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 2 

ABSTRACT 52 

The spectral content of vibrations produced in the skin conveys essential information about 53 

textures and underlies sensing through hand-held tools. Humans can perceive and discriminate 54 
vibration frequency, yet the central representation of this fundamental feature is unknown. Using 55 

fMRI, we discovered that cortical responses are tuned for vibration frequency. Voxel tuning was 56 

biased in a manner that reflects perceptual sensitivity and the response profile of the Pacinian 57 
afferent system. These results imply the existence of tuned populations that may encode 58 

naturalistic vibrations according to their constituent spectra.        59 
 60 
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INTRODUCTION 86 

Our physical interactions with the environment produce complex, high frequency (>85Hz) 87 

vibrations in the skin whose spectral content underlie the manual perception of surface textures 88 
(Bensmaia & Hollins, 2005; Manfredi et al., 2014) and support sensing through hand-held tools 89 

(Brisben, Hsiao, & Johnson, 1999; Miller et al., 2018). Vibration frequency, like sound pitch, is a 90 

fundamental feature that we perceive and discriminate (Bolanowski, Gescheider, Verrillo, & 91 
Checkosky, 1988; Convento, Rahman, & Yau, 2018; Mountcastle, Talbot, Sakata, & Hyvärinen, 92 

1969). Yet evidence for frequency-tuned somatosensory circuits remains conspicuously absent, 93 
in stark contrast to the tuning observed throughout the auditory neuraxis (Hudspeth, 2014; Saal, 94 

Wang, & Bensmaia, 2016; Wang, 2007). In human and non-human primates, vibration 95 

frequency is encoded in the periodicity of spiking activity of untuned cells in the peripheral 96 
afferent system (Johansson, Landstrom, & Lundstrom, 1982; Talbot, Darian-Smith, Kornhuber, 97 
& Mountcastle, 1968) and the earliest cortical processing stages (Harvey, Saal, Dammann  3rd, 98 

& Bensmaia, 2013; Lebedev & Nelson, 1996; Mountcastle et al., 1969). Conceivably, this 99 
temporal coding of vibration frequency gives rise to a rate-based representation in tuned 100 
populations, as seen in the auditory system (Saal et al., 2016; Wang, 2007). However, 101 
frequency-tuned somatosensory neurons have never been reported in primates and tuned cells 102 

were only recently discovered in the mouse somatosensory cortex (Prsa, Morandell, Cuenu, & 103 
Huber, 2019). The failure to establish frequency tuning in the primate brain may have been due 104 
to limited sampling of cortical territories or restricted exploration of vibrotactile stimulus space.  105 

 106 
To search for vibration frequency tuning in the human brain, we performed whole brain 107 
functional magnetic resonance imaging (fMRI) as participants experienced a battery of 108 
vibrations on their hands while engaging in an attention-demanding frequency monitoring task 109 

(Supplementary Fig. 1). Vibrations, which were matched in perceived intensity, varied in 110 

frequency from 100 to 340Hz (Supplementary Fig. 2). We characterized voxel-level responses 111 
which reveal systematic tuning for vibration frequency. We compared voxel-tuning properties 112 

across participants and observed consistent tuning preferences that mirrored perceptual 113 

sensitivity and the response profile of the Pacinian afferent system. Lastly, we implemented an 114 
encoding model to provide an account for how voxel-level frequency tuning can relate to neural 115 

population responses.      116 

 117 
RESULTS 118 
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We first defined brain regions whose blood oxygen level-dependent (BOLD) activity was 119 

modulated by vibration stimulation applied to the left or right hands (Fig. 1a; Supplementary 120 

Fig. 3) irrespective of vibration frequency. Response modulation associated with right hand 121 
stimulation was greater in strength (t(6) = 2.48, P = 0.048) and more prevalent (t(6) = 4.21, P = 122 

0.0056) compared to left hand responses. In both hemispheres of each participant, voxel 123 

responses were significantly modulated by vibrations delivered to the contralateral or ipsilateral 124 
hands (F-statistic: contralateral: 7.67 ± 0.86; ipsilateral: 7.37 ± 0.75). Response modulation 125 

associated with the contralateral and ipsilateral hands was similar in strength (t(6) = 2.28, P = 126 
0.063) and prevalence (t(6) = 1.12, P = 0.30).  127 

 128 

To characterize frequency-dependent modulation in vibration-responsive voxels (Fig. 1b), we 129 
fitted voxel-level response profiles with tuning functions (Materials and Methods). Tuning along 130 

a single dimension like temporal frequency can be modeled by fitting responses with simple 131 

Gaussian filters that parameterize the best modulating frequency (BF) and tuning sharpness. 132 
More complex frequency preferences can be modeled using Gabor filters that capture tuning 133 

profiles characterized by multiple modulation fields. Across participants, 59 ± 6.3% of vibration-134 

responsive voxels exhibited significant tuning (FDR-corrected q < 0.05) that was described by 135 
the Gaussian model (r = 0.67 ± 0.013; range: 0.23-0.97) or Gabor model (r = 0.57 ± 0.025; 136 
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Figure 1. Frequency tuning of cortical responses to vibrations. (a) Vibrations delivered to the left or 
right hand are associated with significant BOLD signal modulation in an example participant’s 
sensorimotor cortex. Dashed line indicates the central sulcus (c.s.) in the left hemisphere (LH) and right 
hemisphere (RH). BOLD signal time courses of an example voxel to different vibration frequencies follow 
stereotypical hemodynamic response profiles. Ant, anterior; Sup, superior. (b) Frequency tuning curves of 
example voxels (black dots indicate observed responses; red traces indicate fitted tuning functions). 
Frequency response patterns are consistent with Gabor tuning (top rows) or Gaussian tuning (bottom 
rows). (c) Normalized tuning curves for all frequency-selective voxels in example participant sorted by 
best modulating frequency (BF). Positive BOLD tuning voxels (left) exhibit signal increases at the BF 
while negative BOLD tuning voxels (right) exhibit signal decreases at the BF. 
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range: 0.36-0.95). Tuned voxels were predominantly found in parietal and frontal cortex 137 

(Supplementary Fig. 4). We performed model selection for each tuned voxel (Materials and 138 

Methods) and found that voxel profiles tended to be more consistent with Gaussian tuning 139 
rather than Gabor tuning (proportion of voxels consistent with Gabor tuning = 0.40 ± 0.12). We 140 

compared the prevalence of Gaussian vs Gabor tuning in different sensorimotor regions under 141 

the assumption that simpler tuning could define primary sensory areas while more complex 142 
tuning could be confined to higher-order areas. Across regions, we observed similar proportions 143 

of tuned responses best described by the Gaussian and Gabor models (Supplementary Fig. 144 
5). That voxels characterized by Gaussian- and Gabor-shaped tuning are interspersed in 145 

parietal and frontal brain regions is inconsistent with the notion that simple frequency selectivity 146 

gives way to more complex tuning over a somatosensory cortical hierarchy.  147 
 148 
The number of tuned voxels in the left hemisphere (5685 ± 3353) and right hemisphere (5961 ± 149 

3635) did not differ significantly (t(6) = 1.35, P = 0.23) (Supplementary Table 1). While most 150 
tuned voxels were selective for only one hand, voxels tuned to contralateral and ipsilateral 151 
stimulation were observed in both hemispheres, and 20.59 ± 6.06% of tuned voxels were 152 
selective for vibrations applied to either hand (Supplementary Table 2). Because contralateral 153 

and ipsilateral stimulation has been associated with BOLD signal increases and decreases 154 
(Schäfer et al., 2012), respectively, we tested whether tuned voxels were more likely to exhibit 155 
negative BOLD signal changes with ipsilateral stimulation. Voxels exhibited signal increases 156 

and decreases (Fig. 1b), but the likelihood for tuned voxels to deactivate at their BF did not 157 
differ between contralateral and ipsilateral stimulation across participants (t(6) = 1.08, P = 0.32) 158 
or within each participant (z-statistic = -0.028–0.23, P = 0.81–0.99). For tuned voxels with 159 
positive or negative activity changes, frequency response profiles spanned the entire range of 160 

tested frequencies (Fig. 1c). These results imply the existence of cortical feature detectors that 161 

are selective for the frequency components comprising naturalistic vibrations (Manfredi et al., 162 
2014).     163 

 164 

Having established voxel-level frequency tuning, we asked whether voxel preferences were 165 
biased to frequencies near 250Hz, the range corresponding to the maximum response 166 

sensitivity of the Pacinian afferent system (Bell, Bolanowski, & Holmes, 1994; Bolanowski & 167 

Verrillo, 1982; Johansson et al., 1982) and the peak perceptual sensitivity in humans 168 
(Bolanowski et al., 1988; Bolanowski & Verrillo, 1982). In each participant, BF distributions (Fig. 169 

2a) differed significantly from uniform (1-sample Kolmogoroz-Smirnov test; all P < 1e-15) with 170 
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more voxels preferring intermediate frequencies (BF: 222 ± 22 Hz; range: 187-258 Hz) 171 

compared to lower and higher frequencies (Supplementary Table 3). We additionally tested 172 

whether voxels tuned for both hands had similar frequency preferences for the left and right 173 
hands (Fig. 2b), but BF values were uncorrelated between hands (r = -0.021 ± 0.088; t(6)  = -174 

0.58, P = 0.58). The finding that cortical frequency representations, which are maintained 175 

independently for the left and right hands, mirror the sensitivity profile of human observers and 176 
of the peripheral afferent system is consistent with efficient coding theory (Barlow, 1961). 177 

 178 

In the auditory cortical system, the spatial clustering of neurons with similar frequency 179 
preferences produces orderly tonotopic maps that are resolvable with fMRI (Barton, Venezia, 180 
Saberi, Hickok, & Brewer, 2012; Martino et al., 2015). We wondered whether an analogous 181 

topography, based on vibration frequency tuning, exists in the somatosensory cortical system. 182 
We first tested if the spatial proximity between pairs of frequency-tuned voxels within activation 183 

clusters related to the similarity of their frequency preferences (Materials and Methods). The 184 
physical distances between voxels were correlated with their BF differences (Fig. 2c) for left 185 

hand responses (r: 0.18 ± 0.038; t(6) = 11.30, P = 2.87e-5) and right hand responses (r: 0.14 ± 186 
0.042; t(6) = 8.41 , P = 0.00015), implying that voxels with similar preferences tended to 187 

aggregate. This aggregation alone, however, is insufficient evidence for tonotopic organization 188 

because neighboring voxels could share frequency preferences simply due to spatial smoothing 189 
effects or the point-spread function of BOLD (Shmuel, Yacoub, Chaimow, Logothetis, & Ugurbil, 190 
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Figure 2. Best modulating frequency distributions within participants, between hands, and across 
activation clusters. (a) Distribution of best modulating frequency (BF) in each participant (N = 7). Colors 
indicate individual participants. Average distribution is denoted in black. Triangles indicate mean BF in 
each participant. (b) Relationship between left hand BF and right hand BF in voxels tuned for both hands. 
Frequency preferences were uncorrelated over hands (mean r = -0.021 ± 0.088; t(6) = -0.58, P = 0.58). 
(c) Relationship between voxel locations and frequency preferences. Dots indicate correlation between 
the physical distances separating voxel pairs within an activation cluster and their BF differences. The 
average correlation for each participant is denoted by the black bar. Although correlations were generally 
positive, BF maps were unstructured and inconsistent with tonotopic organization. 
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 7 

2007). Indeed, BF maps in each participant were generally disordered and lacked global 191 

structure (Supplementary Fig. 4). We further evaluated BF maps using a more conservative 192 

tonotopy definition that assumed frequency preferences within an activation cluster would be 193 
arranged in a gradient over the cortical surface (Materials and Methods). A mere 0.60% of the 194 

total activation clusters (2 out of 336 over all participants) comprised voxels with BFs spanning 195 

the full frequency range that were arranged in a gradient. The weak evidence for orderly 196 
tonotopic maps implies that frequency tuning does not define somatosensory cortical 197 

topography.   198 
 199 

Because participants were all right-hand dominant (Edinburgh handedness scores: 87 ± 3.6) 200 

and they selectively attended to vibrations delivered to their right hands during the scans, we 201 
reasoned that response profiles may differ between hands. Such differences would presumably 202 
be reflected in the distributions of tuning model parameters, which were highly consistent across 203 

participants (Supplementary Fig. 6). Indeed, we observed greater response modulation with 204 
right hand responses (Supplementary Fig. 6a) (t(6) = 2.47, P = 0.048), although baseline 205 
activity levels were equivalent over the hands (Supplementary Fig. 6b) (t(6) = 1.63, P = 0.16). 206 
We predicted that right hand responses would be more frequency selective, but tuning widths 207 

did not differ between the hands (Supplementary Fig. 6c) (t(6) = 1.94, P = 0.10). For voxels 208 
best described by the Gabor model, we evaluated phase parameter distributions and found that 209 
phase distributions differed between hands in all participants (Watson’s two-sample test of 210 

homogeneity; U2 = 0.82–5.66, P < 0.001). Despite these differences, phase distributions were 211 

typically bimodal (Rayleigh test, P < 1e-15) with prominent peaks at 0.5p and 1.5p that indicate 212 

a general tendency for tuning functions to comprise balanced positive and negative peaks 213 
(Supplementary Fig. 6d). Altogether, these analyses highlight the consistency of tuning 214 

patterns across participants and reveal differences between left and right hand tuning profiles 215 
that may be related to hand dominance or attention.   216 

  217 

How might voxel-level tuning be related to cortical population activity? Vibrations delivered to 218 
the glabrous skin entrains the activity in some cortical populations and frequency could be 219 

represented by a spike timing code using these untuned but phase-locking neurons (Harvey et 220 

al., 2013; Lebedev & Nelson, 1996; Mountcastle et al., 1969). However, the frequency-response 221 
profiles of these neurons – characterized by spike rates that increase monotonically with 222 

frequency – are incompatible with voxel-level Gaussian and Gabor tuning, assuming the BOLD 223 

signal reflects aggregate population activity (Klink, Chen, Vanduffel, & Roelfsema, n.d.). 224 
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 8 

Alternatively, vibration frequency could be carried in the activity of tuned populations, which 225 
have recently been identified in mouse somatosensory cortex (Prsa et al., 2019). Phase-locking 226 

responses are less prominent as one ascends the cortical hierarchy (Harvey et al., 2013), which 227 

may reflect a transition to a rate-based code. As a proof of concept, we implemented an 228 
encoding model to explore how the activity of tuned populations could relate to voxel-level 229 

responses (Materials and Methods). We assumed that a voxel’s response reflects the weighted 230 
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Figure 3. Encoding model based on activity of putative frequency-tuned neural populations. (a) 
Gaussian channels represent neural populations that respond selectively to different vibration 
frequencies. The encoding model assumes that a voxel’s response to any given vibration frequency is the 
weighted sum of the activity in the channels. (b) Encoding model captures tuned response patterns in 
example voxels (black dots). Red curves indicate model-predicted responses profiles. (c) Bars indicate 
voxel-averaged scaled model performance within each participant. The model is trained on one fold of 
data and tested on a held-out fold. Model performance is the correlation between the model predictions 
and the test data, normalized by the correlation between the two folds of data (which represent the 
maximum correlation possible given the noise in the data). Error bar indicate s.e.m. (d) Correlation matrix 
indicates the similarity between multivoxel activation patterns predicted by the encoding model and 
observed patterns in the held-out data. Correlations are averaged over hands and participants. For 
decoding, an algorithm identifies the model-predicted pattern yielding the highest correlation with an 
observed pattern to infer the frequency condition. (e) Cross-validated decoding performance for both 
hands and each hand separately. Black line indicates group averaged accuracy. Colored dots indicate 
individual participants. Dashed line indicates chance performance. 
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combination of activity in neural populations selective for different frequencies (Fig. 3a). These 231 

encoding models recapitulated observed voxel profiles (Fig. 3b) and accounted for substantial 232 

response variance (Fig. 3c; scaled goodness-of-fit: 0.68 ± 0.086). We also verified that the 233 
encoding models captured voxel tuning by performing a decoding analysis (Materials and 234 

Methods). The models predicted multivoxel activity patterns that closely resembled observed 235 

patterns (Fig. 3d). Accordingly, a simple decoder (Fig. 3e) identified the frequencies associated 236 
with different measured patterns with an accuracy (67% ± 23%) far exceeding chance 237 

performance (11%) (t(6) = 5.82, P < 0.0011). Lastly, we considered how phase-locking 238 
populations could contribute to voxel responses and found that voxel tuning could be 239 

recapitulated only if the phase-locking neurons exhibited some degree of frequency selectivity 240 

(Supplementary Fig. 7). These modeling results confirm that frequency information is carried in 241 
voxel responses and provide a conceptual framework for relating voxel tuning to frequency-242 
selective neural populations.   243 

 244 
DISCUSSION 245 
We find that voxel-level BOLD signals are modulated by vibrations in a manner that clearly 246 
reflects frequency selectivity. Voxel tuning spans the range of frequencies that are relevant for 247 

fine texture perception (Bensmaia & Hollins, 2005; Manfredi et al., 2014). Frequency 248 
preferences are consistent across individuals and systematic with a greater share of voxels 249 
preferring frequencies that optimally drive the Pacinian afferent system (Bell et al., 1994; 250 

Bolanowski & Verrillo, 1982; Johansson et al., 1982). This cortical bias may underlie our 251 
enhanced perceptual sensitivity for vibrations near 250Hz (Bolanowski et al., 1988; Bolanowski 252 
& Verrillo, 1982). Our finding that cortical representations mirror environmental statistics, 253 
peripheral afferent profiles, and perceptual sensitivity is consistent with the predictions of 254 

efficient coding theory (Barlow, 1961).    255 

 256 
Conceivably, frequency-tuned voxel activity reflects neurons in the primate somatosensory 257 

cortical system that are analogous to vibration selective cells recently identified in mice. 258 

Importantly, although individual neurons in mouse somatosensory cortex exhibit vibration tuning 259 
(Prsa et al., 2019), such neurons have never been reported in the primate brain. Limited 260 

sampling of cortical populations and territories may have obscured the presence of frequency-261 

tuned neurons. Alternatively, frequency tuning may be a property that only emerges at a 262 
population level in primates. Arbitrating between these possibilities will require large scale 263 

neurophysiological recordings, which can be guided by our neuroimaging findings.  264 
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 265 

Future studies will also need to address the mechanisms that generate frequency selectivity in 266 

the somatosensory system: Our data reveal frequency selective cortical responses despite the 267 
absence of fine tuning in peripheral and subcortical processing stages. This contrasts with the 268 

auditory system, where frequency tuning exists throughout the neuraxis, even at the receptor 269 

level (Hudspeth, 2014). Cortical tuning may reflect the central convergence of submodality 270 
signals that are initially carried by distinct populations in the peripheral afferent system (Pei, 271 

Denchev, Hsiao, Craig, & Bensmaia, 2009; Saal & Bensmaia, 2014; Saal, Harvey, & Bensmaia, 272 
2015). In fact, recent evidence has challenged the traditional functional dichotomy between 273 

Pacinian and non-Pacinian perceptual channels by positing a universal frequency decoding 274 

system (Birznieks et al., 2019). Beyond submodality convergence, varying distributions of 275 
excitatory and inhibitory neurons may also underlie the diversity of frequency-selective 276 
population responses across sensory cortex (Hughes et al., 2021). At a cellular level, short term 277 

synaptic depression may impose a frequency dependent filter on information transmission 278 
(Rosenbaum, Rubin, & Doiron, 2012) and mediate the conversion from temporal coding to rate 279 
coding (Lee, Wang, & Bendor, 2020).    280 
 281 

Regardless of the mechanism, our data reveal somatosensory cortical activity in human 282 
neocortex that is tuned for vibration frequency. Analogous frequency encoding schemes in the 283 
somatosensory and auditory systems may facilitate the extensive crosstalk between touch and 284 

audition in the temporal frequency domain (Crommett, Madala, & Yau, 2019; Crommett, Perez-285 
Bellido, & Yau, 2017; Yau, Olenczak, Dammann, & Bensmaia, 2009; Yau, Weber, & Bensmaia, 286 
2010). Moreover, frequency-selective cortical filters offer an efficient scheme for representing 287 
the complex spectra of vibrations encountered in naturalistic touch.   288 

 289 

MATERIALS AND METHODS 290 
Participants. Seven healthy adult volunteers (5 females; mean age ± SD: 26 ± 2.8 years; aged 291 

20-29 years) participated in the study. All participants were right-handed (Oldfield, 1971) 292 

(Laterality quotient: 87.1 ± 9.7). The sample size was set on the basis that any significant and 293 
consistent outcomes established in 7 out of 7 subjects would be statistically generalizable 294 

according to a 2-tail binomial test (P < 0.05). Participants had normal or corrected-to-normal 295 

vision. Testing procedures were approved by the Baylor College of Medicine Institutional Review 296 
Board. All participants provided written consent and were paid for their participation or waived 297 

payment.    298 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.03.462923doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

 299 

MRI acquisition. All scans were conducted in the Core for Advanced MRI (CAMRI) at Baylor 300 

College of Medicine. MRI data were acquired on a 3-Tesla MAGNETOM Trio scanner with 301 
Prisma fit (Siemens, Erlangen, Germany) using a 64-channel head coil. Anatomical data were 302 

acquired using a T1-weighted magnetization prepared rapid acquisition gradient echo sequence 303 

(MPRAGE; TR = 2300 ms; TE = 2.98 ms; flip angle = 9°; 1 mm3 voxels). Functional data were 304 
obtained using an axial echo-planar imaging (EPI) sequence with simultaneous multi-slice 305 

(SMS) acceleration (TR = 1500 ms; TE = 33 ms; flip angle = 90°; GRAPPA factor = 2; SMS 306 
factor = 3; FOV = 192 mm; 69 slices; 2 mm3 voxels; 380 volumes per scan) that covered all of 307 

the cortical volume and part of the cerebellum. Each participant underwent 12 functional scans 308 

(~9.5min/scan) divided across 2 sessions (5.9 +/- 7.4 days inter-session interval). 309 
 310 
Tactile stimulation. Vibrotactile cues were delivered to the distal pad of the participant’s left 311 

and right index fingers using an MRI-compatible piezoelectric tactor (Engineering Acoustics, 312 
Inc., Casselbery, FL). Tactors were fastened to the distal finger pads with self-adherent 313 
cohesive wrap bandages. Tactors were controlled using the EAI Tactor Development Kit and 314 
stimulus timing was determined using custom Matlab scripts. The vibration set comprised 9 315 

frequencies: 100, 130, 160, 190, 220, 250, 280, 310, and 340Hz. Vibrations were matched in 316 
perceived intensity with amplitudes (gain: 71.4–97.4 arbitrary units according to EAI controller) 317 
determined in preliminary behavioral experiments using the method of adjustment. To further 318 

ensure that participants attended to vibration frequency rather than intensity during the scans, 319 

we applied a random ±5% jitter in amplitude on each stimulus presentation. Offline, we 320 

measured vibration amplitudes (unloaded) using a laser displacement sensor (ZX2-LD50, 321 

Omron, Hoffman Estates, IL) (displacement range: 0.414–0.504mm) and confirmed tactor 322 

reliability (Supplementary Fig. 2).  323 

 324 

Frequency monitoring task and scans. Participants were scanned in an event-related design 325 
as they performed a vibration frequency monitoring (oddball detection) task (Perez-Bellido, 326 

Barnes, Crommett, & Yau, 2017) while maintaining visual fixation. Each scan comprised 327 
unimanual and bimanual events. An event comprised a series of 3 vibration stimuli (stimulus 328 

duration: 700ms; inter-stimulus interval: 300ms). On the majority of events (regular events; 66/76 329 

in each scan corresponding to 2 repetitions each of 9 right hand frequencies, 9 left hand 330 
frequencies, and 15 bimanual frequency combinations), the frequency of the three vibrations was 331 

identical. All of the analyses included in this report were based on the unimanual regular events. 332 
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On a subset of events (oddball events; 10/76 in each scan), the frequency of the second vibration 333 

differed from the first and third vibrations in the series (frequency difference: 120-240Hz). 334 

Participants were instructed to report the occurrence of oddball events using a foot pedal 335 
response (Current Designs, Philadelphia, PA). Reliable detection of oddball events 336 

(Supplementary Fig. 1) indicated that participants attended to vibration frequency. The 337 

responding foot was counter-balanced across sessions over participants. To control for spatial 338 
attention effects, oddball events only occurred on the right hand (on unimanual and bimanual 339 

events) such that attention was directed toward each subject’s dominant hand throughout the 340 
scan. Events were separated by 3, 4.5, 6, or 7.5-s intervals with order and timing determined 341 

pseudo-randomly using Optseq2 (http://surfer.nmr.mgh.harvard.edu/optseq).  342 

 343 
Behavioral analysis. Given the unequal number of oddball and regular events, we quantified 344 
oddball detection performance by computing an F1 score for each subject (Powers, 2011):  345 

 346 

F" = 2 ∗
(Precision ∗ Recall)
Precision + Recall

 347 

 348 
where Precision is defined as the number of hits (correctly detected oddball events) divided by 349 

the sum of hits and false alarms (events incorrectly identified as oddball) and Recall is defined as 350 
the number of hits divided by the sum of hits and misses (oddball events not detected). F1 scores 351 

range from 0–1 with higher scores indicating better performance. For each subject, we determined 352 
if the observed F1 score was greater than that expected by chance (Supplementary Fig. 1) by 353 
generating a null distribution of F1 scores assuming the observed number of positive responses 354 
with shuffled event labels over 1000 permutations.  355 

 356 

fMRI analyses. Data preprocessing and first-level analyses were performed using AFNI (Cox, 357 
1996). Each participant’s data were preprocessed using standard procedures (afni_proc.py) 358 

including: (i) slice timing correction (3dTshift); (ii) image co-registration (align_epi_anat.py); (iii) 359 

functional image alignment (3dvolreg); (iv) spatial blurring with a 4-mm FWHM filter (3dmerge); 360 
(v) mean-normalization of each voxel’s signal (3dcalc). Preprocessed voxel-wise data were 361 

modeled using multiple linear regression (3dDeconvolve): general linear models (GLM) 362 
comprised 34 regressors corresponding to left hand stimulation (9 frequencies), right hand 363 

stimulation (9 frequencies), 15 bimanual conditions, and oddballs. Each regressor was created 364 

using a gamma-variate convolution kernel. The GLM comprised head motion and drift parameters 365 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.03.462923doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

as nuisance regressors. GLM coefficients were taken as the voxel response associated with each 366 

condition. A single GLM was fitted to the whole 12-scan dataset to define the analysis mask 367 

comprising voxels whose activity was modulated by either left hand or right hand stimulation. For 368 
the tuning models and encoding model analyses, separate GLMs were fitted after dividing the full 369 

dataset into 2 folds corresponding to the 6 scans from each scanning session. Unless otherwise 370 

noted, analyses were performed in native volume space. For displaying purposes, each 371 
participant’s data were projected into surface space. Surface models were constructed from each 372 

participant’s anatomical scans using Freesurfer (Dale, Fischl, & Sereno, 1999). The analysis 373 
exploring the topographic organization of frequency preferences was performed in native surface 374 

space. 375 

 376 
In each participant, we defined an analysis mask by identifying voxels whose activity was 377 
modulated by either left hand or right hand stimulation. For each hand separately, an omnibus F-378 

statistic was computed to quantify the significance of each voxel’s responses to the 9 vibration 379 
frequencies. The full analysis mask was the union of the left hand and right hand F-statistic maps, 380 
thresholded at a false discovery rate (FDR) corrected q < 1e-4 over the whole brain.  381 
 382 

Vibration frequency tuning functions. To test for vibration frequency tuning, we fitted 383 
parametric tuning functions to each voxel’s frequency response profiles estimated from the 2 384 
data folds. If a voxel’s response profiles were inconsistent over the folds, a tuning model fit to 385 

these data would be meaningless. Accordingly, we only fit tuning functions to voxels whose 386 
across-fold Pearson correlation exceeded 0.2. For voxels with consistent profiles across folds, 387 
we fitted simple and complex tuning functions and performed model competition to determine 388 
the model most appropriate for each voxel given its complexity and performance. Models were 389 

fitted to each voxel’s response data using the method of least squares which minimized the 390 

error between observed and predicted data. Responses to left and right hand stimulation were 391 
considered separately.  392 

 393 

To capture simple frequency tuning, we assumed a voxel’s response profile was characterized 394 
by a Gaussian function: 395 

  396 

𝑟 = 𝐴𝑒
78.:(;7µ)<

s< + 𝑏 397 

 398 
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where r is the predicted voxel response to a vibration with frequency f, A is a gain term, µ is the 399 

best modulating frequency, s is the tuning width, and b indicates the baseline activity level over 400 

all frequencies. The Gaussian model comprised 4 free parameters. 401 

 402 

To capture more complex frequency tuning patterns, we assumed a voxel’s response profile 403 
was characterized by a Gabor function, a cosine wave modulated by a Gaussian window: 404 

 405 

𝑟 = 𝐴𝑒
78.:(;7µ)<

s< cos >
2p
l
(𝑓 − µ) + fA + 𝑏 406 

 407 

where r is the predicted voxel response to a vibration with frequency f, A is a gain term, µ is the 408 

center of the Gaussian, s is the spread of the Gaussian, l and f are the wavelength and phase 409 

of the wave, and b indicates the baseline activity level over all frequencies. The Gabor model 410 

comprised 6 free parameters. In preliminary analysis, we found that estimating l with no 411 

constraints could yield small wavelength values that reflected the noise in the data. Accordingly, 412 

we constrained l by requiring the l/s  ratio to be >2.25 in the final analysis.  413 

 414 
To determine whether a voxel’s responses were better captured by the Gaussian or Gabor 415 
models, we compared models using Akaike information criterion (AIC) (Burnham & Anderson, 416 
2004): 417 

 418 

𝐴𝐼𝐶 = 𝑛 ∗ 𝑙𝑛(𝑅𝑆𝑆) + 2𝑘 419 

 420 
where n is the number of data points used to fit the models, RSS is the residual sum of squared 421 

errors, and k is the number of free parameters. The AIC-preferred model of each voxel was 422 

taken as that which yielded the smaller AIC value. We then computed the correlation between 423 
the AIC-preferred model predictions and the observed data to quantify goodness-of-fit. Voxels 424 

were considered to be tuned if the correlation between model predictions and observed data 425 

was statistically significant after correcting for the number of modeled voxels (FDR corrected q < 426 
0.05 using the Benjamini-Hochberg procedure).  427 

 428 

We evaluated a number of features defining voxel tuning curves (Supplementary Fig. 6). We 429 
defined the peak of a tuning function as the curve portion corresponding to the greatest  430 

(modulus) response modulation. Best modulating frequency (BF; 1-500 Hz) was the µ 431 
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parameter for Gaussian models or the frequency corresponding to the peak for Gabor models. 432 

The gain term indicated the (unsigned) magnitude of response modulation. The baseline 433 

parameter represented basal activity common to all frequencies. Tuning sign (positive or 434 
negative) corresponded to direction of activity change relative to the baseline level at the peak. 435 

The full width at half maximum (FWHM) along the peak indicated the tuning selectivity of each 436 

voxel.  437 
 438 

Voxel-wise encoding models. We implemented a simple channel encoding model to predict 439 
voxel-level activity by assuming the existence of frequency-tuned cortical neurons like those 440 

recently identified in mouse somatosensory cortex (Prsa et al., 2019). We modeled the 441 

normalized activity levels (R) of a cortical population in response to a vibration with frequency f 442 
using a Gaussian channel: 443 
 444 

𝑅 = 𝑒
7(;7µ)<
Is<  445 

 446 

where µ is the population’s BF and s is the channel tuning width. We assumed a voxel 447 

comprises different populations with unique frequency preferences, so the full encoding model 448 
predicted a voxel’s response (r) as a linear combination of activity from multiple populations:  449 
 450 

𝑟 = 	K𝑤M𝑅M

#OP

MQ"

 451 

 452 
where Ri is the normalized activity of the ith population and wi is a weight that describes the 453 

population’s contribution to the voxel’s overall response. We modeled each voxel using 7 454 
channels with predefined BF values. Accordingly, an encoding model was fitted to the response 455 

profiles of each tuned voxel by estimating the channel weights and a tuning width parameter 456 

that was shared over all the channels. Model fitting was performed using 2-fold cross-validation. 457 
Parameters were estimated using the method of least squares to minimize the error between 458 

model predictions and the tuning curve describing one data fold. Model performance was 459 

computed as the Pearson correlation between the model predictions and the data in the second 460 
fold. The final goodness-of-fit was the cross-validated model performance averaged over the 461 

two folds. Because the cross-validated goodness-of-fit depends on the consistency of the two 462 

folds, we normalized model performance by the across-fold correlation and report scaled 463 
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correlations. For voxels tuned to both hands, separate models were fitted to explain left hand 464 

and right hand responses.  465 

 466 
In separate analyses, we considered how voxel level activity may be related to phase-locking 467 

neurons that have been identified in non-human primates (Harvey et al., 2013; Lebedev & 468 

Nelson, 1996; Mountcastle et al., 1969) (Supplementary Fig. 7). We reasoned that the total 469 
spiking activity of these neurons would be minimal at low vibration frequencies and grow with 470 

increases in vibration frequency. Importantly, phase-locking neurons would fail to respond on 471 
every stimulus cycle at high vibration frequencies because of neural refractoriness, so 472 

population firing rates would saturate. We modeled this ramp-to-plateau response profile of a 473 

neural population using a rectified linear unit (ReLU) as a channel in our encoding model:  474 
 475 

𝑅(𝑠) = 𝑠(𝑓 − 𝑓8) 476 
 477 
where R(s) is the normalized population activity to a vibration with frequency f, s is a slope 478 
parameter describing the relationship between population activity and frequency, and f0 is the 479 

lowest frequency at which the population responds (set to 1Hz). Because neural activity 480 
depends on vibration amplitude (Harvey et al., 2013) and populations can differ in their 481 

sensitivity to vibration amplitude, we modeled different populations (i.e., channels) as rectified 482 
linear units with different slopes. Note that by allowing the channels to have different slopes, we 483 
assume that neural populations in a voxel respond differentially over vibration frequencies 484 
thereby building frequency tuning into the model. The full encoding model, then, predicted a 485 

voxel’s response (r) as a linear combination of activity from multiple populations: 486 
 487 

𝑟 =	K𝑤M𝑅(𝑠M)
#OP

MQ"

 488 

 489 

where R(si) is the normalized activity of the ith population defined by slope si and wi is a weight 490 

that describes the population’s contribution to the voxel’s overall response. We assumed each 491 
voxel comprised 8 populations with predefined slopes. The ReLU models were trained and 492 

tested in the same manner as the Gaussian channel model.  493 

 494 
We implemented a simple decoder using the encoding models to verify further that the models 495 

captured the frequency response profiles of the voxels. The decoding analysis included only the 496 
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voxels with significant encoding model performance (P < 0.05). Using the encoding models 497 

fitted to one data fold, we generated multivoxel activity patterns for each vibration frequency. 498 

These patterns served as labeled templates against which the observed multivoxel activity 499 
patterns in the other data fold could be compared. For decoding, we computed the correlations 500 

between an observed activation pattern and each of the template patterns predicted with the 501 

encoding models. The template pattern yielding the maximum correlation was taken as the 502 
decoded frequency. For each participant, decoding performance was the accuracy averaged 503 

over the two folds. Because distinct voxel sets exhibited tuning for left and right hand 504 
stimulation, the encoding and decoding analyses were performed separately for each hand.   505 

 506 

Topography analysis. We performed two analyses to establish evidence for a topographic 507 
organization based on voxel frequency preferences. We first tested whether the physical 508 
distance (in volume space) between pairs of voxels related to the similarity of their BFs. For 509 

each participant, this analysis was performed within activation clusters (minimum cluster size = 510 

40 voxels). For each cluster, we defined ∆dUUUU⃗  as a vector of distances between each pair of 511 

voxels and ∆BFUUUUUUUU⃗  as a vector of pairwise voxel BF differences. We computed the correlation 512 

between ∆dUUUU⃗  and ∆BFUUUUUUUU⃗  for each activation cluster. At the group level, we tested whether the 513 

average (within participant) correlation over clusters differed significantly from 0.  514 
 515 
The second analysis tested whether frequency preferences within activation clusters were 516 

arranged in a gradient pattern over the cortical surface (minimum cluster size: 60 surface 517 
nodes). Two conditions needed to be met in order for an activation cluster to be considered 518 
tonotopic. First, the cluster needed to contain nodes with BFs that spanned the full frequency 519 

range. For each cluster, we binned BF values from 50–450 Hz in 50-Hz steps. We only further 520 
considered clusters that had at least one node in each BF bin. Second, BF values within a 521 
cluster were required to be systematically arranged. For each cluster, we defined an axis that 522 

passed through the cluster’s center. We then projected each node’s BF onto the axis and 523 

performed linear regression between the BF values and node locations along the axis. A 524 
significant linear regression fit indicated that BFs were ordered in a gradient along the axis. 525 

Because we were agnostic to the orientation of potential BF gradients, we defined repeated the 526 

analysis along 4 axes (0°, 45°, 90°, and 135°) for each cluster. 527 

  528 

Statistical analysis. Statistical analyses in this paper include Pearson correlation, pair-wise t 529 

test, one-sample t test, one-sample Kolmogorov-Smirnov uniformity test, and the two-sample 530 
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independent proportions test. For circular data, we performed the Rayleigh uniformity test and 531 

Watson’s two-sample test of homogeneity. All tests were performed using Python 3.7 or R 3.5.1. 532 
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Supplementary Fig. 1. Oddball detection performance. F1 score indexes detection performance 
by accounting for precision and recall1. Higher scores indicate better performance. Bars indicate 
F1 score for each participant and the group-averaged score. Red error bar indicates s.e.m. Gray 
segments indicates the F1 score distributions expected by chance (center = mean score; 
thickness = standard deviation) given the number of positive responses provided by each 
participant (Materials and Methods). Performance in each participant far exceeded chance 
levels. 
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Supplementary Fig. 2. Analysis of measured displacement (a) Unloaded vibration amplitudes 
were measured outside of MRI environment using a ZX2-LD50 Laser Displacement Sensor 
(response time 240µs; acquired by Power 1401 CED with 40kHz sampling rate). Displacement 
profiles for 10 repeats (black) of the 100-, 220-, and 340-Hz stimuli are shown along with fitted 
sinusoids (red). Waveforms on the right show cycles from a portion of the full measurements. 
(b) Table indicates command frequencies and gains used to drive stimuli with the Engineering 
Acoustics, Inc (EAI) controller as well as the measured frequencies and displacements. 
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Supplementary Fig. 3. Analysis masks for each participant and group summary mask. Labeled 
surface nodes indicate significant responses to left or right hand vibrations (FDR corrected q = 
0.0001). Conjunction map indicates nodes with significant activations in 3 or more participants.  
Dashed white lines indicate the central sulcus (c.s.). LH, left hemisphere; RH, right hemisphere  
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Supplementary Fig. 4. Frequency preference maps. Best modulating frequency (BF) for 
significantly tuned voxels in each participant are projected onto cortical surfaces. Left and right 
hand tuning is depicted in separate maps. Dashed white lines indicate the central sulcus (c.s.). 
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Supplementary Fig. 5. Voxel tuning across sensorimotor cortical regions. Regions are defined 
using Human Connectome Project parcellations2. (a) Number of tuned voxels in sensorimotor 
regions. (b) Proportion of tuned voxels in each sensorimotor region with response profiles more 
consistent with Gabor tuning rather than Gaussian tuning according to Akaike Information 
Criterion. BA, Brodmann area; S1, primary somatosensory cortex; S2, secondary 
somatosensory cortex; SMA, supplementary motor area; PMC, premotor cortex; M1, primary 
motor cortex.  
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Supplementary Fig. 6. Frequency tuning parameters are highly consistent across participants. 
(a) Distribution of gain parameters from Gaussian and Gabor functions fitted to tuned voxels. 
Black traces indicates group average. Inset shows gain parameters sorted according to left 
hand and right hand tuning functions. Bars indicates group average and dots indicate individual 
participant averages. Gains were significantly larger for right hand tuning (t(6) = 2.47, P = 
0.048). (b) Distribution of baseline parameters from Gaussian and Gabor functions fitted to 
tuned voxels. Conventions as in a. Baseline values did not differ significantly between hands 
(t(6) = 1.63, P = 0.16). (c) Distribution of frequency selectivity as indexed by the full-width at 
half-maximum (FWHM) of the each Gabor or Gaussian tuning function’s dominant peak. 
Conventions as in a. FWHM did not differ significantly between hands (t(6) = 1.94, P = 0.10). (d) 
Distribution of phase parameter values from the Gabor tuning functions. Plotted Gabors indicate 
canonical profile associated with each phase value. Conventions as in a. Although phase 
distributions differed between hands (Watson’s two-sample test of homogeneity; U2 = 0.82–
5.66, P < 0.001), there was a consistent pattern for non-uniform phase distributions (Rayleigh 
test, P < 1e-15) with peaks at j = 0.5p and 1.5p. 
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Supplementary Fig. 7. Encoding model based on activity of phase-locking neural populations. 
(a) Vibration frequency can be encoded in the timing of spiking activity in somatosensory 
cortical neurons3–5. Rasters show idealized activity in neurons whose spikes occur at particular 
phases of each vibration cycle. At low frequencies, the neurons can fire on every cycle. At high 
vibration frequencies, phase-locking neurons may skip cycles occurring during their refractory 
period. Accordingly, the frequency response profile for phase-locking neurons can be described 
by a low-frequency range over which rates increase monotonically before plateauing at higher 
frequencies. This profile is captured by a rectified linear activation unit (ReLU). (b) ReLU 
encoding model assumes that a voxel’s response to any given vibration frequency is the 
weighted sum of the activity in a set of ReLU functions (representing different populations) with 
different slopes. Slopes are hyperparameters and the weights are estimated in model fitting. 
Note that the assumption of different slopes implies that the neural populations represented by 
the ReLU functions are implicitly selective for frequencies. (c) ReLU encoding model (red trace) 
captures tuned response patterns in example voxels (black dots). (d) Bars indicate voxel-
averaged scaled model performance within each participant. The model is trained on one fold of 
data and tested on a held-out fold. Model performance is the correlation between the model 
predictions and the test data, normalized by the correlation between the two folds of data (which 
represent the maximum correlation possible given the noise in the data). Error bars indicate 
s.e.m. (e) Correlation matrix indicates the similarity between multivoxel activation patterns 
predicted by the encoding model and the held-out fold. For decoding, the algorithm identifies the 
model-predicted pattern yielding the highest correlation with an observed pattern to infer the 
frequency condition. (f) Cross-validated decoding performance for both hands and each hand 
separately. Black line indicates group averaged accuracy. Colored dots indicate individual 
participants. Chance performance is 11%. 
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Supplementary Table 1 – Number of tuned voxels in the left and right hemispheres  
 
PARTICIPANT LEFT 

HEMISPHERE 

RIGHT 

HEMISPHERE 

1 6009 6701 

2 273 321 

3 10357 11027 

4 7668 8024 

5 1423 1329 

6 7974 8877 

7 6088 5446 

Counts indicate the number of tuned voxels in each participant. Vibration-responsive voxels 
were considered tuned only if they exhibited reliable across-fold correlations (r > 0.2) and 
significant tuning function fits (FDR corrected q < 0.05). A voxel was included in the counts only 
once regardless of whether it was tuned for both hands. 
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Supplementary Table 2 – Number of voxels tuned to the contralateral hand, ipsilateral 
hand, or both hands 
 

PARTICIPANT CONTRA IPSI BOTH 

1 5348 4986 2376 

2 148 248 198 

3 8684 9267 3433 

4 6640 5646 3406 

5 1167 1152 433 

6 5917 6906 4028 

7 5370 4467 1697 

Counts indicate the number of voxels over the left and right hemispheres in each participant 
that exhibited tuning only for the contralateral (CONTRA) or the ipsilateral (IPSI) hand. Voxels 
that were tuned for both hands are indicated in the 3rd column.  
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Supplementary Table 3 – Voxel-level frequency preferences 
 

PARTICIPANT BF MEAN BF MEDIAN KS STAT P VALUE 

1 237 267 0.99 1e-15 

2 258 273 0.99 1e-15 

3 238 252 0.99 1e-15 

4 187 179 0.99 1e-15 

5 202 195 0.99 1e-15 

6 221 216 0.99 1e-15 

7 212 238 0.99 1e-15 

Values indicate best modulating frequency (BF) statistics in each participant. KS, Kolmogoroz-
Smirnov test statistic 
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