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2 

ABSTRACT  1 

Understanding spatial and temporal variations of habitat suitability is fundamental for 2 

species’ conservation under global change. Steppic species are particularly sensitive to 3 

anthropogenic change and have undergone large declines in the last decades. We aimed to 4 

describe current and future breeding habitat suitability for the Eurasian stone-curlew 5 

Burhinus oedicnemus, a steppic species of conservation concern, and to identify critical areas 6 

for its conservation. We collected 1628 presence records covering the period 1992-2016. We 7 

developed a species distribution model using a dynamic Maxent algorithm and a set of 8 

pseudo-absences with a spatial density weighted on a fixed kernel density estimated on the 9 

presences, to mitigate the potential sampling bias. We projected this model under a set of 10 

carbon emission, socioeconomic and land-use/land-cover scenarios for the years 2030, 2050, 11 

2070 and 2090. Finally, we described the cell-wise and mean change of breeding habitat 12 

suitability through consecutive time intervals and identified the areas critical for the species’ 13 

conservation.  14 

All scenarios predicted a short-term northward shift of suitable areas, followed by a period of 15 

stability. We found no consistent trends in the mean change of breeding habitat suitability, 16 

and similar extents of suitable areas under current and future scenarios. Critical areas for the 17 

conservation of the species are mainly located in Northern Europe, Israel and parts of North 18 

Africa, the Iberian Peninsula and Italy. According to our results, the Eurasian stone-curlew 19 

has the potential to maintain viable populations in the Western Palearctic, but dispersal 20 

limitations might hinder the colonization of shifted suitable areas. Targeted conservation 21 

interventions in the critical areas are therefore recommended to secure the future of the 22 

species under global change. 23 

Keywords: Eurasian stone-curlew, Burhinus oedicnemus, species distribution models, habitat 24 

suitability, steppe-land, environmental change. 25 
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INTRODUCTION 1 

 2 

Human-driven environmental change has relevant impacts on the distribution and life-history 3 

of organisms (Parmesan, 2006; Chen et al., 2011) and their likelihood of extinction (Román-4 

Palacios & Wiens, 2020). Several studies reported distributional shifts in animal species 5 

according to climate change (Vanderwal et al., 2013), physiological constraints (Root et al., 6 

2003) and in response to land-use and land-cover modifications (LULC; Sala et al., 2000). In 7 

birds, habitat suitability is affected by both climate and LULC change (Barbet-Massin, 8 

Thuiller, & Jiguet, 2011), and its variation has been linked to population trends (Green et al., 9 

2008). 10 

Steppe-land birds are particularly sensitive to environmental change, and large declines in 11 

steppe-land birds’ populations have been reported during the last decades, primarily as a 12 

consequence of agricultural intensification and afforestation following land abandonment 13 

(Burfield, 2005; Onrubia & Andrés, 2005). The Eurasian stone-curlew Burhinus oedicnemus 14 

(Linnaeus, 1758; hereafter stone-curlew) is a wide-ranging steppe-land species occurring in 15 

pseudo-steppes and farmlands in the Palearctic (Vaughan & Vaughan-Jennings, 2005). The 16 

species suffered a severe population decline (>30%) in the second half of the 20th century, 17 

mainly due to agricultural intensification (BirdLife International, 2018). It is now classified 18 

as Least Concern by the IUCN (BirdLife International, 2021), but information on the status of 19 

its populations is limited and positive trends might be due to the increased monitoring effort 20 

(Gaget et al., 2019). Indeed, the species is still considered of European conservation concern 21 

(SPEC3; BirdLife International 2017), and ongoing declines are reported for many regions of 22 

its range (BirdLife International, 2017; Gaget et al., 2019). Moreover, the stone-curlew is 23 

considered both an umbrella and flagship species (Caro, 2010; Hunter et al., 2016), and its 24 

conservation can therefore benefit steppe-land ecosystems (Hawkes et al., 2019). 25 
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To establish effective conservation practices, state-of-the-art habitat suitability scenarios for 1 

the focal species are required (Miller-Rushing, Primack, & Sekercioglu, 2010; Mcshea, 2 

2014), and rigorous analyses of suitability dynamics are essential to reveal the sensitivity of 3 

species to global change and to guide conservation efforts (Stiels et al., 2021). Moreover, 4 

recent studies are increasingly evidencing the importance of distinguishing between the 5 

effects of long-term vs. short-term environmental change (Reside et al., 2010; Milanesi, Della 6 

Rocca, & Robinson, 2020). Previous studies using species distribution models (SDM, Guisan 7 

& Zimmermann 2000) to model habitat suitability for steppe-land birds reported northern 8 

range shifts and the persistence of large suitable areas according to global change scenarios 9 

(Estrada et al., 2016; Kiss et al., 2020). Huntley et al. (2007) used SDMs to forecast the 10 

future distribution of the stone-curlew under climate change scenarios, highlighting a 11 

northward shift of suitable areas.  12 

Their analysis was limited to a coarse scale (ca. 50 km), Europe, one future period (end of the 13 

21st century) and a single climate scenario. An in-depth analysis integrating LULC and a 14 

range of climatic scenarios might validate their conclusions and provide time-varying 15 

predictions for conservation practitioners.  16 

Therefore, in this study we aimed to: (i) test whether the stone-curlew’s distribution is driven 17 

by long-term or short-term environmental conditions, (ii) describe the current availability of  18 

suitable breeding habitats for stone-curlew, (iii) provide a range of future breeding habitat 19 

suitability scenarios considering both climate and LULC changes, (iv) test the hypothesis of a 20 

Northern shift for the stone-curlew, at higher spatial resolution than Huntley et al. (2007) and 21 

on multiple time-steps, and (v) identify the critical areas for its conservation.  We predicted 22 

that (1) our models would highlight a northern shift of suitable breeding areas for the stone-23 

curlew, (2) large areas of the Western Palearctic would be suitable for the species under 24 

future scenarios. As the stone-curlew is a species of warm temperate areas, it is unlikely that 25 
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mean breeding habitat suitability will drop rapidly with global warming, as this is fastest at 1 

northern latitudes (IPCC, 2013). Therefore, we also predicted a stable or increasing mean 2 

breeding habitat suitability for the species under future conditions.  3 

 4 

MATERIALS AND METHODS 5 

 6 

Spatial scale 7 

To reduce the spatial extent while retaining sufficient environmental variation, we limited our 8 

analysis to the Western Palearctic (sensu Snow & Perrins, 1998). We thus excluded B. o. 9 

harterti for poor data availability, and the two Macaronesian subspecies (B. o. distincus, B. o. 10 

insularum), as these show distinctive responses to the environment, being genetically 11 

different (Mori et al., 2017), and have a distribution restricted to small oceanic islands 12 

(Vaughan & Vaughan-Jennings, 2005). 13 

As spatial resolution, we considered as appropriate the finest grain available based on future 14 

LULC scenarios (i.e. ~ 5.5x5.5 km grid cells; Chen et al., 2020) as this cell size approximates 15 

the breeding home-range of the species (Caccamo et al., 2011; Hawkes et al., 2021), thereby 16 

representing a biologically meaningful scale.  17 

 18 

Species occurrences  19 

We used occurrences for the breeding season (May-July; Vaughan & Vaughan-Jennings, 20 

2005) for the period 1992-2016 retrieving data from eBird, Global Biodiversity Information 21 

Facility (GBIF), ornitho.it, ornitho.cat and xeno-canto.org as in previous SDM studies 22 

(Avalos & Hernández, 2015; Coxen et al., 2017; Engelhardt, Neuschulz, & Hof, 2020; 23 

Ramellini et al., 2020). We also included survey data from the British Trust for Ornithology 24 

(in agreement with BTO’s data policy), data for Greece from the Ornithotopos database and 25 
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the second European Breeding Bird Atlas (hereafter EBBA) and 2x2 km surveys in Greece 1 

(in formal agreement with the Hellenic Ornithological Society), data for the Deux-Sèvres 2 

department from the Nature79 database provided by Alexis Martineau. For Northern Italy, 3 

the dataset was integrated with nest points opportunistically collected by Dimitri Giunchi in 4 

the period 2012-2018.  5 

We used data with a maximum positional uncertainty of 5.5 km to fit the resolution of 6 

predictors (Guisan, Thuiller, & Zimmermann, 2017), retaining the first occurrence in 7 

chronological order (i.e. the one reported in the first year available for the cell) when more 8 

than one point occurred in the same cell. We cut observations on the species’ range to 9 

exclude vagrant individuals in non-breeding areas, developing a range shapefile (see Fig. 1) 10 

based on the BirdLife species distribution dataset 11 

(http://datazone.birdlife.org/species/requestdis), the EBBA1 (Hagemeijer & Blair, 1997) and 12 

the EBBA2 (Keller et al., 2020). We then applied a spatial filtering of the data to reduce 13 

spatial autocorrelation (Kramer-Schadt et al., 2013), using the R package ‘spThin’ (v. 0.2.0; 14 

Aiello-Lammens et al., 2015) with a minimum distance of 5.5 km between points. The final 15 

dataset comprised 1628 presences (Fig. 1).  16 

 17 

Species distribution models 18 

Contrasting results on the performance of different SDM algorithms have been reported (e.g. 19 

Qiao et al., 2015; Norberg et al., 2019). Therefore, we carried out preliminary tests to 20 

compare single-algorithm approaches and ensemble forecasting (i.e. a set of SDM algorithms 21 

combined to account for inter-model variability; Araújo & New, 2007). We then compared 22 

standard SDMs (hereafter static SDMs; Milanesi et al., 2020a) to dynamic SDMs. The first 23 

relate temporally dynamic occurrences to static predictor variables (e.g. 30-year climate 24 

averages), yielding potentially biased estimations of species-environment relationships 25 
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(Milanesi et al., 2020a), whereas the latter combine occurrences with time-specific raster 1 

values (Reside et al., 2010; Milanesi et al., 2020a). We therefore tested whether the stone-2 

curlew’s distribution is driven by long-term or short-term environmental conditions 3 

comparing static and dynamic SDMs. In summary, we developed and compared four classes 4 

of models: 5 

(i) single static SDMs: seven algorithms were developed (see Table S1 for a list of the 6 

employed techniques), using static variables (see Environmental variables); 7 

(ii) ensemble SDMs: the single static SDMs were combined according to the mean and the 8 

weighted average (Marmion et al., 2009). In the weighted average method, the AUCtest (see 9 

Evaluation methods) was used to weight model contribution to the final prediction. Static 10 

variables were employed;  11 

(iii) single dynamic SDMs: seven algorithms (Table S1) were employed, using dynamic 12 

variables (see Environmental variables);  13 

(iv) ensemble dynamic SDMs: the single dynamic SDMs were combined according to the 14 

mean and the weighted average, using dynamic variables.  15 

All models were developed in the ‘biomod2’ (v. 3.3-7) R package (Thuiller et al., 2016).  16 

 17 

Pseudo-absence selection 18 

We generated a set of pseudo-absence points (i.e. surrogates of true absences; Barbet-Massin 19 

et al., 2012), also using them as background points for Maxent. Pseudo-absences are often 20 

drawn at random in the study area, whereas occurrences typically show a spatial bias. 21 

Therefore, models could discriminate between the environmental features of sampled and 22 

unsampled areas, rather than between those of suitable and unsuitable areas (Phillips et al., 23 

2009). To avoid this problem, Phillips et al. (2009) proposed the ‘target-group’ method, 24 

where pseudo-absences consist of other species’ data collected with the same methods used 25 
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for the focal species. We used an approach similar to the observer-oriented one (Milanesi, 1 

Mori, & Menchetti, 2020). We considered as our pseudo-absences GBIF data of other bird 2 

species recorded by the same observers of the presence data, assuming they were collected 3 

with the same sampling bias. However, this approach could only be implemented on the 4 

GBIF data, and some biases might still arise. Therefore, we developed an alternative 5 

approach and refer to it as the ‘Kernel density approach’. We generated a large number of 6 

pseudo-absences, weighting their spatial distribution according to a fixed kernel density 7 

estimated on all the presence points, by means of the ‘adehabitatHR’ (v. 0.4.18) R package 8 

(Calenge, 2006). We used the ad hoc method for the estimation of the smoothing parameter 9 

(Worton, 1989). The procedure was independently repeated on the occurrences separated by 10 

year for the period 1992-2016. For both pseudo-absence selection methods, if a cell contained 11 

more than one record, the chronologically oldest was retained in the dataset. Finally, we 12 

removed pseudo-absences outside the study area and randomly sampled them to obtain a 0.1 13 

prevalence (i.e. the ratio between presences and pseudo-absences ensuring an optimal 14 

performance; Barbet-Massin et al., 2012). To identify the best pseudo-absence method, we 15 

developed and evaluated a set of Maxent models for each method, using static variables (see 16 

Environmental variables). We expected the kernel density approach to outperform the target-17 

group method, as the former might be more effective at cancelling out the potential spatial 18 

bias in the presence dataset.  19 

 20 

Environmental variables 21 

We followed a two-step variable selection procedure, involving first an expert-based pre-22 

selection and then a reduction of multicollinearity. In the first step, we used an expert-based 23 

approach (Santini et al., 2021) to derive 17 biologically meaningful environmental predictors 24 

(Table 1). We describe the biological rationale supporting expert-based variable choice and 25 
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the process of variable preparation in the Appendix S1. For static SDMs, we averaged 1 

variables between the years 1973-2013 (climatic and ‘prey suitability’ variables) and 1992-2 

2016 (LULC variables). Collectively, we refer to these variables as static variables. For 3 

dynamic SDMs, we associated occurrence/pseudo-absence pixels with year-specific values 4 

for a given variable (Milanesi et al., 2020a). We refer to these variables as dynamic variables. 5 

In the second step, we calculated the Variance Inflation Factor (VIF) to address 6 

multicollinearity between predictors. We used the vifstep function in the ‘usdm’ R package 7 

(v. 1.1-18; Naimi, 2013), using a threshold of three (Zuur, Ieno, & Elphick, 2010). We 8 

reported the initial and final VIF values for static and dynamic variables in Table 1. 9 

According to this analysis, the precipitation of the warmest quarter was only retained in the 10 

dynamic variable set and the temperature of the warmest quarter only in the static variable 11 

set. We excluded precipitation of the warmest quarter, retaining temperature of the warmest 12 

quarter for both static and dynamic variable sets. In the end, 13 variables were used in the 13 

models (Table 1). 14 

 15 

Future variables 16 

Future projections of bioclimatic conditions were obtained from four Intergovernmental 17 

Panel on Climate Change (IPCC) General Circulation Models (GCMs) that gained the 18 

minimum score in interdependence (Sanderson, Knutti, & Caldwell, 2015): ACCESS1-3, 19 

CESM1-BGC, CMCC-CM and MIROC5. We considered two emission scenarios 20 

corresponding to the IPCC’s Representative Concentration Pathways 4.5 and 8.5 (RCP 4.5 21 

and RCP 8.5) for the years 2030, 2050, 2070 and 2090. Bioclimatic variables for every 22 

GCMxRCP combination and time interval were produced from the climatic variables 23 

available in the CHELSA CMIP-5 timeseries (Karger et al., 2017). Future LULC scenarios 24 

were retrieved from Chen et al., 2020. To create a LULC dataset consistent with bioclimatic 25 
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scenarios, we selected LULC projections for the MIROC general circulation model (the 1 

remaining GCMs used for bioclimatic variables were not available), under RCP 4.5 and 8.5 2 

and the Shared Socioeconomic Pathway 5, for 2030, 2050, 2070 and 2090. In future LULC 3 

scenarios, urban cover was kept at its 2016 value, due to the extremely low correspondence 4 

between the two LULC datasets.  5 

 6 

Model evaluation  7 

We evaluated models based on the block cross-validation procedure implemented in the 8 

‘ENMeval’ (v. 0.3.1) R package (Muscarella et al., 2014). In this procedure, data are 9 

partitioned into four geographically independent bins; four models are then produced, with 10 

three bins used for training and the remaining one used for testing. We used as performance 11 

statistics the area under the curve (AUC; Fielding & Bell, 1997) of the receiver operating 12 

characteristic plot, and the Continuous Boyce Index (CBI; Boyce et al., 2002). The AUC 13 

metric was computed with the R package ‘biomod2’ (v. 3.3-7, Thuiller et al., 2016); the CBI 14 

with the ‘ecospat’ (v. 3.1) R package (Di Cola et al., 2017). To detect overfitting in our 15 

models, we computed the difference between AUCtest and AUCtrain (AUCdiff; 16 

Radosavljevic & Anderson, 2014). In case of contrasting indications between AUCtest and 17 

CBI, we gave priority to the latter, as the usefulness of AUC in SDM has been questioned 18 

(Lobo, Jiménez-Valverde, & Real, 2008). 19 

We evaluated variable importance using a model-independent approach (Thuiller et al., 2009) 20 

and expressed it as percentage. We then produced the response curves for each model using 21 

the evaluation strip method (Elith et al., 2005). To check the ecological validity of the 22 

models, we used an expert-based evaluation (Perennes et al., 2021). We defined two 23 

subjective scores: (i) Quality of Spatial Prediction (QSP) and (ii) Plausibility of Response 24 

Curve (PRC). The QSP was evaluated comparing qualitatively the spatial output of each 25 
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model with the species’ distribution in the EBBA1 and EBBA 2 (Hagemeijer & Blair, 1997; 1 

Keller et al., 2020) and with the modelled distribution in the EBBA 2 (Keller et al., 2020). 2 

The PRC was evaluated based on the agreement between current knowledge on the species’ 3 

ecological preferences and the model’s response curves for the four variables with the highest 4 

percentage contribution. Both scores had three possible values (zero, one, two), with higher 5 

values indicating a better performance. Values were jointly discussed and assigned by Andrea 6 

Simoncini and Samuele Ramellini. 7 

 8 

Projections 9 

The models developed during the model-selection phase were either projected on the static 10 

variables (static SDMs) or on variables representing the year 2016 (dynamic SDMs). The 11 

year 2016 was selected to describe current conditions as it was the closest year to the present 12 

time represented in our climatic dataset. The selected model was then projected to future 13 

conditions. We initially used a static LULC (i.e. the 2016 LULC variables) in future 14 

predictions to constrain climatic outputs (Pang, De Alban, & Webb, 2021). We then 15 

performed an additional analysis projecting models calibrated with the same historical LULC 16 

database on scenarios from the future dynamic LULC database (Chen et al., 2020). However, 17 

the difference between LULC databases did not allow quantitative interpretations of mean 18 

breeding suitability change. 19 

In static LULC projections, for each RCP scenario and time interval we developed four 20 

projections (one per each GCM) averaging them in a final projection representing breeding 21 

habitat suitability for the species. We also computed the standard deviation between the four 22 

projections to account for the uncertainty arising from different climatic scenarios 23 

(Beaumont, Hughes, & Pitman, 2008; Porfirio et al., 2014). In dynamic LULC projections, 24 

we developed a single projection for each RCP and time interval, under the Shared 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.462847doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462847
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12 

Socioeconomic Pathway (SSP) 5 and the MIROC circulation model (other GCMs were not 1 

available).  2 

When projected to new time periods, SDMs might encounter environmental conditions that 3 

are not found in the calibration area (Elith, Kearney, & Phillips, 2010; Zurell, Elith, & 4 

Schröder, 2012), producing spurious predictions (Owens et al., 2013). This occurs when: (i) a 5 

variable is outside the range found when training (i.e. strict extrapolation; Elith et al., 2010), 6 

or (ii) each variable is within the calibration range, but the combination of predictors is new 7 

(i.e. combinational extrapolation; Zurell et al., 2012). We thus used the environmental 8 

overlap mask (Zurell  et al., 2012) to identify the areas where extrapolation occurs. We used 9 

the ‘mecofun’ (v. 0.1.0.9000) R package, with one bin per variable for strict extrapolation 10 

and five bins per variable to include combinational extrapolation (Zurell et al., 2012).  11 

 12 

Cell-wise change of habitat suitability  13 

To describe the dynamics of breeding habitat suitability for the stone-curlew, we computed 14 

the difference of breeding suitability between consecutive time periods for each cell. 15 

Therefore, we obtained a set of rasters describing the magnitude of breeding habitat 16 

suitability change through consecutive time intervals, accounting for different RCPs and 17 

LULC scenarios.  18 

 19 

Change of mean habitat suitability 20 

We evaluated the variation of breeding habitat suitability calculating the mean breeding 21 

habitat suitability (among all raster cells) for each future projection and considered its 22 

percentage change between two consecutive time periods, according to: each GCM under 23 

RCP 4.5 and RCP 8.5, and each RCP using the mean of all GCMs. This analysis was carried 24 

out for the static LULC projections only.  25 
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 1 

Critical areas for conservation 2 

Areas predicted as suitable under both current and future conditions are fundamental to plan 3 

in situ conservation actions (Estrada et al., 2016; Thuiller et al., 2019). We binarized each 4 

habitat suitability map according to the threshold that maximizes the sum of specificity and 5 

sensitivity (Liu, Newell, & White, 2016). Then, we summed all binarized projections and 6 

attributed a score of one if the cell was suitable in all the projections and a score of zero to all 7 

other cells. Additionally, we calculated the percentage of currently suitable cells representing 8 

critical areas. 9 

 10 

Further details on the modelling procedure and workflow are reported in the Overview, Data, 11 

Model, Assessment and Prediction (ODMAP) protocol (Zurell et al., 2020; Appendix S1).  12 

 13 

RESULTS 14 

 15 

Pseudo-absence methods 16 

The mean AUCtest, AUCdiff and CBI did not show marked differences between the two 17 

pseudo-absence methods (Table 2). However, except for the fourth run, the CBI was 18 

consistently higher for the kernel density approach, which also provided higher quality spatial 19 

predictions (Table 2, Fig. S1.2). Therefore, we decided to use the kernel density approach for 20 

subsequent analyses. We selected the first run due to the particularly high CBI, a fair 21 

AUCtest and a high-quality spatial prediction (Table 2).  22 

Dynamic models gained consistently higher CBI and generally higher QSP and PRC than 23 

static models (Table 3). Ensemble SDMs showed high AUCtest, but not significantly higher 24 

than the best-performing single methods (i.e. Random Forest, Maxent, GLM), and a discrete 25 
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overfitting (Table 3). The CBI and PRC showed the same general pattern, with higher 1 

estimates for dynamic ensemble models (Table 3). Spatial predictions did not differ 2 

significantly between static and dynamic models, except for the ANN algorithm (Fig. S1.3-3 

S1.4). However, static models identified suitable areas at the southern edge of the study area 4 

in the African continent where the species is absent (Keller et al., 2020). Instead, we found a 5 

higher agreement in these areas between dynamic models’ projections and the actual species’ 6 

range (Fig. S1.3-S1.4). Ensemble models gained good quality spatial outputs but tended to 7 

over-predict habitat suitability at high latitudes (e.g. in Arctic Russia, where the species is not 8 

found) and under-predict at lower latitudes (e.g. in France and the Iberian Peninsula, where 9 

the species is widespread). Instead, GAM and Maxent provided excellent projections in these 10 

areas (Fig. S1.3-S1.4). Therefore, we retained the best performing single dynamic model (i.e. 11 

Maxent; Fig. 2), that showed a good AUC (0.803), an excellent CBI (0.999) and maximum 12 

QSP and PRC values (Table 3).  13 

 14 

Future projections 15 

Projections of future breeding habitat suitability for the species differed between static and 16 

dynamic LULC scenarios, but not between RCPs and time periods (Fig. S1.5). Dynamic 17 

LULC projections described a similar spatial distribution of suitable areas for the species 18 

compared to static LULC projections, but with higher suitability estimates (Fig. S1.5). The 19 

agreement between GCMs for static LULC projections was mostly high (Fig. S1.7). Strict 20 

extrapolation was generally low (Fig. S1.8-S1.9, Fig. S1.12), although it occurred 21 

consistently in some regions at the margins of our study area (e.g. Northern Russia) and it 22 

was generally higher under RCP 8.5. Combinational extrapolation was far more extensive 23 

and showed increasing values with latitude and under RCP 8.5 (Fig. S1.10-S1.12). 24 

 25 
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Cell-wise change of habitat suitability 1 

The cell-wise change of habitat suitability was particularly evident in the first time interval 2 

(i.e. 2016-2030), while quite small in the subsequent ones (Fig. 3). Suitable areas for the 3 

species are expected to shift northwards. Broad areas in the central-southern part of the range 4 

are predicted to be lost, most of them in the time interval 2016-2030. Differences between 5 

static and dynamic LULC are marked, with the suitability of the latter predicted to undergo a 6 

higher change (Fig. 3). 7 

 8 

Change of mean habitat suitability 9 

The mean breeding habitat suitability considering a static LULC is predicted to remain stable 10 

in all time intervals and for most GCMs (Fig. S1.6A and S1.6B). However, when comparing 11 

the predictions for different GCMs, the differences were quite marked. The RCP had also a 12 

significant effect, as the percentages under RCP 8.5 were remarkably higher (Fig. S1.6C). 13 

 14 

Critical areas for conservation 15 

France, South-Eastern UK, Northern Italy and Israel were the regions with the highest 16 

proportion of conservation critical areas (Fig. 4). The percentage of currently suitable areas 17 

predicted to remain suitable was relatively low (27.47 %).  18 

 19 

DISCUSSION 20 

 21 

Relying on 1628 occurrences of the stone-curlew, we developed a robust species distribution 22 

modelling framework for the species, based on a Maxent model built with year-specific 23 

variables and calibrated using a kernel density approach for the pseudo-absences. Our model 24 

predicted significant short-term changes in the spatial distribution of suitable areas for the 25 
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species and allowed the identification of areas critical for its conservation under global 1 

change. Furthermore, our results suggested that the distribution of the stone-curlew might be 2 

affected by short-term conditions, rather than long-term ones, and confirmed that broad areas 3 

of the Western Palearctic are likely to be suitable for the species in the future.  4 

The northern shift of suitable areas predicted by our model is consistent with our hypothesis, 5 

with the projection for the species (Huntley et al., 2007), and with projections for other 6 

pseudo-steppic species (e.g. the Great Bustard Otis tarda and Little Bustard Tetrax tetrax in 7 

Estrada et al., 2016 and the European Roller Coracias garrulus in Kiss et al., 2020). The loss 8 

of suitable areas in the Mediterranean region is not surprising as the Mediterranean 9 

biogeographical region represents a hotspot of global change, and extensive biodiversity 10 

losses have been predicted (Sala et al., 2000).  11 

Even if strong variations between GCMs and RCPs in the expected trajectories of mean 12 

breeding habitat suitability for the stone-curlew may hinder sound conclusions, the predicted 13 

gains and losses of mean habitat suitability were balanced, suggesting a stable mean habitat 14 

suitability for the species through time. This agrees with our expectation that mean habitat 15 

suitability for the species would remain stable or increase, as global warming is milder in 16 

warm temperate areas (IPCC, 2013) and might therefore have a limited impact on mean 17 

habitat suitability. Dispersal ability, biotic interactions and the carrying capacity of suitable 18 

habitats might determine whether a stable mean habitat suitability translates into a stable 19 

population size (Bateman et al., 2013; Holloway, Miller, & Gillings, 2016).  20 

Habitat suitability has been linked to population size and trends in birds (Green et al., 2008; 21 

Stiels et al., 2021). We showed that large areas of the study region are predicted as suitable in 22 

the future, and that a stable mean habitat suitability is likely. Hence, according to our 23 

forecasts, the species may be able to maintain viable populations in the Western Palearctic. 24 

However, given the relatively low percentage of areas suitable under both current and future 25 
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conditions and the predicted shift of suitable areas, the species might need to track its niche in 1 

the future. Evidence of the ability of animals to track their niche is contrasting (Devictor et 2 

al., 2008; Chen et al., 2011) and many terrestrial organisms have been shown to shift their 3 

distribution at a sufficient pace to track recent temperature changes (Chen et al., 2011).  4 

Species affected by global change may also persist under unfavourable conditions being 5 

phenotypically plastic and becoming locally adapted (Valladares et al., 2014). Moreover, 6 

biological interactions and movement/dispersal constraints might prevent them from 7 

colonizing newly suitable areas (Bateman et al., 2013; Holloway, Miller, & Gillings, 2016). 8 

Our results point toward a critical use of the target-group pseudo-absence method, and we 9 

recommend its explicit testing especially when using multi-source citizen science datasets. 10 

Our results did not evidence a better performance for ensemble methods, contrary to other 11 

studies (e.g. Marmion et al., 2009), and support a tailor-made choice of the modelling 12 

method. Dynamic models performed better than static ones (Table 3) as expected, supporting 13 

previous works explicitly testing the two approaches (e.g. Reside et al., 2010; Milanesi et al., 14 

2020a). Due to its minimal contribution to the final model, the ‘prey suitability’ variable (Fig. 15 

S1.1) probably failed to describe the real patterns of habitat suitability for the stone-curlew’s 16 

preys (Table 1). This might depend on the exclusion of relevant prey items, as the species 17 

exploits a wide spectrum of food items (Vaughan & Vaughan-Jennings, 2005) that is difficult 18 

to model through SDMs. We nevertheless highlight the importance of considering biotic 19 

predictors though suggest including the entire trophic web of a species. 20 

Correlative species distribution models assume an equilibrium condition between the species 21 

and the environment (Araújo & Pearson, 2005). Areas that have been abandoned by the 22 

stone-curlew during the last decades of the past century can be recolonized, as happened in 23 

the UK following the targeted conservation efforts of the LIFE11INF/UK000418 ‘Securing 24 

the future of the stone-curlew throughout its range in the UK’. This suggests that suitable 25 
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climate and LULC conditions at the relatively coarse scale of our study exist in those areas. 1 

Therefore, the SDMs’ equilibrium assumption for this species might be violated and future 2 

studies could explicitly account for non-equilibrium conditions (Václavík & Meentemeyer, 3 

2012). SDMs also assume the evolutionary conservatism of the species’ ecological niche 4 

through time (Peterson, Soberón, & Sanchez-Cordero, 1999; Barbet-Massin et al., 2011), a 5 

condition that is difficult to prove and deserves specific attention. Thanks to constant 6 

improvements in climate and LULC scenarios, in the future our workflow could be applied to 7 

a wider spectrum of scenarios, to better represent all the components of uncertainty (Thuiller 8 

et al., 2019). However, the two RCPs employed in our study can provide valuable insights on 9 

the effect of global change on habitat suitability, as demonstrated by their extensive use (e.g. 10 

Kiss et al., 2020; Stiels et al., 2021). We also limited our study to the breeding period: 11 

understanding the drivers and changes of habitat suitability for the stone-curlew across 12 

migratory and wintering grounds might provide further insights for its conservation.  13 

 14 

The stone-curlew is philopatric in the breeding areas (Green, 1990) and this might delay 15 

habitat-tracking under environmental change. Considering this latter scenario, critical areas 16 

might act as a stronghold for the species, and anticipatory conservation efforts should 17 

primarily focus on these areas (Thuiller et al., 2019). Furthermore, ensuring high connectivity 18 

conditions for the species in areas predicted to become unsuitable might contribute to 19 

maintain viable populations and facilitate niche tracking (Heller & Zavaleta, 2009). Indeed, 20 

habitat fragmentation contributed to the species’ decline in the ‘90s (Tucker & Evans, 1997). 21 

Finally, enhanced monitoring efforts in areas predicted to become suitable might increase 22 

early-detection probability and mitigate the negative effects of biotic interactions. Our model 23 

evidenced the importance of two LULC classes that are heavily affected by farming and 24 

harvesting activities (i.e. non-irrigated agricultural areas and grasslands). Precisely, the most 25 
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critical areas and the areas predicted to become suitable for the stone-curlew are in 1 

intensively cultivated areas, corresponding to the ‘core of EU continental agriculture’ 2 

(D’Amico et al., 2013), England and the Po Plain. Furthermore, in France, the country 3 

hosting the largest portion of critical areas, over 60% of breeding pairs are found in the 4 

Central/Western region within arable crops (Malvaud, 1996; Issa & Muller, 2015). In these 5 

ecosystems, ad hoc management interventions on a local scale can be effectively used to 6 

favour stone-curlew’s presence (Hawkes et al., 2021).  7 

In conclusion, our study refines current knowledge on the effects of global change for the 8 

stone-curlew, providing predictions of breeding habitat suitability for the species at high 9 

temporal and spatial resolutions, and conservation planners might benefit from our results by 10 

incorporating indications on the most relevant conservation areas in the development of 11 

action plans for the species.  12 

13 
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Presence data used to develop species distribution models for the Eurasian stone-curlew are 3 

available at: https://doi.org/10.6084/m9.figshare.16727296.v1 4 

Longitude, latitude and year are reported for each observation. Data from the British Trust for 5 

Ornithology are omitted in agreement with the data access policy. Data from ornitho.it are 6 

accompanied by a citation, in compliance with the site’s rules. 7 
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Table 1 Candidate environmental variables to calibrate SDMs for the Eurasian stone-curlew. 1 

To describe the correlation among variables, we report the VIF (Variance Inflation Factor) 2 

for the initial and final sets of static and dynamic variables. Variables included in the 3 

dynamic Maxent model used for future projections are shown in bold, and their percentage 4 

contribution is reported.  5 

Variable Static Dynamic Contribution (%) 

 VIFin VIFfin VIFin VIFfin  

Percentage cover of agricultural 

areas (non-irrigated) 
3.432 1.407 5.007 2.319 

27.6 % 

Temperature of the warmest 

quarter 
810.809 2.206 171.087 - 

23.9 % 

Temperature seasonality 69.530 1.773 20.111 1.207 17.4 % 

Percentage cover of grass 1.736 1.274 2.541 1.684 10.8 % 

Percentage cover of agricultural 

areas (irrigated) 
1.135 1.022 1.339 1.088 

10.1 % 

Slope 1.463 1.229 1.977 1.684 9.0 % 

Percentage cover of trees 3.948 1.955 3.532 2.318 8.7 % 

Karst area 1.072 1.041 1.082 1.057 6.9 % 

Distance from water 2.002 1.831 1.767 1.557 4.8 % 

Percentage cover of urban areas 1.158 1.114 1.232 1.152 4.5 % 

Precipitation seasonality 1.747 1.607 1.823 1.722 3.6 % 

Percentage cover of shrubs 1.428 1.216 2.039 1.345 3.0 % 

Prey suitability 1.667 1.557 1.358 1.323 0.5 % 
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Annual temperature 1000.396 - 142.475 - - 

Annual precipitation 6.717 - 3.686 - - 

Precipitation of the warmest 

quarter 
7.323 - 3.754 2.198 

- 

Percentage cover of bare areas 9.983 - 6.365 - - 

 1 
2 
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Table 2 Evaluation metrics of the static Maxent models for the Eurasian stone-curlew 1 

calibrated with two pseudo-absence approaches (target-group and kernel density), for four 2 

cross-validation runs. We report Area Under the ROC (Receiver Operating Characteristic) 3 

Curve (AUC) of the training and test datasets and their difference; Continuous Boyce Index 4 

(CBI); Quality of Spatial Prediction (QSP) and Plausibility of Response Curve (PRC). 5 

Quality of Spatial Prediction (QSP) and Plausibility of Response Curve (PRC) are qualitative 6 

subjective scores (value of zero, one or two) describing the ecological validity of a model. 7 

Mean and standard error are reported for each approach. 8 

 9 

  Target group 

Run AUCtrain AUCtest AUCdiff CBI  QSP PRC 

 1 0.891 0.679 0.212 0.852  1 2 

 2 0.878 0.746 0.132 0.977  0 2 

 3 0.854 0.824 0.030 0.842  1 2 

 4 0.850 0.832 0.018 0.654  1 2 

Summary  
      

 Mean (SE) 0.868 (0.010) 0.770 (0.036) 0.098 (0.046) 0.831 (0.067)  0.75 (0.25) 2 (0) 

  Kernel density 

Run AUCtrain AUCtest AUCdiff CBI  QSP PRC 

 1 0.888 0.783 0.105 0.999  2 1 

 2 0.884 0.871 0.013 0.985  1 1 

 3 0.885 0.727 0.158 0.887  2 2 

 4 0.892 0.799 0.093 0.333  2 2 

Summary  
      

 Mean (SE) 0.887 (0.002) 0.795 (0.030) 0.092 (0.030) 0.801 (0.158)  1.75 (0.25) 1.5 (0.29) 

10 
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Table 3 Evaluation metrics of four species distribution modelling strategies for the Eurasian 1 

stone-curlew: single static, ensemble static, single dynamic and ensemble dynamic. The 2 

following single algorithms have been used: Artificial Neural Networks (ANN), 3 

Classification Tree Analysis (CTA), Generalized Additive Models (GAM), Generalized 4 

Boosting Models (GBM), Generalized Linear Models (GLM), Maximum entropy (Maxent), 5 

Random Forest (RF). The following metrics are reported: Area Under the ROC (Receiver 6 

Operating Characteristic) Curve (AUC) of the training and test datasets and their difference; 7 

Continuous Boyce Index (CBI). Quality of Spatial Prediction (QSP) and Plausibility of 8 

Response Curve (PRC) are subjective scores (value of zero, one or two) describing the 9 

ecological validity of a model. The model used for future projections is highlighted in bold. 10 

 11 

 Single static SDM 

 Algorithm AUCtrain AUCtest AUCdiff CBI  QSP PRC 

  ANN 0.608 0.595 0.013 0.160  0 0 

  CTA 0.832 0.669 0.163 0.437  0 0 

  GAM 0.871 0.779 0.092 0.296  2 2 

  GBM 0.896 0.785 0.111 0.517  1 1 

  GLM 0.865 0.802 0.063 0.440  0 1 

  Maxent 0.889 0.784 0.105 0.994  2 1 

  RF 0.999 0.814 0.185 -0.147  0 1 

 Ensemble static SDM 

 Algorithm AUCtrain AUCtest AUCdiff CBI  QSP PRC 

  Mean 0.952 0.815 0.137 0.321  1 1 

 
 

Weighted 

average 

0.954 0.815 0.138 0.360  1 1 

 Single dynamic SDM 
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 Algorithm AUCtrain AUCtest AUCdiff CBI  QSP PRC 

  ANN 0.713 0.687 0.026 0.533  0 0 

  CTA 0.758 0.634 0.123 0.675  1 0 

  GAM 0.858 0.794 0.064 0.837  2 2 

  GBM 0.882 0.784 0.098 0.726  2 1 

  GLM 0.851 0.793 0.058 0.471  0 2 

  Maxent 0.885 0.803 0.082 0.999  2 2 

  RF 0.999 0.809 0.190 0.660  0 1 

 Ensemble dynamic SDM 

 Algorithm AUCtrain AUCtest AUCdiff CBI  QSP PRC 

  Mean 0.944 0.808 0.136 0.847  1 2 

 
 

Weighted 

average 
0.946 0.810 0.136 0.870 

 
1 2 

 1 

2 
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Figure 1. 1 
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Figure 3. 1 
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Figure 4.  1 
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Figure 1 Occurrence and pseudo-absence points used to model breeding habitat suitability 1 

for the Eurasian stone-curlew. Target-group pseudo-absences are observations of other bird 2 

species recorded by the same observers of the presence data in the Global Biodiversity 3 

Information Facility (GBIF). Kernel density pseudo-absences are points with a spatial density 4 

weighted according to a fixed kernel density estimated from the presence points. For target-5 

group and kernel density pseudo-absences, 500 randomly sampled points from the datasets 6 

are shown to improve image clarity. The grey area represents the species’ range in the 7 

Western Palearctic, with the exclusion of the Macaronesian archipelago. Photo by Saverio 8 

Gatto. 9 

 10 

Figure 2 (a) Current breeding habitat suitability map according to the dynamic Maxent 11 

model selected to project breeding habitat suitability for the Eurasian stone-curlew under 12 

global change scenarios, and (b) response curves for the four environmental variables with 13 

the highest percentage contribution in the same model.  14 

 15 

Figure 3 Cell-wise change of breeding habitat suitability for the Eurasian stone-curlew under 16 

four time intervals (2016-2030, 2030-2050, 2050-2070, 2070-2090) and two Representative 17 

Concentration Pathways (RCP 4.5, RCP 8.5). S-LULC = Static Land-Use/Land-Cover; D-18 

LULC = Dynamic Land-Use/Land-Cover. 19 

 20 

Figure 4 Critical areas for the conservation of the Eurasian stone-curlew. Currently suitable 21 

areas predicted to remain suitable under all scenarios of breeding habitat suitability for the 22 

species are highlighted in red. Shaded areas represent the species’ range in the Western 23 

Palearctic, with the exclusion of the Macaronesian archipelago.  24 

25 
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