Abstract
A universal scaling relationship exists between organism abundance and body size1,2. Within ocean habitats this relationship deviates from that generally observed in terrestrial systems2–4, where marine macro-fauna display steeper size-abundance scaling than expected. This is indicative of a fundamental shift in food-web organization, yet a conclusive mechanism for this pattern has remained elusive. We demonstrate that while fishing has partially contributed to the reduced abundance of larger organisms, a larger effect comes from ocean turbulence: the energetic cost of movement within a turbulent environment induces additional biomass losses among the nekton. These results identify turbulence as a novel mechanism governing the marine size-abundance distribution, highlighting the complex interplay of biophysical forces that must be considered alongside anthropogenic impacts in processes governing marine ecosystems.
Competing Interest Statement
The authors have declared no competing interest.