used whole exome sequencing data from 6,189 affected males from the Simons Foundation 444 

Powering Autism Research (SPARK)21 and 1,878 affected males from 2,247 simplex families 445 

from the Simons Simplex Collection (SSC)52 cohort from the Simons Foundation Autism 446 

Research Initiative (SFARI)53. We selected only male probands for our analysis to avoid any 447 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2021. ; https://doi.org/10.1101/2021.10.01.462832doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.01.462832
http://creativecommons.org/licenses/by-nd/4.0/


 17 

confounding effect due to gender or ascertainment bias54,55. While diagnosis information for 448 

intellectual disability (ID), anxiety, attention deficit hyperactivity disorders (ADHD), 449 

schizophrenia, language and sleep disorders were encoded as binary variables for the SPARK 450 

samples, full-scale intelligence quotient (IQ) scores were available for the SSC cohort.  451 

 452 

Data preparation and quality control 453 

Variant Call Format (VCF) files obtained from exome sequencing data were annotated using 454 

ANNOVAR56 for rsID information and variant frequency using ExAC57 and gnomAD58. To 455 

overcome the limitations of using a single method to predict pathogenicity, the effects of non-456 

synonymous mutations were annotated using 11 prediction methods: SIFT59, Polyphen260 457 

(HDIV), Polyphen2 (HVAR), LRT61, MutationTaster62, MutationAssessor63, FATHMM64, 458 

MetaSVM65, PROVEAN66, REVEL67, and CADD68. Briefly, all missense, stop-loss/gain, and 459 

start-loss/gain variants within exonic, 3’, and 5’ UTR regions with minor allele frequencies ≤1% 460 

identified based on both ExAC and gnomAD databases were selected. Then, variants with allele 461 

depth of ≥15 and allele balance between 25% and 75% for heterozygous variants and > 90% for 462 

homozygous variants were selected as high-quality variants. Deleteriousness of the variants were 463 

measured and reported differently by each prediction method. REVEL provided a score between 464 

0 and 1, with higher scores indicating higher level of deleteriousness, while Polyphen2 and 465 

MutationAssessor classified variants into one of three categories. For example, Polyphen2 466 

classified variants as ‘Deleterious’, ‘Possibly damaging’, or ‘Tolerated’, while MutationAssessor 467 

classified variants as ‘High’, ‘Medium’, or ‘Low’. The other nine methods classified variants as 468 

either ‘Deleterious’ or ‘Tolerated’. Pathogenicity reported by each tool was encoded as a binary 469 

variable, with the categories ‘Possibly damaging’ and ‘Medium’ encoded as 0.5. Thus, the 470 

composite pathogenicity score derived from the 10 tools could range between 0 and 10. Missense 471 

variants with a cumulative score of ≥4 and stop-loss/gain predicted as ‘deleterious’ either based 472 

on CADD score (CADD phred >30) or MutationTaster were considered deleterious for all 473 

analyses. Indels and other smaller structural variants were not considered, as their functional 474 

impact could not be easily assessed.  475 

 476 

 477 

 478 
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Gene Ontology (GO) and Human Phenotype Ontology (HPO) enrichment analyses 479 

Gene Ontology term enrichment analyses were performed using the ‘Gene Ontology API’ 480 

accessed using the ‘post’ command of the python package ‘requests’ (python version 3.7)31. All 481 

analyses were performed using parameters for homo sapiens (organism = ‘9606’) to identify 482 

biological processes enrichment (annotDataSet = ‘GO:0008150’) using binomial tests. HPO 483 

enrichment analyses were performed using data from the ‘genes_to_phenotype’ file obtained 484 

from the HPO website32. Since enrichment of phenotypes is not automatically evaluated by HPO, 485 

we used customized R scripts to derive baseline expectations that could be compared against the 486 

actual observations to determine significance using the p-values from binomial tests.  487 

 488 

Statistical analysis 489 

All statistical analyses were performed using R v3.6.1 (R Foundation for Statistical Computing, 490 

Vienna, Austria)69 and Python (v3.7)70. All data-related plots were generated using the R 491 

package ggplot271. 492 

 493 

Software Availability 494 

RareComb is available as an open-source (https://github.com/girirajanlab/RareComb) R package 495 

that can be downloaded from the Comprehensive R Archive Network (CRAN) repository72. It 496 

can also be installed into development environments via interfaces such as Rstudio73 using the 497 

command install.packages(‘RareComb’). The tool provides several functionalities that allow 498 

users to run the types of analyses described in this manuscript. The functionalities are as follows: 499 

(1) Identify rare event combinations statistically enriched within a single group; (2) Identify rare 500 

event combinations statistically enriched in cases but not in controls; (3) Identify rare event 501 

combinations enriched in cases but depleted in controls; (4) Identify statistically enriched rare 502 

event combinations that include at least one element from an user-supplied list; and (5) Identify 503 

genotypes statistically enriched within individuals manifesting two or more comorbid 504 

phenotypes. Each functionality takes a Boolean matrix as input and provides a set of user-505 

adjustable parameters to customize the analysis, and delivers the results in a tabular format as csv 506 

files. Detailed instructions on the available functionalities and parameters built into RareComb 507 

and their usage can be found on the GitHub page or CRAN website. A shiny app illustrating the 508 

ideas behind RareComb is available online at https://girirajanlab.shinyapps.io/RareComb/ 74. 509 
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MAIN FIGURES 726 

 727 
Figure 1: Conceptual overview of combinatorial analyses using RareComb. A Boolean 728 

representation of genotype (mutated genes, G1, G2, etc) and disease status for probands (P1, P2, 729 

etc) is shown. In step 1, the apriori algorithm is applied to the Boolean input matrix to calculate 730 

the frequencies of individual (for example, G1) and simultaneous occurrences of events (G1 and 731 

G2) that meet the user-specified criteria, including the size of combinations (pairs, triplets, etc.) 732 

and minimum frequency threshold of simultaneous occurrences. In step 2, independently in case 733 

and control groups, for each combination, the binomial test is applied to compare the observed 734 

frequency of simultaneous occurrence of events with its corresponding null binomial distribution 735 

of the expected frequencies calculated under the assumption of independence. Binomial test for 736 

gene pair G3 and G4 is shown as an example. 737 
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 741 
Figure 2: Combinations of rare variants contributing to intellectual disability (ID) 742 

phenotype. (A) An outline of the approach used to identify and validate mutated gene pairs and 743 

triplets enriched in probands with ID is shown. We tested whether mutated gene pairs identified 744 

as significant in one cohort (SPARK) are also associated with severe phenotypes in an 745 

independent cohort (SSC). To test this, we obtained the mean IQ score of individuals from the 746 

SSC cohort carrying significant combinations identified from the SPARK cohort. Empirical p-747 

values were then calculated based on the deviation of the mean IQ from the distribution of mean 748 

IQ scores obtained from 10,000 random draws in the simulation.  (B) The mean IQ of individuals 749 

with mutated gene pairs in the SSC cohort was significantly lower (empirical p-value=0) when 750 

compared to the distribution of mean IQ scores obtained from the simulation. (C) Histogram 751 

shows the distributions of IQ scores of SSC probands who carried mutations in either genes 752 

versus both constituent genes of the significant gene pairs. The distributions were significantly 753 

different from each other (p-value = 1.302´10-6, Kolmogorov-Smirnov test). 754 
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 758 
Figure 3: Analysis of parental and sibling inheritance patterns of significant gene pairs 759 

associated with ID. (A) Fraction of all instances of significant gene pairs observed within each 760 

of the six possible parental inheritance patterns (red) compared against 1,000 simulations is 761 

shown (blue). During each simulation, random mutated gene pairs from the SSC cohort were 762 

selected, the inheritance status of the mutations was identified, and the fraction of those instances 763 
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belonging to one of the six pre-defined categories was calculated. Comparing the observed 764 

fractions with the simulated fractions indicate statistical enrichment for two specific inheritance 765 

patterns based on empirical p-values: both variants being de novo, and one variant being de novo 766 

and the other transmitted from the mother. (B) Histograms show the carrier status of significant 767 

gene pairs in siblings of carrier probands (red) compared against 1,000 simulations (blue). 768 

Among significant pairs, both genes were mutated in only 24.2% of all siblings (compared to 769 

28.4% in simulations), whereas one of the two genes was mutated in 46.6% of all siblings 770 

(compared to 38.5% in simulations). These results show that mutations are more likely to be 771 

observed in just one of the two genes within the gene pairs and are less likely to be observed 772 

simultaneously in siblings of carrier probands. 773 

 774 

  775 
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 776 
Figure 4: Analysis of comorbid phenotypes using RareComb. We analyzed the genotypes of 777 

probands with anxiety/depression, ID, or schizophrenia. The heatmap shows combinations of 778 

two or three mutated genes that were significantly enriched in individuals with specific patterns 779 

of comorbid phenotypes compared to the expected frequency under the assumption of 780 

independence.  781 
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 787 
Figure 5: Rare variant models for complex disorders. The schematic shows two models for 788 

the genetic etiology of complex disorders. Circles represent rare variants present that are either 789 

de novo or inherited from a parent. On the left, individual high-effect de novo variants are 790 

strongly associated with a phenotype of interest. On the right, rare variants within an individual 791 

combine in multiple ways and contribute towards distinct phenotypes. The thickness of the 792 

connecting lines denotes effect sizes, and an affected individual can carry multiple oligogenic 793 

combinations of rare variants, each of which contributes to the same or distinct phenotypes. This 794 

extension of the oligogenic model enables further dissection of the genetic architecture of 795 

complex disorders. 796 
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