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Humans can perceive and discriminate vibration frequency, yet the central 
representation of this fundamental feature is unknown. Using fMRI, we discovered that 
cortical responses are tuned for vibration frequency. Voxel tuning was biased in a 
manner that reflects perceptual sensitivity and the response profile of the Pacinian 
afferent system. These results imply the existence of tuned populations that may encode 
naturalistic vibrations according to their constituent spectra.        
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Our physical interactions with the environment produce complex, high frequency (>85Hz) 

vibrations in the skin whose spectral content underlie the manual perception of surface textures1 

and support sensing through hand-held tools2. Vibration frequency, like sound pitch, is a 

fundamental feature that we perceive and discriminate3–5. Yet evidence for frequency-tuned 

somatosensory circuits remains conspicuously absent, in stark contrast to the tuning observed 

throughout the auditory neuraxis6–8. In human and non-human primates, vibration frequency is 

encoded in the periodicity of spiking activity of untuned cells in the peripheral afferent system9,10 

and the earliest cortical processing stages3,11,12. Conceivably, this temporal coding of vibration 

frequency gives rise to a rate-based representation in tuned populations, as seen in the auditory 

system7,8. However, frequency-tuned somatosensory neurons have never been reported in 

primates and tuned cells were only recently discovered in the mouse somatosensory cortex13. 

The failure to establish frequency tuning in the primate brain may have been due to limited 

sampling of cortical territories or restricted exploration of vibrotactile stimulus space. Here, we 

performed whole brain functional magnetic resonance imaging (fMRI) as participants 

experienced a battery of vibrations on their hands while engaging in an attention-demanding 

frequency monitoring task (Online Methods) (Supplementary Fig. 1). Vibrations, which were 

matched in perceived intensity, varied in frequency from 100 to 340Hz (Supplementary Fig. 2). 

We characterized voxel-level responses which reveal systematic tuning for vibration frequency. 

We implemented an encoding model to provide an account for how voxel-level frequency tuning 

can relate to neural population responses.      

 

We first defined brain regions whose blood oxygen level-dependent (BOLD) activity was 

modulated by vibration stimulation applied to the left or right hands (Fig. 1a; Supplementary 
Fig. 3) irrespective of vibration frequency (Online Methods). Response modulation associated 

with right hand stimulation was greater in strength (t(6) = 2.48, P = 0.048) and more prevalent 

(t(6) = 4.21, P = 0.0056) compared to left hand responses. In both hemispheres of each 

participant, voxel responses were significantly modulated by vibrations delivered to the 

contralateral or ipsilateral hands (F-statistic: contralateral: 7.67 ± 0.86; ipsilateral: 7.37 ± 0.75). 

Response modulation associated with the contralateral and ipsilateral hands was similar in 

strength (t(6) = 2.28, P = 0.063) and prevalence (t(6) = 1.12, P = 0.30).  

 

To characterize frequency-dependent modulation in vibration-responsive voxels (Fig. 1b), we 

fitted voxel-level response profiles with tuning functions (Online Materials). Tuning along a 

single dimension like temporal frequency can be modeled by fitting responses with simple 
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Gaussian filters that parameterize the best modulating frequency (BF) and tuning sharpness. 

More complex frequency preferences can be modeled using Gabor filters that capture tuning 

profiles characterized by multiple modulation fields. Across participants, 59 ± 6.3% of vibration-

responsive voxels exhibited significant tuning (FDR-corrected q < 0.05; Online Methods) that 

was described by the Gaussian model (r = 0.67 ± 0.013; range: 0.23-0.97) or Gabor model (r = 

0.57 ± 0.025; range: 0.36-0.95). Tuned voxels were predominantly found in parietal and frontal 

cortex (Supplementary Fig. 4). We performed model selection for each tuned voxel (Online 

Methods) and found that voxel profiles tended to be more consistent with Gaussian tuning 

rather than Gabor tuning (proportion of voxels consistent with Gabor tuning = 0.40 ± 0.12). We 

compared the prevalence of Gaussian vs Gabor tuning in different sensorimotor regions under 

the assumption that simpler tuning could define primary sensory areas while more complex 

tuning could be confined to higher-order areas. Across regions, we observed similar proportions 

of tuned responses best described by the Gaussian and Gabor models (Supplementary Fig. 
5). That voxels characterized by Gaussian- and Gabor-shaped tuning are interspersed in 

parietal and frontal brain regions is inconsistent with the notion that simple frequency selectivity 

gives way to more complex tuning over a somatosensory cortical hierarchy.  

 

The number of tuned voxels in the left hemisphere (5685 ± 3353) and right hemisphere (5961 ± 

3635) did not differ significantly (t(6) = 1.35, P = 0.23) (Supplementary Table 1). While most 

tuned voxels were selective for only one hand, voxels tuned to contralateral and ipsilateral 

stimulation were observed in both hemispheres, and 20.59 ± 6.06% of tuned voxels were 

selective for vibrations applied to either hand (Supplementary Table 2). Because contralateral 

and ipsilateral stimulation has been associated with BOLD signal increases and decreases14, 

respectively, we tested whether tuned voxels were more likely to exhibit negative BOLD signal 

changes with ipsilateral stimulation. Voxels exhibited signal increases and decreases (Fig. 1b), 

but the likelihood for tuned voxels to deactivate at their BF did not differ between contralateral 

and ipsilateral stimulation across participants (t(6) = 1.08, P = 0.32) or within each participant (z-

statistic = -0.028–0.23, P = 0.81–0.99). For tuned voxels with positive or negative activity 

changes, frequency response profiles spanned the entire range of tested frequencies (Fig. 1c). 

These results imply the existence of cortical feature detectors that are selective for the 

frequency components comprising naturalistic vibrations1.     

 

Having established voxel-level frequency tuning, we asked whether voxel preferences were 

biased to frequencies near 250Hz, the range corresponding to the maximum response 
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sensitivity of the Pacinian afferent system10,15,16 and the peak perceptual sensitivity in 

humans4,15. In each participant, BF distributions (Fig. 2a) differed significantly from uniform (1-

sample Kolmogoroz-Smirnov test; all P < 1e-15) with more voxels preferring intermediate 

frequencies (BF: 222 ± 22 Hz; range: 187-258 Hz) compared to lower and higher frequencies 

(Supplementary Table 3). We additionally tested whether voxels tuned for both hands had 

similar frequency preferences for the left and right hands (Fig. 2b), but BF values were 

uncorrelated between hands (r = -0.021 ± 0.088; t(6)  = -0.58, P = 0.58). The finding that cortical 

frequency representations, which are maintained independently for the left and right hands, 

mirror the sensitivity profile of human observers and of the peripheral afferent system is 

consistent with efficient coding theory17. 

 

In the auditory cortical system, the spatial clustering of neurons with similar frequency 

preferences produces orderly tonotopic maps that are resolvable with fMRI18,19. We wondered 

whether an analogous topography, based on vibration frequency tuning, exists in the 

somatosensory cortical system. We first tested if the spatial proximity between pairs of 

frequency-tuned voxels within activation clusters related to the similarity of their frequency 

preferences (Online Methods). The physical distances between voxels were correlated with their 

BF differences (Fig. 2c) for left hand responses (r: 0.18 ± 0.038; t(6) = 11.30, P = 2.87e-5) and 

right hand responses (r: 0.14 ± 0.042; t(6) = 8.41 , P = 0.00015), implying that voxels with 

similar preferences tended to aggregate. This aggregation alone, however, is insufficient 

evidence for tonotopic organization because neighboring voxels could share frequency 

preferences simply due to spatial smoothing effects or the point-spread function of BOLD20. 

Indeed, BF maps in each participant were generally disordered and lacked global structure 

(Supplementary Fig. 4). We further evaluated BF maps using a more conservative tonotopy 

definition that assumed frequency preferences within an activation cluster would be arranged in 

a gradient over the cortical surface (Online Methods). A mere 0.60% of the total activation 

clusters (2 out of 336 over all participants) comprised voxels with BFs spanning the full 

frequency range that were arranged in a gradient. The weak evidence for orderly tonotopic 

maps implies that frequency tuning does not define somatosensory cortical topography.   

 

Because participants were all right-hand dominant (Edinburgh handedness scores: 87 ± 3.6) 

and they selectively attended to vibrations delivered to their right hands during the scans, we 

reasoned that response profiles may differ between hands. Such differences would presumably 

be reflected in the distributions of tuning model parameters, which were highly consistent across 
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participants (Supplementary Fig. 6). Indeed, we observed greater response modulation with 

right hand responses (Supplementary Fig. 6a) (t(6) = 2.47, P = 0.048), although baseline 

activity levels were equivalent over the hands (Supplementary Fig. 6b) (t(6) = 1.63, P = 0.16). 

We predicted that right hand responses would be more frequency selective, but tuning widths 

did not differ between the hands (Supplementary Fig. 6c) (t(6) = 1.94, P = 0.10). For voxels 

best described by the Gabor model, we evaluated phase parameter distributions and found that 

phase distributions differed between hands in all participants (Watson’s two-sample test of 

homogeneity; U2 = 0.82–5.66, P < 0.001). Despite these differences, phase distributions were 

typically bimodal (Rayleigh test, P < 1e-15) with prominent peaks at 0.5p and 1.5p that indicate 

a general tendency for tuning functions to comprise balanced positive and negative peaks 

(Supplementary Fig. 6d). Altogether, these analyses highlight the consistency of tuning 

patterns across participants and reveal differences between left and right hand tuning profiles 

that may be related to hand dominance or attention.   

  

How might voxel-level tuning be related to cortical population activity? Vibrations delivered to 

the glabrous skin entrains the activity in some cortical populations and frequency could be 

represented by a spike timing code using these untuned but phase-locking neurons3,11,12. 

However, the frequency-response profiles of these neurons – characterized by spike rates that 

increase monotonically with frequency – are incompatible with voxel-level Gaussian and Gabor 

tuning, assuming the BOLD signal reflects aggregate population activity. Alternatively, vibration 

frequency could be carried in the activity of tuned populations, which have recently been 

identified in mouse somatosensory cortex13. Phase-locking responses are less prominent as 

one ascends the cortical hierarchy11, which may reflect a transition to a rate-based code. As a 

proof of concept, we implemented an encoding model to explore how the activity of tuned 

populations could relate to voxel-level responses (Online Methods). We assumed that a voxel’s 

response reflects the weighted combination of activity in neural populations selective for 

different frequencies (Fig. 3a). These encoding models recapitulated observed voxel profiles 

(Fig. 3b) and accounted for substantial response variance (Fig. 3c; scaled goodness-of-fit: 0.68 

± 0.086). We also verified that the encoding models captured voxel tuning by performing a 

decoding analysis (Online Methods). The models predicted multivoxel activity patterns that 

closely resembled observed patterns (Fig. 3d). Accordingly, a simple decoder (Fig. 3e) 

identified the frequencies associated with different measured patterns with an accuracy (67% ± 

23%) far exceeding chance performance (11%) (t(6) = 5.82, P < 0.0011). Lastly, we considered 

how phase-locking populations could contribute to voxel responses and found that voxel tuning 
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could be recapitulated only if the phase-locking neurons exhibited some degree of frequency 

selectivity (Supplementary Fig. 7). These modeling results confirm that frequency information 

is carried in voxel responses and provide a conceptual framework for relating voxel tuning to 

frequency-selective neural populations.   

 

Overall, our findings imply the existence of cortical mechanisms in the human brain that are 

selectively tuned for vibration frequency. Voxel tuning spans the range of frequencies that are 

relevant for fine texture perception1. A greater share of voxels exhibited tuning for frequencies 

that optimally drive the Pacinian afferent system10,15,16. This cortical bias may underlie our 

enhanced perceptual sensitivity for vibrations near 250Hz4,15. Conceivably, frequency-tuned 

voxel activity reflects neural populations in the primate somatosensory cortical system that are 

analogous to vibration selective neurons recently identified in mice13. While our results suggest 

that vibration frequency tuning emerges in the somatosensory cortical system, the mechanisms 

that generate this selectivity remain unknown. This contrasts with the auditory system, where 

frequency tuning exists throughout the neuraxis, even at the receptor level6. Establishing the 

cellular basis for vibration frequency tuning will require neurophysiology investigations, which 

can be guided by our neuroimaging findings. Notwithstanding, our results are evidence for 

frequency-selective cortical filters that offer an efficient scheme for representing the complex 

spectra of vibrations encountered in naturalistic touch.   

 

METHODS 
Methods, supplementary information and any associated references are available in the online 

version of the paper.  
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Figure 1 Frequency tuning of cortical responses to vibrations. (a) Vibrations delivered to the left 
or right hand are associated with significant BOLD signal modulation in an example participant’s 
sensorimotor cortex. Dashed line indicates the central sulcus (c.s.) in the left hemisphere (LH) 
and right hemisphere (RH). BOLD signal time courses of an example voxel to different vibration 
frequencies follow stereotypical hemodynamic response profiles. Ant, anterior; Sup, superior. 
(b) Frequency tuning curves of example voxels (black dots indicate observed responses; red 
traces indicate fitted tuning functions). Frequency response patterns are consistent with Gabor 
tuning (top rows) or Gaussian tuning (bottom rows). (c) Normalized tuning curves for all 
frequency-selective voxels in example participant sorted by best modulating frequency (BF). 
Positive BOLD tuning voxels (left) exhibit signal increases at the BF while negative BOLD tuning 
voxels (right) exhibit signal decreases at the BF.  
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Figure 2. Best modulating frequency distributions within participants, between hands, and across 
activation clusters. (a) Distribution of best modulating frequency (BF) in each participant (N = 7). 
Colors indicate individual participants. Average distribution is denoted in black. Triangles indicate 
mean BF in each participant. (b) Relationship between left hand BF and right hand BF in voxels 
tuned for both hands. Frequency preferences were uncorrelated over hands (mean r = -0.021 ± 
0.088; t(6) = -0.58, P = 0.58). (c) Relationship between voxel locations and frequency preferences. 
Dots indicate correlation between the physical distances separating voxel pairs within an 
activation cluster and their BF differences. The average correlation for each participant is denoted 
by the black bar. Although correlations were generally positive, BF maps were unstructured and 
inconsistent with tonotopic organization.  
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Figure 3. Encoding model based on activity of putative frequency-tuned neural populations. (a) 
Gaussian channels represent neural populations that respond selectively to different vibration 
frequencies. The encoding model assumes that a voxel’s response to any given vibration 
frequency is the weighted sum of the activity in the channels. (b) Encoding model captures tuned 
response patterns in example voxels (black dots). Red curves indicate model-predicted 
responses profiles. (c) Bars indicate voxel-averaged scaled model performance within each 
participant. The model is trained on one fold of data and tested on a held-out fold. Model 
performance is the correlation between the model predictions and the test data, normalized by 
the correlation between the two folds of data (which represent the maximum correlation possible 
given the noise in the data). Error bar indicate s.e.m. (d) Correlation matrix indicates the similarity 
between multivoxel activation patterns predicted by the encoding model and observed patterns in 
the held-out data. Correlations are averaged over hands and participants. For decoding, an 
algorithm identifies the model-predicted pattern yielding the highest correlation with an observed 
pattern to infer the frequency condition. (e) Cross-validated decoding performance for both hands 
and each hand separately. Black line indicates group averaged accuracy. Colored dots indicate 
individual participants. Dashed line indicates chance performance. 
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ONLINE METHODS 
 
Participants. Seven healthy adult volunteers (5 females; mean age ± SD: 26 ± 2.8 years; aged 
20-29 years) participated in the study. All participants were right-handed1 (Laterality quotient: 87.1 
± 9.7). The sample size was set on the basis that any significant and consistent outcomes 
established in 7 out of 7 subjects would be statistically generalizable according to a 2-tail binomial 
test (P < 0.05). Participants had normal or corrected-to-normal vision. Testing procedures were 
approved by the Baylor College of Medicine Institutional Review Board. All participants provided 
written consent and were paid for their participation or waived payment.    
 
MRI acquisition. All scans were conducted in the Core for Advanced MRI (CAMRI) at Baylor 
College of Medicine. MRI data were acquired on a 3-Tesla MAGNETOM Trio scanner with 
Prisma fit (Siemens, Erlangen, Germany) using a 64-channel head coil. Anatomical data were 
acquired using a T1-weighted magnetization prepared rapid acquisition gradient echo sequence 
(MPRAGE; TR = 2300 ms; TE = 2.98 ms; flip angle = 9°; 1 mm3 voxels). Functional data were 
obtained using an axial echo-planar imaging (EPI) sequence with simultaneous multi-slice 
(SMS) acceleration (TR = 1500 ms; TE = 33 ms; flip angle = 90°; GRAPPA factor = 2; SMS 
factor = 3; FOV = 192 mm; 69 slices; 2 mm3 voxels; 380 volumes per scan) that covered all of 
the cortical volume and part of the cerebellum. Each participant underwent 12 functional scans 
(~9.5min/scan) divided across 2 sessions (5.9 +/- 7.4 days inter-session interval). 
 
Tactile stimulation. Vibrotactile cues were delivered to the distal pad of the participant’s left 
and right index fingers using an MRI-compatible piezoelectric tactor (Engineering Acoustics, 
Inc., Casselbery, FL). Tactors were fastened to the distal finger pads with self-adherent 
cohesive wrap bandages. Tactors were controlled using the EAI Tactor Development Kit and 
stimulus timing was determined using custom Matlab scripts. The vibration set comprised 9 
frequencies: 100, 130, 160, 190, 220, 250, 280, 310, and 340Hz. Vibrations were matched in 
perceived intensity with amplitudes (gain: 71.4–97.4 arbitrary units according to EAI controller) 
determined in preliminary behavioral experiments using the method of adjustment. To further 
ensure that participants attended to vibration frequency rather than intensity during the scans, 
we applied a random ±5% jitter in amplitude on each stimulus presentation. Offline, we 
measured vibration amplitudes (unloaded) using a laser displacement sensor (ZX2-LD50, 
Omron, Hoffman Estates, IL) (displacement range: 0.414–0.504mm) and confirmed tactor 
reliability (Supplementary Fig. 2).  
 
Frequency monitoring task and scans. Participants were scanned in an event-related design 
as they performed a vibration frequency monitoring (oddball detection) task2 while maintaining 
visual fixation. Each scan comprised unimanual and bimanual events. An event comprised a 
series of 3 vibration stimuli (stimulus duration: 700ms; inter-stimulus interval: 300ms). On the 
majority of events (regular events; 66/76 in each scan corresponding to 2 repetitions each of 9 
right hand frequencies, 9 left hand frequencies, and 15 bimanual frequency combinations), the 
frequency of the three vibrations was identical. All of the analyses included in this report were 
based on the unimanual regular events. On a subset of events (oddball events; 10/76 in each 
scan), the frequency of the second vibration differed from the first and third vibrations in the series 
(frequency difference: 120-240Hz). Participants were instructed to report the occurrence of 
oddball events using a foot pedal response (Current Designs, Philadelphia, PA). Reliable 
detection of oddball events (Supplementary Fig. 1) indicated that participants attended to 
vibration frequency. The responding foot was counter-balanced across sessions over 
participants. To control for spatial attention effects, oddball events only occurred on the right hand 
(on unimanual and bimanual events) such that attention was directed toward each subject’s 
dominant hand throughout the scan. Events were separated by 3, 4.5, 6, or 7.5-s intervals with 
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order and timing determined pseudo-randomly using Optseq2 
(http://surfer.nmr.mgh.harvard.edu/optseq).  
 
Behavioral analysis. Given the unequal number of oddball and regular events, we quantified 
oddball detection performance by computing an F1 score for each subject3:  
 

F" = 2 ∗
(Precision ∗ Recall)
Precision + Recall

 
 
where Precision is defined as the number of hits (correctly detected oddball events) divided by 
the sum of hits and false alarms (events incorrectly identified as oddball) and Recall is defined as 
the number of hits divided by the sum of hits and misses (oddball events not detected). F1 scores 
range from 0–1 with higher scores indicating better performance. For each subject, we determined 
if the observed F1 score was greater than that expected by chance (Supplementary Fig. 1) by 
generating a null distribution of F1 scores assuming the observed number of positive responses 
with shuffled event labels over 1000 permutations.  
 
fMRI analyses. Data preprocessing and first-level analyses were performed using AFNI4. Each 
participant’s data were preprocessed using standard procedures (afni_proc.py) including: (i) slice 
timing correction (3dTshift); (ii) image co-registration (align_epi_anat.py); (iii) functional image 
alignment (3dvolreg); (iv) spatial blurring with a 4-mm FWHM filter (3dmerge); (v) mean-
normalization of each voxel’s signal (3dcalc). Preprocessed voxel-wise data were modeled using 
multiple linear regression (3dDeconvolve): general linear models (GLM) comprised 34 regressors 
corresponding to left hand stimulation (9 frequencies), right hand stimulation (9 frequencies), 15 
bimanual conditions, and oddballs. Each regressor was created using a gamma-variate 
convolution kernel. The GLM comprised head motion and drift parameters as nuisance 
regressors. GLM coefficients were taken as the voxel response associated with each condition. 
A single GLM was fitted to the whole 12-scan dataset to define the analysis mask comprising 
voxels whose activity was modulated by either left hand or right hand stimulation. For the tuning 
models and encoding model analyses, separate GLMs were fitted after dividing the full dataset 
into 2 folds corresponding to the 6 scans from each scanning session. Unless otherwise noted, 
analyses were performed in native volume space. For displaying purposes, each participant’s 
data were projected into surface space. Surface models were constructed from each participant’s 
anatomical scans using Freesurfer5. The analysis exploring the topographic organization of 
frequency preferences was performed in native surface space. 
 In each participant, we defined an analysis mask by identifying voxels whose activity was 
modulated by either left hand or right hand stimulation. For each hand separately, an omnibus F-
statistic was computed to quantify the significance of each voxel’s responses to the 9 vibration 
frequencies. The full analysis mask was the union of the left hand and right hand F-statistic maps, 
thresholded at a false discovery rate (FDR) corrected q < 1e-4 over the whole brain.  
 
Vibration frequency tuning functions. To test for vibration frequency tuning, we fitted 
parametric tuning functions to each voxel’s frequency response profiles estimated from the 2 
data folds. If a voxel’s response profiles were inconsistent over the folds, a tuning model fit to 
these data would be meaningless. Accordingly, we only fit tuning functions to voxels whose 
across-fold Pearson correlation exceeded 0.2. For voxels with consistent profiles across folds, 
we fitted simple and complex tuning functions and performed model competition to determine 
the model most appropriate for each voxel given its complexity and performance. Models were 
fitted to each voxel’s response data using the method of least squares which minimized the 
error between observed and predicted data. Responses to left and right hand stimulation were 
considered separately.  
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To capture simple frequency tuning, we assumed a voxel’s response profile was 
characterized by a Gaussian function: 

  

𝑟 = 𝐴𝑒
78.:(;7µ)<

s< + 𝑏 
 
where r is the predicted voxel response to a vibration with frequency f, A is a gain term, µ is the 
best modulating frequency, s is the tuning width, and b indicates the baseline activity level over 
all frequencies. The Gaussian model comprised 4 free parameters. 
 To capture more complex frequency tuning patterns, we assumed a voxel’s response 
profile was characterized by a Gabor function, a cosine wave modulated by a Gaussian window: 
 

𝑟 = 𝐴𝑒
78.:(;7µ)<

s< cos >
2p
l
(𝑓 − µ) + fA + 𝑏 

 
where r is the predicted voxel response to a vibration with frequency f, A is a gain term, µ is the 
center of the Gaussian, s is the spread of the Gaussian, l and f are the wavelength and phase 
of the wave, and b indicates the baseline activity level over all frequencies. The Gabor model 
comprised 6 free parameters. In preliminary analysis, we found that estimating l with no 
constraints could yield small wavelength values that reflected the noise in the data. Accordingly, 
we constrained l by requiring the l/s  ratio to be >2.25 in the final analysis.  

To determine whether a voxel’s responses were better captured by the Gaussian or 
Gabor models, we compared models using Akaike information criterion (AIC)6: 

 
𝐴𝐼𝐶 = 𝑛 ∗ 𝑙𝑛(𝑅𝑆𝑆) + 2𝑘 

 
where n is the number of data points used to fit the models, RSS is the residual sum of squared 
errors, and k is the number of free parameters. The AIC-preferred model of each voxel was 
taken as that which yielded the smaller AIC value. We then computed the correlation between 
the AIC-preferred model predictions and the observed data to quantify goodness-of-fit. Voxels 
were considered to be tuned if the correlation between model predictions and observed data 
was statistically significant after correcting for the number of modeled voxels (FDR corrected q < 
0.05 using the Benjamini-Hochberg procedure).  

We evaluated a number of features defining voxel tuning curves (Supplementary Fig. 
6). We defined the peak of a tuning function as the curve portion corresponding to the greatest  
(modulus) response modulation. Best modulating frequency (BF; 1-500 Hz) was the µ 
parameter for Gaussian models or the frequency corresponding to the peak for Gabor models. 
The gain term indicated the (unsigned) magnitude of response modulation. The baseline 
parameter represented basal activity common to all frequencies. Tuning sign (positive or 
negative) corresponded to direction of activity change relative to the baseline level at the peak. 
The full width at half maximum (FWHM) along the peak indicated the tuning selectivity of each 
voxel.  

 
Voxel-wise encoding models. We implemented a simple channel encoding model to predict 
voxel-level activity by assuming the existence of frequency-tuned cortical neurons like those 
recently identified in mouse somatosensory cortex7. We modeled the normalized activity levels 
(R) of a cortical population in response to a vibration with frequency f using a Gaussian channel: 
 

𝑅 = 𝑒
78.:(;7µ)<

s<  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.03.462923doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462923
http://creativecommons.org/licenses/by-nc-nd/4.0/


where µ is the population’s BF and s is the channel tuning width. We assumed a voxel 
comprises different populations with unique frequency preferences, so the full encoding model 
predicted a voxel’s response (r) as a linear combination of activity from multiple populations:  
 

𝑟 = 	J𝑤L𝑅L

#NO

LP"

 

 
where Ri is the normalized activity of the ith population and wi is a weight that describes the 
population’s contribution to the voxel’s overall response. We modeled each voxel using 7 
channels with predefined BF values. Accordingly, an encoding model was fitted to the response 
profiles of each tuned voxel by estimating the channel weights and a tuning width parameter 
that was shared over all the channels. Model fitting was performed using 2-fold cross-validation. 
Parameters were estimated using the method of least squares to minimize the error between 
model predictions and the tuning curve describing one data fold. Model performance was 
computed as the Pearson correlation between the model predictions and the data in the second 
fold. The final goodness-of-fit was the cross-validated model performance averaged over the 
two folds. Because the cross-validated goodness-of-fit depends on the consistency of the two 
folds, we normalized model performance by the across-fold correlation and report scaled 
correlations. For voxels tuned to both hands, separate models were fitted to explain left hand 
and right hand responses.  
 
In separate analyses, we considered how voxel level activity may be related to phase-locking 
neurons that have been identified in non-human primates8–10 (Supplementary Fig. 7). We 
reasoned that the total spiking activity of these neurons would be minimal at low vibration 
frequencies and grow with increases in vibration frequency. Importantly, phase-locking neurons 
would fail to respond on every stimulus cycle at high vibration frequencies because of neural 
refractoriness, so population firing rates would saturate. We modeled this ramp-to-plateau 
response profile of a neural population using a rectified linear unit (ReLU) as a channel in our 
encoding model:  
 

𝑅(𝑠) = 𝑠(𝑓 − 𝑓8) 
 
where R(s) is the normalized population activity to a vibration with frequency f, s is a slope 
parameter describing the relationship between population activity and frequency, and f0 is the 
lowest frequency at which the population responds (set to 1Hz). Because neural activity 
depends on vibration amplitude8 and populations can differ in their sensitivity to vibration 
amplitude, we modeled different populations (i.e., channels) as rectified linear units with 
different slopes. Note that by allowing the channels to have different slopes, we assume that 
neural populations in a voxel respond differentially over vibration frequencies thereby building 
frequency tuning into the model. The full encoding model, then, predicted a voxel’s response (r) 
as a linear combination of activity from multiple populations: 
 

𝑟 =	J𝑤L𝑅(𝑠L)
#NO

LP"

 

 
where R(si) is the normalized activity of the ith population defined by slope si and wi is a weight 
that describes the population’s contribution to the voxel’s overall response. We assumed each 
voxel comprised 8 populations with predefined slopes. The ReLU models were trained and 
tested in the same manner as the Gaussian channel model.  
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We implemented a simple decoder using the encoding models to verify further that the 
models captured the frequency response profiles of the voxels. The decoding analysis included 
only the voxels with significant encoding model performance (P < 0.05). Using the encoding 
models fitted to one data fold, we generated multivoxel activity patterns for each vibration 
frequency. These patterns served as labeled templates against which the observed multivoxel 
activity patterns in the other data fold could be compared. For decoding, we computed the 
correlations between an observed activation pattern and each of the template patterns predicted 
with the encoding models. The template pattern yielding the maximum correlation was taken as 
the decoded frequency. For each participant, decoding performance was the accuracy averaged 
over the two folds. Because distinct voxel sets exhibited tuning for left and right hand 
stimulation, the encoding and decoding analyses were performed separately for each hand.   
 
Topography analysis. We performed two analyses to establish evidence for a topographic 
organization based on voxel frequency preferences. We first tested whether the physical 
distance (in volume space) between pairs of voxels related to the similarity of their BFs. For 
each participant, this analysis was performed within activation clusters (minimum cluster size = 
40 voxels). For each cluster, we defined ∆dTTTT⃗  as a vector of distances between each pair of 
voxels and ∆BFTTTTTTTT⃗  as a vector of pairwise voxel BF differences. We computed the correlation 
between ∆dTTTT⃗  and ∆BFTTTTTTTT⃗  for each activation cluster. At the group level, we tested whether the 
average (within participant) correlation over clusters differed significantly from 0.  

The second analysis tested whether frequency preferences within activation clusters 
were arranged in a gradient pattern over the cortical surface (minimum cluster size: 60 surface 
nodes). Two conditions needed to be met in order for an activation cluster to be considered 
tonotopic. First, the cluster needed to contain nodes with BFs that spanned the full frequency 
range. For each cluster, we binned BF values from 50–450 Hz in 50-Hz steps. We only further 
considered clusters that had at least one node in each BF bin. Second, BF values within a 
cluster were required to be systematically arranged. For each cluster, we defined an axis that 
passed through the cluster’s center. We then projected each node’s BF onto the axis and 
performed linear regression between the BF values and node locations along the axis. A 
significant linear regression fit indicated that BFs were ordered in a gradient along the axis. 
Because we were agnostic to the orientation of potential BF gradients, we defined repeated the 
analysis along 4 axes (0°, 45°, 90°, and 135°) for each cluster. 

  
Statistical analysis. Statistical analyses in this paper include Pearson correlation, pair-wise t 
test, one-sample t test, one-sample Kolmogorov-Smirnov uniformity test, and the two-sample 
independent proportions test. For circular data, we performed the Rayleigh uniformity test and 
Watson’s two-sample test of homogeneity. All tests were performed using Python 3.7 or R 3.5.1. 
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Supplementary Fig. 1. Oddball detection performance. F1 score indexes detection performance 
by accounting for precision and recall1. Higher scores indicate better performance. Bars indicate 
F1 score for each participant and the group-averaged score. Red error bar indicates s.e.m. Gray 
segments indicates the F1 score distributions expected by chance (center = mean score; 
thickness = standard deviation) given the number of positive responses provided by each 
participant (Online Methods). Performance in each participant far exceeded chance levels. 
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Supplementary Fig. 2. Analysis of measured displacement (a) Unloaded vibration amplitudes 
were measured outside of MRI environment using a ZX2-LD50 Laser Displacement Sensor 
(response time 240µs; acquired by Power 1401 CED with 40kHz sampling rate). Displacement 
profiles for 10 repeats (black) of the 100-, 220-, and 340-Hz stimuli are shown along with fitted 
sinusoids (red). Waveforms on the right show cycles from a portion of the full measurements. 
(b) Table indicates command frequencies and gains used to drive stimuli with the Engineering 
Acoustics, Inc (EAI) controller as well as the measured frequencies and displacements. 
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Supplementary Fig. 3. Analysis masks for each participant and group summary mask. Labeled 
surface nodes indicate significant responses to left or right hand vibrations (FDR corrected q = 
0.0001). Conjunction map indicates nodes with significant activations in 3 or more participants.  
Dashed white lines indicate the central sulcus (c.s.). LH, left hemisphere; RH, right hemisphere  
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Supplementary Fig. 4. Frequency preference maps. Best modulating frequency (BF) for 
significantly tuned voxels in each participant are projected onto cortical surfaces. Left and right 
hand tuning is depicted in separate maps. Dashed white lines indicate the central sulcus (c.s.). 
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Supplementary Fig. 5. Voxel tuning across sensorimotor cortical regions. Regions are defined 
using Human Connectome Project parcellations2. (a) Number of tuned voxels in sensorimotor 
regions. (b) Proportion of tuned voxels in each sensorimotor region with response profiles more 
consistent with Gabor tuning rather than Gaussian tuning according to Akaike Information 
Criterion. BA, Brodmann area; S1, primary somatosensory cortex; S2, secondary 
somatosensory cortex; SMA, supplementary motor area; PMC, premotor cortex; M1, primary 
motor cortex.  
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Supplementary Fig. 6. Frequency tuning parameters are highly consistent across participants. 
(a) Distribution of gain parameters from Gaussian and Gabor functions fitted to tuned voxels. 
Black traces indicates group average. Inset shows gain parameters sorted according to left 
hand and right hand tuning functions. Bars indicates group average and dots indicate individual 
participant averages. Gains were significantly larger for right hand tuning (t(6) = 2.47, P = 
0.048). (b) Distribution of baseline parameters from Gaussian and Gabor functions fitted to 
tuned voxels. Conventions as in a. Baseline values did not differ significantly between hands 
(t(6) = 1.63, P = 0.16). (c) Distribution of frequency selectivity as indexed by the full-width at 
half-maximum (FWHM) of the each Gabor or Gaussian tuning function’s dominant peak. 
Conventions as in a. FWHM did not differ significantly between hands (t(6) = 1.94, P = 0.10). (d) 
Distribution of phase parameter values from the Gabor tuning functions. Plotted Gabors indicate 
canonical profile associated with each phase value. Conventions as in a. Although phase 
distributions differed between hands (Watson’s two-sample test of homogeneity; U2 = 0.82–
5.66, P < 0.001), there was a consistent pattern for non-uniform phase distributions (Rayleigh 
test, P < 1e-15) with peaks at j = 0.5p and 1.5p. 
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Supplementary Fig. 7. Encoding model based on activity of phase-locking neural populations. 
(a) Vibration frequency can be encoded in the timing of spiking activity in somatosensory 
cortical neurons3–5. Rasters show idealized activity in neurons whose spikes occur at particular 
phases of each vibration cycle. At low frequencies, the neurons can fire on every cycle. At high 
vibration frequencies, phase-locking neurons may skip cycles occurring during their refractory 
period. Accordingly, the frequency response profile for phase-locking neurons can be described 
by a low-frequency range over which rates increase monotonically before plateauing at higher 
frequencies. This profile is captured by a rectified linear activation unit (ReLU). (b) ReLU 
encoding model assumes that a voxel’s response to any given vibration frequency is the 
weighted sum of the activity in a set of ReLU functions (representing different populations) with 
different slopes. Slopes are hyperparameters and the weights are estimated in model fitting. 
Note that the assumption of different slopes implies that the neural populations represented by 
the ReLU functions are implicitly selective for frequencies. (c) ReLU encoding model (red trace) 
captures tuned response patterns in example voxels (black dots). (d) Bars indicate voxel-
averaged scaled model performance within each participant. The model is trained on one fold of 
data and tested on a held-out fold. Model performance is the correlation between the model 
predictions and the test data, normalized by the correlation between the two folds of data (which 
represent the maximum correlation possible given the noise in the data). Error bars indicate 
s.e.m. (e) Correlation matrix indicates the similarity between multivoxel activation patterns 
predicted by the encoding model and the held-out fold. For decoding, the algorithm identifies the 
model-predicted pattern yielding the highest correlation with an observed pattern to infer the 
frequency condition. (f) Cross-validated decoding performance for both hands and each hand 
separately. Black line indicates group averaged accuracy. Colored dots indicate individual 
participants. Chance performance is 11%. 
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Supplementary Table 1 – Number of tuned voxels in the left and right hemispheres  
 
PARTICIPANT LEFT 

HEMISPHERE 

RIGHT 

HEMISPHERE 

1 6009 6701 

2 273 321 

3 10357 11027 

4 7668 8024 

5 1423 1329 

6 7974 8877 

7 6088 5446 

Counts indicate the number of tuned voxels in each participant. Vibration-responsive voxels 
were considered tuned only if they exhibited reliable across-fold correlations (r > 0.2) and 
significant tuning function fits (FDR corrected q < 0.05). A voxel was included in the counts only 
once regardless of whether it was tuned for both hands. 
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Supplementary Table 2 – Number of voxels tuned to the contralateral hand, ipsilateral 
hand, or both hands 
 

PARTICIPANT CONTRA IPSI BOTH 

1 5348 4986 2376 

2 148 248 198 

3 8684 9267 3433 

4 6640 5646 3406 

5 1167 1152 433 

6 5917 6906 4028 

7 5370 4467 1697 

Counts indicate the number of voxels over the left and right hemispheres in each participant 
that exhibited tuning only for the contralateral (CONTRA) or the ipsilateral (IPSI) hand. Voxels 
that were tuned for both hands are indicated in the 3rd column.  
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Supplementary Table 3 – Voxel-level frequency preferences 
 

PARTICIPANT BF MEAN BF MEDIAN KS STAT P VALUE 

1 237 267 0.99 1e-15 

2 258 273 0.99 1e-15 

3 238 252 0.99 1e-15 

4 187 179 0.99 1e-15 

5 202 195 0.99 1e-15 

6 221 216 0.99 1e-15 

7 212 238 0.99 1e-15 

Values indicate best modulating frequency (BF) statistics in each participant. KS, Kolmogoroz-
Smirnov test statistic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.03.462923doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462923
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary References 
 
1. Powers, D.M. J. Mach. Learn. Technol. 2, 37–63 (2011). 
2. Glasser, M.F. et al. Nature 536, 171–178 (2016). 
3. Harvey, M.A., Saal, H.P., Dammann  3rd, J.F. & Bensmaia, S.J. PLoS Biol 11, e1001558 

(2013). 
4. Mountcastle, V.B., Talbot, W.H., Sakata, H. & Hyvärinen, J. J. Neurophysiol. 32, 452–484 

(1969). 
5. Lebedev, M.A. & Nelson, R.J. Exp. Brain Res. 111, 313–325 (1996). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.03.462923doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462923
http://creativecommons.org/licenses/by-nc-nd/4.0/

