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Abstract 

Cellular bioenergetics and mitochondrial dynamics are crucial for the secretion of insulin by 

pancreatic beta cells in response to elevated blood glucose concentrations. To obtain better 

insights into the interactions between energy production and mitochondrial fission/fusion 

dynamics, we combine live-cell mitochondria imaging with biophysical-based modeling and 

network analysis to elucidate the principle regulating mitochondrial morphology to match 

metabolic demand in pancreatic beta cells. A minimalistic differential equation-based model for 

beta cells was constructed to include glycolysis, oxidative phosphorylation, simple calcium 

dynamics, and graph-based fission/fusion dynamics controlled by ATP synthase flux and proton 
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leak flux. The model revealed that mitochondrial fission occurs in response to hyperglycemia, 

starvation, ATP synthase inhibition, uncoupling, and diabetic condition, in which the rate of proton 

leak exceeds the rate of mitochondrial ATP synthesis.  Under these metabolic challenges, the 

propensities of tip-to-tip fusion events simulated from the microscopic images of the mitochondrial 

networks were lower than those in the control group and prevented mitochondrial network 

formation. The modeling and network analysis could serve as the basis for further detailed 

research on the mechanisms of bioenergetics and mitochondrial dynamics coupling. 

Introduction 

Mitochondria, in charge of the generation of adenosine triphosphate (ATP) via oxidative 

phosphorylation (OXPHOS), are motile organelles exhibiting dynamic structures owing to the 

fission and fusion cycles.[1] Fission-fusion cycles, which are typically referred to as mitochondrial 

dynamics, are related to the regulation of energy production and the quality control of the 

mitochondrial network.[2,3] Mitochondrial fusion and biogenesis maintain the mitochondrial mass 

and network [4]. Moreover, quality control is achieved by asymmetric fission, which splits one 

mitochondrion into two daughter mitochondria with different mitochondrial membrane potentials. 

Deenergized mitochondria are subsequently removed through mitophagy. At the molecular level, 

fusion and fission events are driven by large GTPases. Mitofusin 1 (Mfn1) and 2 (Mfn2) on the 

outer mitochondrial membrane (OMM) and optic atrophy 1 (OPA1) on the inner mitochondrial 

membrane (IMM) are in charge of fusion events, whereas dynamin-related/-like protein 1 (Drp1) 

and Dynamin2 (Dnm2) are responsible for fission events.[1] 

The mitochondrial network may shift to different morphologies depending on the metabolic 

task. Recent studies have linked the nutrient supply and energy demand to mitochondrial 

dynamics, which implies that the mitochondrial architecture adapts to metabolic demands [5,6]. 

Taking rat insulinoma (INS) cells as an example [3], mitochondrial networks are more tubular 
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during the G1 to S phases for energy production and biosynthesis, whereas mitochondria are 

more fragmented during the G2 to M phases to prepare for an equal distribution of the 

mitochondrion into the daughter cells. In cancer cells, mitochondrial dynamics are also crucial for 

their metabolic rewiring, metastasis abilities, drug resistance, and cancer stem cell survival.[7–10] 

Pancreatic beta cells sense the glucose concentration by coupling glycolysis to the citric acid 

cycle (CAC) and OXPHOS to synthesize ATP, and this step increases the ATP-to-ADP ratio, 

closes ATP-inhibited potassium channels (KATP channels), triggers calcium influx, and excretes 

insulin vesicles.[11,12] The process, which is called glucose-stimulated insulin secretion (GSIS), 

is correlated with mitochondrial morphology changes.[13–15] Glucose stimulation could induce 

short-term (approximately 1 hour) mitochondrial fragmentation and recovery.[14] 

In contrast, perturbations in mitochondrial dynamics are associated with the deterioration of 

mitochondrial network quality, mitochondrial dysfunction, decreased ATP synthesis capacity, 

impaired calcium homeostasis, and even cell death.[16] Insulin resistance and type 2 diabetes 

(T2DM) are associated with hampered mitochondrial functions in OXPHOS and citric acid cycle 

(CAC) metabolism [17,18], which results in attenuation of the sensitivity to glucose stimulation of 

beta cells to secrete insulin. Fragmented mitochondrial network morphologies have also been 

found in diabetic beta cells [10,19–23]. The artificial blockage of fission proteins in INS-1E cells 

hinders glucose sensing and insulin secretion.[14] 

A variety of studies have evaluated the mitochondrial morphology and mitochondrial network 

fission/fusion dynamics. For instance, fluorescence microscopy provides direct evidence of the 

mitochondrial network shapes and measurements of their motility, fission, and fusion rates.[24–

26] Image preprocessing and analysis techniques are indispensable for revealing information 

from these data and further providing quantitative evidence of the results and discoveries based 

on mitochondrial dynamics. [27–29] 

In contrast, in silico models describe the relationships between substrate input and mitochondrial 

ATP production using computer simulations. The widely adopted [30–35] mathematical model of 
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beta-cell mitochondria by Magnus and Kaiser [36] described the influence of intracellular calcium 

dynamics and adenylate levels on ATP synthesis and the mitochondrial membrane potential. The 

model was further simplified [37] and then revised [38] to reveal the frequency of the response of 

ATP synthesis to respiring substrates and the cytosolic concentrations of calcium. The INS beta-

cell models constructed by Fridlyand et al.[39–42] are focused on ATP production, the plasma 

membrane potential dynamics, intracellular calcium oscillations, signal transduction, and insulin 

secretion in response to glucose stimulation, i.e., glucose-stimulated insulin secretion (GSIS). 

Although the mitochondrial bioenergetics models describe ATP synthesis upon substrate addition, 

the mitochondria are regarded as a single entity without fission/fusion dynamics. 

Alternatively, mitochondria could be treated as individual agents undergoing fission/fusion 

dynamics, and one could evaluate the overall mitochondrial network mass, structure, and quality 

[43–45]. Patel and coworkers [16] devised an agent-based model (ABM) to simulate mitochondrial 

movement, fission, fusion, mitophagy, and biogenesis processes and revealed that the selective 

mitophagy of damaged mitochondria improves the overall mitochondrial health. Sukhorukov and 

coworkers [46] described mitochondrial fission-fusion dynamics as dissociation and association 

of nodes to simulate the observed fluorescence microscopic images of mitochondrial networks in 

HeLa cells. Their idea was further expanded by Shah and coworkers [20] to estimate the 

fission/fusion rate differences in healthy and unhealthy cells.  

However, only a few studies have combined bioenergetics and mitochondrial fission-fusion 

dynamics due to the complexity involved in the mathematical model and the scarcity of data 

related to fusion and fission rates from microscopic observations obtained under the microscope. 

One of the few examples is Kornick’s population-based model [47], which is a minimalistic ODE-

based model simulating the dynamics of fragmented/fused and healthy/unhealthy mitochondrial 

populations and is dependent on the generation and consumption of ATP. However, the 

mathematical descriptors for bioenergetics and fission/fusion rates were set based on constant 
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ratios of healthy compared with unhealthy mitochondria without considering any mechanistic 

details of OXPHOS and the associated effects on mitochondrial dynamics. 

To this end, our study was set to bridge among cellular bioenergetics, mitochondrial network 

dynamics (as illustrated in Fig. 1), and microscopic observations together. We simulated the 

model and matched the mitochondrial network pattern changes observed by microscopy under 

various metabolic conditions, such as changing the glucose concentration and adding chemicals 

that affect the mitochondrial respiratory chain, to gain better insight into the bioenergetic coupling 

of mitochondrial dynamics in pancreatic beta cells. The model simulations reveal mechanisms for 

mitochondrial dynamics regulation that link the nutrient environment to mitochondrial 

dynamics and bioenergetics and are relate to progressive mitochondrial dysfunction in metabolic 

diseases. 
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Fig. 1: Schematics of the mitochondrial bioenergetics and dynamics model 

The in silico model for mitochondrial bioenergetics and dynamics is built upon a coupled system 

of ordinary differential equations (ODEs). This model includes the bioenergetic and fission-fusion 

dynamics responses to glucose stimulation in pancreatic cells. The left half represents glucose-

stimulated insulin secretion (GSIS), which involves the coupling of glycolysis in the cytosol and 

OXPHOS in the mitochondria, and a minimalistic model of calcium fluxes between the cytosol 

and mitochondria. In contrast, the right half represents the fission-fusion dynamics of the 

mitochondrial network. The relative fission-fusion rate is determined by the ATP synthase rate 
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and the proton leak rate. ANT: adenine nucleotide translocator. MCU: calcium uniporter. NCLX: 

mitochondrial sodium-calcium exchanger (sodium-calcium-lithium exchanger, NCLX). ETC: 

electron transport chain, including complexes I, II, III, and IV. CAC: citric acid cycle. G3P: 

glyceraldehyde-3-phosphate. NAD: nicotinamide adenine dinucleotide. NADH: reduced 

nicotinamide adenine dinucleotide. JHR: flux of proton pumping of ETC. JHL: proton leak flux. JHF: 

proton flux through ATP synthase (F1-Fo ATPase). 

The mathematical details of the ODE model can be found in the Materials and Methods section 

and the Supplementary Materials. 

Results 

Glucose stimulates mitochondrial bioenergetics with morphological changes 

Glucose is a stimulus signal for metabolic-secretion coupling. Mitochondria in pancreatic beta-

cells respond to increases in the blood glucose, which leads to an increased ATP/ADP ratio by 

increasing oxidative metabolism and increasing the intracellular calcium concentrations to trigger 

insulin granule exocytosis.  Exploration of the mechanism through which the glucose 

concentration affects mitochondrial dynamics is the first step to understanding how the cellular 

metabolism regulates mitochondrial dynamics.  High glucose concentration increased the steady-

state levels of glycolysis metabolites (G3P, pyruvate), the CAC product (NADH), and the 

OXPHOS products (ATP and ATP-to-ADP ratio) (Fig. 2 (A-G)). Glycolytic flux through glucokinase 

(GK) drove the downstream reactions of CAC and OXPHOS. Increased cytosolic calcium from 

the increased ATP-to-ADP ratio resulted in calcium influx into the mitochondria through the 

mitochondrial calcium uniporter (MCU). Increases in the mitochondrial calcium further enhanced 

the reactions of CAC and OXPHOS to produce even more ATP. 

Moreover, the mitochondrial network became more fragmented in response to elevated glucose 

concentrations. The population of terminal degree-1 nodes (Fig. 2 (H)) increased, and the average 
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degree of the nodes decreased (Fig. 2 (I)). The mitochondrial network showed the highest degree 

of fusion with the highest average degree of nodes at a resting glucose concentration of 1X. 

 

 

Fig. 2: Steady states obtained with a range of glucose concentrations. 

Steady-state values of (A) G3P (in µM), (B) pyruvate (in µM), (C) calcium (in µM), (D) NADH (in 

µM), (E) ATP, ADP, and AMP (in µM), (F) the ATP/ADP ratio, (G) the mitochondrial membrane 

potential (in millivolts, mV), (H) the mitochondrial population, and (I) the average degree of nodes 

were compared under different glucose concentrations. The x-axis represents relative glucose 

concentrations, and 5 mM is denoted as 1X.  
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Interactions between mitochondrial energetics and dynamics 

To further dissect the relationship between mitochondrial bioenergetics and mitochondrial 

dynamics, we orthogonally varied both the glucose concentration and one of the mitochondrial 

parameters: ATP synthase, ETC, and proton leakage activities. We then collected the steady 

states of the average degree of nodes, the mitochondrial membrane potential, and the ATP/ADP 

ratio. In all scenarios, when the glucose levels increased, the decreased average degree of nodes 

showed a tendency of mitochondrial network fragmentation, and both the ATP/ADP ratio and 

mitochondrial membrane potential increased (Fig. 3). The inhibition of ATP synthase activity 

resulted in higher mitochondrial membrane potentials, a lower ATP/ADP ratio, and a more 

fragmented mitochondrial network. In contrast, the inhibition of electron transport chain (ETC) 

activity moderately suppressed the mitochondrial membrane potential and the ATP/ADP ratio and 

generated a fused mitochondrial network. An increase in proton leakage dissipated the 

mitochondrial membrane potential, decreased the ATP/ADP ratio, and scattered the 

mitochondrial network (Fig. 3 and Table 1). 
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Fig. 3. Steady-state values for a 2D parameter range of glucose concentrations and 

mitochondrial bioenergetics.   

The steady-state values of average node degree (first column), mitochondrial membrane potential 

(Δψ, second column) and ATP/ADP ratio (third column) are represented by the colors in the 2D 

contour plots. Relative glucose concentrations are in the X-axis; 5 mM is denoted as 1X. Relative 

activities of ATP synthase (first row), electron transport chain (ETC, second row), and proton 

leakage activity (third row) in the Y-axis are presented by comparing to the baseline model values. 

The translucent arrows indicate how the mitochondrial parameters change in response to the 

addition of oligomycin, rotenone, or FCCP. 
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Table 1: Summaries of the outcomes to bioenergetic change shown in Figure 3. 

Treatment Node degree Δψ ATP/ADP ratio 

Inhibition of ATP synthase ↓ ↑ ↓ 

Inhibition of ETC ↑ ↓ ↓ 

Increases in proton leakage ↓ ↓ ↓ 

 

Microscopic images of INS-1 cells presented a similar trend 

To corroborate the findings from our in silico model, we obtained fluorescence microscopic 

images of INS-1 rat insulinoma cells under various metabolic conditions. First, we analyzed 

mitochondrial network morphologies under a range of glucose concentrations (0X, 1X, 3X, and 

6X). We then performed a similar analysis with three different chemical agents: rotenone to block 

complex I in the electron transport chain (ETC), oligomycin to block ATP synthase, and 

trifluoromethoxy carbonyl cyanide phenylhydrazone (FCCP) to increase proton leakage across 

the IMM. The upper boxplots (Fig. 4 C) showed that the intensities of the voltage-dependent 

TMRM dye were the lowest at 0X, whereas the higher values were obtained under 1X, 3X, and 

6X irradiation, revealing higher mitochondrial membrane potentials. A similar trend in 

mitochondrial membrane potential was also observed in PANC-1 cell line stained with a 

fluorescent mitochondrion-specific dye and analyzed by flow cytometry (data not shown).   The 

analysis of mitochondrial morphology revealed that the networks showed a higher degree of 

fusion under the baseline glucose concentration of 1X (5 mM) and were more fragmented when 

the glucose concentrations were either higher (3X, 6X) or lower (0X). 

 

The lower boxplots (Fig. 4 H) showed that mitochondria treated with oligomycin exhibited the 

highest membrane potential, whereas those treated with FCCP had the lowest potentials. In 
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addition, the rotenone group had a slightly lower membrane potential than the control group, but 

this difference was not statistically significant. The results were consistent with the respective 

chemical mechanisms: oligomycin blocks ATP synthase, rotenone blocks the ETC, and FCCP 

increases proton leakage. With respect to the mitochondrial morphology, the oligomycin group 

showed the most fragmented mitochondrial networks and rounded mitochondria (Fig. 4 E). The 

FCCP group was less fragmented than the oligomycin group but more fragmented than the control 

group, although the lower pixel intensity might impact the quality of the analysis. The rotenone 

group showed an insignificant change in mitochondrial morphology compared with the control 

group. 
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Fig. 4: Mitochondria in INS-1 cells showed distinct morphologies under different 

cellular environmental conditions. 

(A) and (E): Representative fluorescent images of mitochondria in INS-1 cells labeled with TMRM 

under (A) four different glucose concentrations (with a baseline glucose concentration of 2 g/L, 

which is referred to as 1X) and (E) in the presence of three chemicals at a concentration of 10 

μM. 

(B): Three-dimensional rendered surface images of the mitochondria in images (A). The images 

were created using Imaris software (Oxford Instruments). Separated mitochondria are labeled 

with different colors corresponding to their volumes. 

(F): Masked images of mitochondria in images (E). Binary images were first obtained using FIJI 

software and then mapped with different colors corresponding to their areas. 

(C) and (G): Histograms showing the distribution of different morphological indicators for 

separated mitochondrial components in an individual cell under several conditions. (C): 

Histograms of volume and sphericity. The data were acquired from cells in the images presented 

in (A). (G): Histograms of area and ellipticity. The data were acquired from cells in the images 

shown in (E). 

(D): Box plots of the 3D image analysis of mitochondria in INS-1 cells under different glucose 

concentrations. N = 10 cells for each concentration. 

(H): Box plots of the 2D image analysis of mitochondria in INS-1 cells under different chemical 

conditions. N = 26, 39, 28 and 31 for the control, FCCP, oligomycin and rotenone groups, 

respectively. 

All data for morphological indicators were obtained using the image analysis pipeline presented 

in the Materials and Methods section. Statistical significance was calculated using Levene’s test, 

one-way ANOVA, Student’s t-test, and Welch’s t-test (*: p<0.05, **: p<0.01, ***: p<0.001; n=10 

cells for each). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462897


 

14 
 

 

Prediction of the response to calcium oscillations 

Calcium is one of the key players in insulin secretion by pancreatic cells. Mitochondria sense and 

shape the cytosolic calcium in response to glucose stimulation to modulate metabolism-secretion 

coupling. How mitochondria act as both recipients and generators of calcium signals would be an 

interesting factor to explore using our model. Two main types of cytosolic calcium oscillations 

have been observed in pancreatic β-cells: fast with the period ranges in seconds, and slow with 

periods of minutes[48]. In this study, we focus only on the slow oscillations in pancreatic β-cells. 

The cytosolic calcium levels in our in silico model are steady-state averages controlled solely by 

the cytosolic ATP/ADP ratio without any sophisticated electrophysiology and oscillations. 

Therefore, we used an independent periodic oscillator to complement the study to assess how 

the in silico model responds to oscillating cytosolic calcium levels. The shape and period of the 

calcium oscillator were made similar to one previous study [49] of mouse pancreatic β-cells under 

glucose stimulation. 

The mitochondrial calcium levels oscillated with a larger amplitude and a slight delay compared 

with the cytosolic calcium levels. However, the levels of G3P, pyruvate, and NADH, the ATP/ADP 

ratio, and the mitochondrial membrane potential decreased as the level of cytosolic calcium 

increased and vice versa. The mitochondrial network tended to fuse as the cytosolic calcium level 

increased and slowly became more fragmented as the cytosolic calcium level decreased (Fig. 5). 
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Fig. 5: Response to cytosolic calcium oscillations.  

Levels of (A) cytosolic and mitochondrial calcium (in μM), (B) G3P and cytosolic NADH (in μM), 

(C) pyruvate and mitochondrial NADH (in μM), (D) ATP/ADP ratio, (E) mitochondrial membrane 

potential (in mV), and (F) average degree of nodes in the mitochondrial network were shown in 

last 8 minutes of cytosolic calcium oscillations. 

Predicting the blunted response of diabetic cells to glucose stimulation 

To simulate the inhibition of mitochondrial metabolism in diabetic cells, we restricted the enzyme 

activities in the citric acid cycle (pyruvate dehydrogenase, PDH) and OXPHOS (ETC, ATP 
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synthase)[18] and found that the proton leak rate was also increased [50] (Table 3). The diabetic 

condition was first tested by sequential challenges of glucose and chemicals (Fig. 6A) as the 

experimental protocol performed in the mouse islet  [18]. The diabetic model had lower cytosolic 

NADH levels but markedly higher pyruvate levels at higher glucose concentrations than the 

baseline model (Fig. 6B (A), (B)). The diabetic model also showed an attenuated response to 

higher glucose levels in terms of ATP levels, cytosolic and mitochondrial calcium levels, and the 

mitochondrial membrane potential (Fig. 6B (E), (F), (G), (H)). Compared with the baseline model, 

the diabetic model presented higher mitochondrial NADH levels at lower glucose levels, but the 

baseline model showed higher mitochondrial NADH levels at higher glucose levels (Fig. 6B (D)). 

Across various glucose levels, the change in the mitochondrial network morphology was less 

prominent in the diabetic model than in the baseline model (Fig. 6B (I)).  
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Fig. 6: In silico ODE model’s response to glucose stimulation in baseline and 

diabetic models 

A. Comparison of time-series responses to glucose and chemical stimulations in baseline and 

diabetic models. Oxygen consumption rate, metabolites, calcium, ATP/ADP ratio, mitochondrial 

membrane potential and average degree of nodes were compared followed by sequential 

additions of glucose and chemical reagents in baseline and diabetic models. Steady-states at the 

baseline glucose concentration of 5 mM were denoted at time t=0. At the time of 20 mins, glucose 

level was increased to 20 mM. At the time of 40 mins, ATP synthase activity was restricted to 5% 

of its original value to simulate oligomycin addition. At the time of 60 mins, ETC was restricted to 

5% of its original value to simulate rotenone/antimycin addition. 

B. Glucose stimulation in baseline and diabetic cells. Baseline and diabetic cell steady-state 

variables of pyruvate, cytosolic and mitochondrial NADH and calcium, mitochondrial membrane 

potential, ATP/ADP ratio, average degree of nodes in the mitochondrial network were compared 

under different glucose concentrations.  Relative glucose concentrations; 5 mM is presented as 

1X. 
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Discussion 

Mitochondria are highly dynamic and motile organelles that undergo constant fusion and fission, 

as observed from live-cell fluorescent imaging. These fission/fusion processes are critical for 

mitochondrial quality control and function. An in silico model of mitochondrial bioenergetics and 

dynamics was proposed in this study, and this model reproduced several microscopic 

observations of the pancreatic cell mitochondrial network morphology under various glucose 

concentrations and chemical treatments. Increasing the glucose concentration, inhibiting ATP 

synthase, and increasing proton leakage resulted in a fragmented mitochondrial network. The in 

silico approach provides insights into the driving forces of mitochondrial dynamics: the fission rate 

was related to proton leakage, and the fusion rate was associated with ATP synthase. 

In silico model of bioenergetic influences on mitochondrial dynamics 

Our in silico model was constructed based on two previous independent works that governed 

glucose-stimulated ATP synthesis [42] and fission/fusion processes of mitochondrial networks[46]. 

What bridges cellular bioenergetics and mitochondrial dynamics together is the choice of 

fission/fusion rates. For simplicity, we fixed the mitochondrial fission rate according to previous 

studies [16,44,47] and scaled the fusion rate to the ratio of the ATP synthesis (JANT) rate and the 

proton leak rate (JHL). Choosing these two rates alone enabled us to simulate the mitochondrial 

network architectures in bioimages under different modes of energy supply and expenditure [5]. 

From the viewpoint of molecular biology, uncoupling (proton leak) activates calcineurin and then 

Drp1 [6,51] to trigger mitochondrial fission. In contrast, mitochondrial ATP synthesis could fuel 

Opa1 [6] through the actions of adenine nucleotide translocators (ANTs) and mitochondrial 

nucleoside diphosphate kinase (NDPK-D) [52,53], which enhances mitochondrial fusion. 

From the viewpoint of bioenergetics, at the steady state, the energy provided by glycolysis and 

the citric acid cycle should balance the energy produced by ATP (via ATP synthesis) and 
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dissipated as heat (e.g., via proton leak). In our model, this fact translates to the conservation law 

in the proton circuit: the protons pumped out of mitochondria by electron transport chain 

complexes (JHRs) should be equivalent to those returning to mitochondria to form the proton flux 

through ATP synthase (JHF) and leakage (JHL) through the IMM. In other words, at the steady-

state, 

𝐽𝐻𝑅 = 𝐽𝐻𝐹 + 𝐽𝐻𝐿 = 3𝐽𝐴𝑁𝑇 + 𝐽𝐻𝐿 

A higher proton leak rate (JHL) relative to the ATP synthesis rate (JANT) results in more fragmented 

mitochondrial networks and a smaller average degree of nodes, and vice versa. High glucose 

concentration increases the mitochondrial membrane potential (Δψ) (Fig. 2), JANT, and JHL. 

However, JHL is exponentially dependent on Δψ and increases at a faster rate than the Hill 

equation relationship between JANT and Δψ (Fig. 7). Therefore, at higher glucose levels, the 

mitochondrial network was more fragmented with a smaller average degree of nodes. The 

mitochondrial network also became more fragmented at glucose levels lower than the baseline 

value of 1X (5 mM) because JANT decreased at a faster rate than JHL. At approximately the baseline 

glucose level (1X, 5 mM), the difference between fusion and fission rates was highest, and the 

most fused mitochondrial network was obtained. The inhibition of ATP synthase and increases in 

proton leakage resulted in a fragmented mitochondrial network. The model could predict observed 

mitochondrial fragmentation (Fig. 4) upon the addition of FCCP and oligomycin because the 

former enhances proton leakage (JHL) and the latter inhibits ATP synthase (JANT) (Fig. 7). The 

addition of rotenone to block complex I, as simulated by reducing the ETC activity in the ODE 

model, hampered the response to glucose addition (Fig. 7) because the fission/fusion forces (JHL, 

JANT) were both limited by the upstream reaction (JHR). In our study, rotenone caused insignificant 

changes to the mitochondrial network architectures in the INS-1 microscopic images (Fig. 4). 

However, the effects might depend on the dosage and cell type.[54,55] 

Overall, perturbations to mitochondrial energetics, such as increasing the proton leak rate, 

inhibiting ATP synthase, and combined parameter alterations in diabetic cells, made the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462897


 

21 
 

mitochondria more fragmented. In contrast, inhibiting the ETC yielded a more fused mitochondrial 

network at high glucose concentrations because limiting proton pumping restricted JHL more than 

JANT. Compared with default parameters, perturbations to mitochondrial energetics parameters 

also reduced the dynamic range of fission/fusion rates across various glucose concentrations, 

which implied that the mitochondrial network structure is less responsive to metabolic changes. 

Our results also confirmed that the inhibition of mitochondrial fusion does not necessarily require 

a loss of the mitochondrial membrane potential but depends on the proton motive force. 
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Fig. 7. Effects of glucose stimulation under various conditions. 

A: Ratios of the fusion to fission rates under various conditions: default parameters (baseline, 

blue), diabetic parameters (diabetic, red), 90% ETC inhibition (rotenone, green), 90% ATP 

synthase inhibition (oligomycin, cyan), and five times the proton leak rate (Uncoupler, black). B: 

Steady-state proton leak rate (fission force) and ATP synthesis rate (fusion force) under various 

conditions (color codes are identical to A). Each dot represents the glucose concentration starting 

from 3 millimolar (the lower left ones) to 30 millimolar (the upper right ones) with an increment of 

1 millimolar. 

Extending the model to diabetic beta cells 

Mitochondrial dysfunction, including changes in respiratory chain activity, is related to 

dysfunctional glucose-stimulated insulin secretion (GSIS) in models of type 2 diabetes. Energy 

changes, such as reduced ATP levels, ATP/ADP ratios and mitochondrial membrane potential, 

were observed in diabetic beta-cells [56], and these cells showed increased of mitochondrial 

complex I, ATP synthase, UCP-2, and reactive oxygen species [57].  While mitochondrial 

dynamics maintain the metabolically efficient mitochondrial population, an imbalance between 

mitochondrial fusion and fission also contributes to the beta-cell dysfunction in the progression of 

diabetes. 

In the diabetic cell simulation, we restricted the activities of several metabolic checkpoints, 

including pyruvate dehydrogenase (PDH), which controls the citric acid cycle (CAC), the electron 

transport chain (ETC), and ATP synthase, to reflect inhibited mitochondrial metabolism in diabetic 

cells.[18] In our simulations, the mitochondrial membrane potential and NADH levels were higher 

in the diabetic model than in the baseline model at a resting glucose concentration of 5 mM (Fig. 

6B (C) and (F)). However, the reverse was observed with increases in the glucose concentration. 

This phenomenon was also observed by Haythorne et al.[18]: the restriction of mitochondrial 
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metabolism blunted the responses to increasing glucose levels across various variables starting 

from the CAC, including mitochondrial calcium, NADH, and membrane potential. The limited ATP 

synthesis obtained from decreased ATP synthase activity and a lower mitochondrial membrane 

potential hampered the increases in the cytosolic ATP/ADP ratio and the cytosolic calcium levels 

(Fig. 6A, Fig. 6B (D), (G)), reflecting less effective insulin secretion in response to glucose 

stimulation. While we increased the basal proton leak rate in the diabetic model in our simulation 

(Table 3), the contribution of proton leak in total oxygen consumption rate (OCR) did not show 

much differences between healthy and diabetic (Fig 6A (A)) as observed in the previous study of 

mouse islets by Haythorne et al. [18] . The sensitivity to glucose stimulation in the ODE model 

mainly relied on the proton leak rate [42]. A larger basal proton leakage rate would shift the curves 

of calcium and ATP response rightwards (Fig. 6B), making the cells less responsive to glucose 

stimulation and more consistent with diabetic conditions, including persistent high glucose and 

lipid levels. Additionally, proton leakage across the inner mitochondrial membrane is mediated via 

uncoupler protein 2 (UCP2), which is stimulated by high nutrient levels and ROS production, and 

disrupts the mitochondrial membrane potential, ATP synthesis, and insulin secretion.[50] 

With respect to the mitochondrial network architecture, diabetic cells showed a more fragmented 

configuration than baseline cells in the model at a resting glucose concentration of 5 mM, as 

implied by a smaller average degree of mitochondrial nodes (Fig. 6), which was consistent with 

previous microscopic observations.[20,23,58] The range of the average degree of mitochondrial 

nodes across various glucose concentrations was less prominent in the diabetic model than in 

the baseline model, which might reflect that diabetic beta cells exhibit less metabolic plasticity 

than healthy beta cells (Fig. 6B (H), Fig. 7).[5,51] Aging also shows a similar metabolic syndrome 

characterized by impairments in glucose homeostasis, mitochondrial metabolism and insulin 

secretion from pancreatic β-cells.[48] Our model might be able to explain the mitochondrial 

morphology, which is prone to become swollen and fragmented with age. [59,60] 
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Analysis of fission/fusion events 

To obtain a more detailed understanding of the relationship between fusion/fission rates and 

environmental conditions, we adapted the graph-theory-based network model[46] to realize 

mitochondrial fission/fusion processes in individual mitochondria (Fig. 8). The network model 

consists of two types of fusion and fission events: tip-to-tip (C1) and tip-to-side (C2) fusion to grow 

and branch out the mitochondrial network. By observing C1 and C2 extracted and fitted to 

microscopic images from the mitochondrial network model, we could estimate the propensity of 

different types of mitochondrial fusion and fission events under different conditions. In the case of 

low to high glucose conditions, mitochondria under 1X and 3X concentrations harbored both 

higher C1 and C2, which was consistent with the network-like morphologies observed from the 

image analysis. The lower values of C1 and C2 at 0X also corroborate the fragmented morphology 

of mitochondria. Additionally, the mitochondria at 6X harbored a high value of C1, but the low C2 

was similar to that at 0X, which provided a clue to the hypothesis that the fragmentation of 

mitochondria observed at high glucose concentrations has a closer relationship to tip-to-side 

fission than tip-to-tip fission. In contrast, in toxicity fitting, significantly fragmented mitochondria 

induced by oligomycin presented a lower C1 value, and higher C1 values were found in the control 

group and in the group treated with rotenone, showing consistency between the image analysis 

results and the parameter fitting obtained from network modeling. The C2 value varies over a 

wide range among samples even under the same conditions, which may result from the few 

degree-3 nodes in all toxic conditions, which makes C2 unstable during network model stimulation 

and GA fitting. By re-visualizing the mitochondrial dynamics in the agent-based model simulation, 

“Average Degree” were tracked along with the iterations under different conditions, where 

fragmented networks such as those under oligomycin and 0X conditions owned smaller values 

during simulations. Harboring the largest C1 and C2, a simulated model for 1X showed the most 

complicated network. In contrast, a simulated network for 0X was significantly fragmented with 
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more segmented short branches, which was consistent with the results of image analysis and GA 

fitting. 

 

Fig. 8. Mitochondrial network model stimulation under various metabolic 

conditions. 

A: Workflow of mitochondrial network model simulation and fitting fission/fusion rates. The agent-

based mitochondrial network model simulating two types of fission and fusion behaviors using 

nodes, edges, and degrees are used to represent and describe the mitochondrial network. Edges 

are considered as the basic units which represent small segments of mitochondria, and nodes 

with different degrees are regarded as characteristic measurements of how fragmented the 

mitochondrial network is.  

B. Fitting fission/fusion rates of mitochondrial under different glucose concentrations and chemical 

treatment. Network parameters <k> (average degree), Ng1/N (number of nodes or edges of the 

largest cluster / total nodes or edges), Ng2/N (number of nodes or edges of the second largest 

cluster / total nodes or edges) were extracted from fluorescent images of INS-1 and used as 
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features for GA (genetic algorithm) fittings. By minimizing the distance between the distribution of 

network parameters (D(<k>, Ng1/N, Ng2/N)) extracted from fluorescent image analysis and the 

network model, the optimized C1 (ratio of the rate constants of tip-to-tip fusion to tip-to-tip fission) 

and C2 (ratio of the rate constants of tip-to-side fusion to tip-to-side fission) were obtained by 

random search of GA. Kernel Density Estimation (KDE) was used to estimate the probability 

density function of the network parameters from confocal microscopy images of mitochondria, 

and Kullback-Leibler Divergence (KLD) was used to minimize the difference between two 

distributions calculated from KDE. 

C. Agent-based model for visualization of the simulated mitochondrial networks with C1 and C2 

obtained from GA. 

D. Ten and fifteen repeats of fitting for glucose and toxicity 2D data respectively. 

E. Tracking indicator “Average Degree” of simulated networks along the iterations. 

F. Snapshots of realization of mitochondrial network in the agent-based model. 

 

Future works 

All models are abstractions to their real-world counterparts, and our ODE model is no exception. 

Our ODE model emphasizes the influence of mitochondrial bioenergetics on mitochondrial 

morphology. We made some assumptions and simplifications in the model to make it easy to 

constrain the parameters and analyze the general behavior of the model. 

In our model, glucose served as the sole energy source. Glycolysis and OXPHOS were the main 

metabolic pathways driving GSIS. Several related metabolic pathways were not explicitly covered 

in the model, such as the pentose phosphate pathway (PPP)[3,18], reactive oxygen species (ROS) 

generation and signaling[55,61], amino acid metabolism[13,18,22,62–64], lipid homeostasis[22], 

and the mitochondrial GTP (mtGTP) cycle[65]. 
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The cytosolic calcium levels in our model were steady-state averages as a function of the 

intracellular ATP/ADP ratio. Because the focus of this study is the steady-state analysis of 

metabolic (ATP, mitochondrial membrane potential) implications for mitochondrial fission/fusion 

dynamics, a steady-state average cytosolic calcium level would ease the study of model 

behaviors. To avoid introducing too much complexity into the model, the section representing 

calcium oscillations used an independent periodic function (Fig. 5 and Materials and Methods) 

rather than including full descriptions of plasma membrane electrophysiology and calcium 

signaling [41,66,67]. This simple modeling could still reproduce the curves of cytosolic calcium 

and ATP levels in the previous beta-cell study.[49] The average degree of mitochondrial nodes 

fluctuated due to varying ATP synthesis rates and mitochondrial membrane potentials, albeit at a 

smaller amplitude because the time scale of fission/fusion dynamics was substantially longer (10 

minutes) than that of calcium oscillations (2 minutes). 

In addition to ATP synthesis and proton leakage flux, several bioenergetic mechanisms are also 

involved in mitochondrial fusion/fission cycles.[6] For instance, the fusion GTPase Opa1 degrades 

in depolarized mitochondria to prevent damaged mitochondria from merging with the 

mitochondrial network.[68] Another component not included in this model was AMP-activated 

kinase (AMPK). During starvation, an increased AMP/ATP ratio activates AMPK and triggers 

downstream signal transduction pathways to promote mitochondrial fission, mitophagy, and 

biogenesis [69–71]. However, the mitochondrial mass was considered constant in our model 

without mitophagy or biogenesis processes. Additionally, the simulations focused on glucose 

levels higher than the baseline value of 5 mM; therefore, AMPK activation via starvation played a 

lesser role in our simulations. 

 

The mitochondria were assumed to be well mixed in our model with adequate fusion events[46,68]. 

Each mitochondrial node had the same metabolic activities. Therefore, the mitochondrial 

dynamics part was simplified to only two ODEs (populations of degree-2 and degree-3 nodes, 
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respectively). The average degree of nodes could represent the general trend of the mitochondrial 

network, regardless of whether it is fused or fragmented. However, an agent-based 

approach[16,44] is needed to trace individual mitochondria to monitor the health status and 

mitochondrial cluster formation. Each mitochondrial particle cost three state variables (NADH, 

calcium, and the mitochondrial membrane potential) in the ODE model. The added complexity is 

beyond the scope of this study and could be included in future work. 

 

Mitochondrial network organization and bioenergetic functions have bidirectional relationships[54]. 

Mitochondrial fission/fusion affects bioenergetic efficiency and energy expenditure, whereas the 

mitochondrial morphology changes according to the cellular energy state. The metabolic signaling 

pathways AMPK, insulin/IGF, and mTOR regulate mitochondrial dynamics for structural and 

functional adaptation. The bidirectional relationship and the detailed regulatory mechanisms still 

need further elucidation. Nonetheless, our simplified ODE model captured the changes in the 

mitochondrial network morphology under different metabolic conditions and could serve as the 

basis for future works. 

 

In conclusion, we devised a simple ODE-based mathematical model to bridge cellular 

bioenergetics and mitochondrial dynamics, and this model corroborated the behaviors based on 

fluorescence microscopy findings from INS-1 cells. The model also demonstrated that 

mitochondrial dynamics were regulated by ATP synthesis and proton leakage under various 

metabolic conditions. The mitochondrial networks were reconstructed in the agent-based 

simulations that incorporate the fission/fusion rates from the model and image analysis.  The 

combination of biophysical modeling and network analysis on experimental data can provide 

insights into the fundamental principles underlying these complex regulations of organelle 

dynamics. 
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Material and Methods 

In silico ODE model 

Our computer simulation model (Fig. 1) was built upon ten coupled ordinary differential equations 

(ODEs) that integrate the bioenergetic and mitochondrial dynamics parts of the model. The former 

was extended from the glucose-sensing beta-cell model by Fridlyand et al. [42], and the latter was 

derived from the graph theory-based mitochondrial network model by Sukhorukov et al. [20,46,72]. 

The bioenergetic part described the biochemical reactions of glycolysis, the citric acid cycle (CAC), 

oxidative phosphorylation (OXPHOS), and calcium dynamics. First, glucose is metabolized to 

pyruvate via glycolysis. Pyruvate is then consumed in the mitochondria in the citric acid cycle 

(CAC) to generate the reducing equivalents NADH and FADH2, which fuel electron transport 

chain (ETC) complexes to pump hydrogen ions out of mitochondria and thus create a voltage and 

pH difference across the inner mitochondrial membrane (IMM), which is known as the proton 

motive force (PMF). The PMF is then tapped by F1-Fo ATPase (ATP synthase) to synthesize 

ATP. The increase in the ATP/ADP ratio triggers calcium influx into the cytosol and then into the 

mitochondria through the mitochondrial calcium uniporter (MCU), which enhances the CAC and 

OXPHOS reaction rates to generate even more ATP. The influx of calcium into the cytosol also 

triggers the exocytosis of insulin-containing vesicles. The entire biological process is called 

glucose-stimulated insulin secretion (GSIS). 

Compared with the original work performed by Fridlyand et al. [42], we adjusted the mathematical 

expressions of adenine nucleotide translocator (ANT), mitochondrial sodium-calcium exchanger 

(NCLX) [31,73], and added adenylate kinase (AdK) equilibria[74] for the cytosolic ATP-ADP-AMP 

pool. All the changes were described in the Supplementary Material. Glucose-driven aerobic 

glycolysis was the sole energy source; metabolic pathways for amino acids and lipids were not 

included.[13,75] The mitochondrial dynamics section describes the fission-fusion cycles of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462897


 

30 
 

mitochondrial nodes and segments. The movement and fission/fusion process of each 

mitochondrion were not tracked individually, similar to the process in agent-based modeling. We 

assumed that the mitochondrial mass was conserved and uniform in this model. The 

mitochondrial networks were represented by edges (mitochondrial mass) and nodes of degree 1 

(end nodes), degree 2 (line segment nodes), and degree 3 (branching nodes). The fission/fusion 

cycle could be shown by the merging/splitting of the nodes (Fig. 1). The mitochondrial fission rate 

was fixed once every 10 minutes[16], and the fusion rates were scaled against the ATP synthase 

rate and the proton leakage rate[5]. At a resting glucose concentration of 5 mM (denoted as 1X), 

our in silico ODE model reached a steady state consistent with that of the original GSIS model 

(Table 2). This ensures that the alterations in our ODE model did not induce marked deviations 

from the original behavior. 

Table 2: Steady-state values of the computational model with a baseline glucose 

concentration of 5 mM 

State variables Fridlyand’s model Our model 

G3P 2.79 μM 2.90 μM 

Pyruvate 8.62 μM 8.75 μM 

Cytosolic NADH 0.97 μM 0.982 μM 

Mitochondrial NADH 60 μM 57.3 μM 

ATP/ADP ratio 4.6 4.75 

Mitochondrial calcium 0.242 μM 0.202 μM 
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Mitochondrial membrane potential (ΔΨ) 94.7 mV 92.2 mV 

Degree-1 node population N/A 0.338 

Degree-2 node population N/A 0.303 

Degree-3 node population N/A 0.01815 

 

The complete mathematical descriptions for the in silico model are described in the 

Supplementary Material. 

 

Computational environments. The in silico model was written in Julia [76] and was run on a 

workstation with two 8-core Xeon E5–2620 v4 CPUs or on machines with multiple Intel Xeon 

Processors in TWCC cloud service (https://www.twcc.ai) for high-speed parallel computing. The 

ordinary differential equations (ODEs) were solved by the DifferentialEquations.jl [77] package 

and were visualized by the PyPlot.jl package, a Julia wrapper to the Python matplotlib[78] 

visualization package. 

 

Steady-state values under a range of glucose concentrations. First, steady-state 

values were obtained with a baseline glucose concentration of 5 mM. The model was then 

simulated under a range of glucose concentrations from 3 mM to 25 mM until the model reached 

a steady state. We measured the influence of glycolytic flux on the steady-state levels of G3P, 

pyruvate, calcium, ATP, the mitochondrial membrane potential, the mitochondrial fission-fusion 

rates, and the state of the mitochondrial network. 

 

Interactions of mitochondrial energetics and dynamics. The interactions of 

mitochondrial energetics and dynamics were demonstrated by varying the glucose concentrations 
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and one mitochondrial parameter, namely, ATP synthase activity, ETC complex activity, or proton 

leakage rate. 

 

Response to calcium oscillations. The cytosolic calcium in the model represented the 

steady-state levels controlled by the cellular ATP/ADP ratio. However, in this section, the cytosolic 

calcium concentration was independent of the ATP/ADP ratio and described by a time-dependent 

oscillator: 

[𝐶𝑎2+]𝑐(𝑡) = 𝐵 + 𝐴(5𝑥 − 𝑒1−5𝑥)4, 𝑤ℎ𝑒𝑟𝑒 𝑥 =
𝑡

𝑇
− ⌊

𝑡

𝑇
⌋, 

where A is the amplitude of the cytosolic calcium concentrations, B is the resting level of calcium, 

and T is the period of the calcium oscillator. 

 

Mitochondrial dynamics in diabetic cells. We then compared how diabetic beta cells react 

to increases in glucose in terms of bioenergetics and mitochondrial dynamics. The capacities of 

pyruvate dehydrogenase (PDH), proton leakage, electron transport chain, and ATP synthase 

were altered in the simulation model to account for metabolic changes in diabetic beta cells. The 

steady-state values obtained from both settings were collected across a range of glucose levels 

from 3 mM to 30 mM. 

Table 3. Parameters adjusted for diabetic beta cells compared with the baseline 

Parameter Baseline (healthy) Diabetic 

Activity of PDH 0.3 mM/s 0.15 mM/s 

Activity of ETC 22 mM/s 16.5 mM/s 

Activity of ATP synthase 8 mM/s 4 mM/s 

Activity of proton leakage 0.0024 mM/s 0.00336 mM/s 
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Microscopic Image analysis pipeline 

INS-1 cell culture. INS-1 cells (INS-1 832/3 rat insulinoma cell line) were cultured in RPMI-

1640 (Sigma Cat. No. R0883) supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 10 

mM HEPES (Cat. No. TMS-003-C), and 0.05 mM β-mercaptoethanol + 10% FBS at 37°C in the 

presence of 5% CO2 for 1 to 3 days before imaging. 

For the glucose experiments, DMEM (no glucose, Gibco A1443001) was used as the culture 

medium after the previous medium was washed out with PBS. The culture glucose concentrations 

were 0 g/L (≈ 0 mM), 2 g/L (≈ 11.1 mM), 6 g/L (≈ 33.3 mM), and 12 g/L (≈ 88.8 mM), which are 

referred to as 0X, 1X, 3X, and 6X. Microscopic images were taken 30 minutes after the addition 

of DMEM and glucose. 

For the toxicity experiments, the culturing media were the same as those used in the glucose 

experiment. Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), oligomycin, and 

rotenone were added at a concentration of 10 μM. Microscopic images were taken immediately 

after the addition of FCCP, and in other cases, images were taken 30 minutes after addition of 

the chemicals. 

Mitochondria were labeled with 100 nM tetramethylrhodamine, methyl ester (TMRM) and 100 nM 

nonyl acridine orange (NAO) for 15 minutes before imaging. A ZEISS LSM800 with Airyscan and 

a 1.40-NA 63x objective was used for cell imaging. 

 

Image preprocessing and thresholding. The image analysis pipeline to obtain the 

mitochondrial network morphology information was based on the study performed by Chaudhry 

et al. [26] using the Fiji distribution in ImageJ2 software (Fig. 9). The inputs were TMRM or NAO 

fluorescence microscopic images of INS-1 cells. The pipeline comprised several preprocessing 

and analysis procedures. In the standard pipeline, input images were preprocessed by algorithms 

such as “Subtract Background” and “Enhance Local Contract (CLAHE)” to denoise and enhance 
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the contrast. After preprocessing, the images were binarized and skeletonized to analyze the 

mitochondrial network morphology (Table 4). 
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Fig. 9. Workflow of the image processing pipeline for mitochondrial fluorescence 

images  

Our pipeline is composed of the “Preprocessing and Threshold Part” and the “Analysis Part”. In 

the “Preprocessing and Threshold Part”, we applied several commands and algorithms from FIJI 

to obtain binary images and skeleton images, which would serve as the input images for the 

“Analysis Part”. Mitochondrial features were analyzed and calculated in the “Analysis Part” and 

were used as quantitative evidence for elucidating the morphologies and fission/fusion propensity 

of the mitochondria under certain conditions. 

For “optional adjustment” in the “Preprocessing and Threshold Part”, “add noise” and “brightness 

and contrast” could be applied according to the quality of the images and the thresholding 

performance. 

 

Table 4. Description of mitochondrial features 

The mitochondrial features consisted of two types: “particle analysis”, features derived from 

thresholded binary images, and “skeleton analysis”, features derived from skeletonized images. 

 

  Features Descriptions 

3D 

P
a
rt

ic
le

 

1) Total Volume Total volume of the whole mitochondria in cells. 

(𝜇𝑚3) 

2) Average Volume Average volume of each separated mitochondria 

(connected component) in cells. 

Average Volume = total volume/total count 
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3) Surface Area Average area of the simulated surface of each 

separated mitochondria in cells. The surfaces of 

mitochondria are estimated by “Analyze 

Particles” in FIJI. 

4) Normalized Count Normalized Count = total count/total number of 

pixels in the image 

S
k
e
le

to
n

 

1) Average Junction Mean value of the average number of junctions 

(nodes with degree equal to 3) of each separated 

mitochondria (connected component) in cells. 

2) Average Degree Mean value of the average degree of each 

separated mitochondria (connected component) 

in cells. 

3) Deg1/Deg3 Total number of degree-1 nodes divided by the 

total number of degree-3 nodes in cells. 

2D 

P
a
rt

ic
le

 

1) Total Area Total area of the whole mitochondria in cells. 

(𝜇𝑚2) 

2) Average Area Average area of each separated mitochondrion 

(connected component) in cells. 

Average Area = total area/total count 

3) Perimeter Average length of the boundary of separated 

mitochondria (connected component) in cells. 

4) Normalized Count Normalized Count = Total count/total number of 

pixels in the image 
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5) Aspect Ratio Average value of the aspect ratio of separated 

mitochondria (connected component) in cells: the 

Aspect Ratio increases when the shape of 

mitochondria becomes more elongated. 

𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 = 𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠/𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 

S
k
e
le

to
n

 

1) Normalized Deg1 Normalized Deg1 = total number of degree-1 

nodes/total number of pixels in the image 

2) Average Branch 

Length 

Mean value of the average length of branches of 

each separated mitochondria (connected 

component) in cells. 

 

Membrane potential analysis. The TMRM fluorescent intensity is an indicator of the 

mitochondrial membrane potential. We quantified the average pixel intensities of each TMRM 

image using ImageJ to evaluate the changes in the membrane potential under different glucose 

concentrations and chemical environments.  The mean value of the “Auto Threshold” values 

(obtained from FIJI) of the control group is set as the threshold. We only considered pixels with 

intensities larger than the threshold to avoid interference by background noise. 

 

Statistical analysis. One-way ANOVA was performed to analyze the data from the glucose dose-

response experiments. Welch’s t-test was applied to analyze the significant differences using the 

“ttest_ind” function from the “scipy.stats” package of Python. All data presented as boxplots were 

plotted using the “boxplot” function provided in the “matplotlib.pyplot” package of Python. The 

lower and upper bonds of the box were the first and third quartiles (Q1 and Q3) of the data, and 

the median (Q2) was the line inside the box. The lower whisker extended to the smallest data 

point being greater than Q1–1.5(Q3-Q1), and the higher whisker extended to the largest data 
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point being smaller than Q3+-1.5(Q3-Q1). Statistical significance thresholds were set as *p<0.05, 

**p<0.01, and ***p<0.001. 

 

Acknowledgment: We thank to National Center for High-performance Computing (NCHC) in 

Taiwan for providing computational and storage resources. 

Funding: The work was supported by grants from the Ministry of Science and Technology in 

Taiwan (MOST-108-2636-B-002-001 and MOST-109-2636-B-002-001 grants to AW), and the 

grants from the Research Grants Council of the Hong Kong Special Administrative Region, China 

(Project #: CUHK 14201317 and C5011-19GF to YH) and the VC Discretionary Fund, the Chinese 

University of Hong Kong (Project #: 8601014 to YH). 

Data and code availability: The model code is available at 

https://github.com/NTUMitoLab/MitochondrialDynamics. 

 

References 

1.  Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular 

mechanisms. Essays Biochem. 2018;62: 341–360. doi:10.1042/EBC20170104 

2.  Pernas L, Scorrano L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as 

Key Mediators of Cellular Function. Annu Rev Physiol. 2016;78: 505–531. doi:10.1146/annurev-

physiol-021115-105011 

3.  Montemurro C, Vadrevu S, Gurlo T, Butler AE, Vongbunyong KE, Petcherski A, et al. Cell cycle-

related metabolism and mitochondrial dynamics in a replication-competent pancreatic beta-cell 

line. Cell Cycle. 2017;16: 2086–2099. doi:10.1080/15384101.2017.1361069 

4.  Molina AJA, Wikstrom JD, Stiles L, Las G, Mohamed H, Elorza A, et al. Mitochondrial networking 

protects beta-cells from nutrient-induced apoptosis. Diabetes. 2009;58: 2303–2315. 

doi:10.2337/db07-1781 

5.  Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy 

expenditure. Cell Metab. 2013;17: 491–506. doi:10.1016/j.cmet.2013.03.002 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462897doi: bioRxiv preprint 

https://github.com/NTUMitoLab/MitochondrialDynamics
https://doi.org/10.1101/2021.10.04.462897


 

39 
 

6.  Mishra P, Chan DC. Metabolic regulation of mitochondrial dynamics. J Cell Biol. 2016;212: 379–

387. doi:10.1083/jcb.201511036 

7.  Chen H, Chan DC. Mitochondrial dynamics in regulating the unique phenotypes of cancer and 

stem cells. Cell Metab. 2017;26: 39–48. doi:10.1016/j.cmet.2017.05.016 

8.  Ma Y, Wang L, Jia R. The role of mitochondrial dynamics in human cancers. Am J Cancer Res. 

2020;10: 1278–1293.  

9.  Srinivasan S, Guha M, Kashina A, Avadhani NG. Mitochondrial dysfunction and mitochondrial 

dynamics-The cancer connection. Biochim Biophys Acta Bioenerg. 2017;1858: 602–614. 

doi:10.1016/j.bbabio.2017.01.004 

10.  Dai W, Jiang L. Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and 

cancer. Front Endocrinol (Lausanne). 2019;10: 570. doi:10.3389/fendo.2019.00570 

11.  Wiederkehr A, Wollheim CB. Mitochondrial signals drive insulin secretion in the pancreatic β-cell. 

Mol Cell Endocrinol. 2012;353: 128–137. doi:10.1016/j.mce.2011.07.016 

12.  Kennedy ED, Rizzuto R, Theler JM, Pralong WF, Bastianutto C, Pozzan T, et al. Glucose-stimulated 

insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-

expressing INS-1 cells. J Clin Invest. 1996;98: 2524–2538. doi:10.1172/JCI119071 

13.  Komatsu M, Takei M, Ishii H, Sato Y. Glucose-stimulated insulin secretion: A newer perspective. J 

Diabetes Investig. 2013;4: 511–516. doi:10.1111/jdi.12094 

14.  Jhun BS, Lee H, Jin Z-G, Yoon Y. Glucose stimulation induces dynamic change of mitochondrial 

morphology to promote insulin secretion in the insulinoma cell line INS-1E. PLoS One. 2013;8: 

e60810. doi:10.1371/journal.pone.0060810 

15.  Schultz J, Waterstradt R, Kantowski T, Rickmann A, Reinhardt F, Sharoyko V, et al. Precise 

expression of Fis1 is important for glucose responsiveness of beta cells. J Endocrinol. 2016;230: 

81–91. doi:10.1530/JOE-16-0111 

16.  Patel PK, Shirihai O, Huang KC. Optimal dynamics for quality control in spatially distributed 

mitochondrial networks. PLoS Comput Biol. 2013;9: e1003108. doi:10.1371/journal.pcbi.1003108 

17.  Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 

diabetes mellitus. Nat Rev Endocrinol. 2011;8: 92–103. doi:10.1038/nrendo.2011.138 

18.  Haythorne E, Rohm M, van de Bunt M, Brereton MF, Tarasov AI, Blacker TS, et al. Diabetes causes 

marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nat Commun. 2019;10: 2474. 

doi:10.1038/s41467-019-10189-x 

19.  Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. 

Mitochondrion. 2019;47: 151–173. doi:10.1016/j.mito.2018.11.002 

20.  Shah SI, Paine JG, Perez C, Ullah G. Mitochondrial fragmentation and network architecture in 

degenerative diseases. PLoS One. 2019;14: e0223014. doi:10.1371/journal.pone.0223014 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462897


 

40 
 

21.  Supale S, Li N, Brun T, Maechler P. Mitochondrial dysfunction in pancreatic β cells. Trends 

Endocrinol Metab. 2012;23: 477–487. doi:10.1016/j.tem.2012.06.002 

22.  Rutter GA, Georgiadou E, Martinez-Sanchez A, Pullen TJ. Metabolic and functional specialisations 

of the pancreatic beta cell: gene disallowance, mitochondrial metabolism and intercellular 

connectivity. Diabetologia. 2020;63: 1990–1998. doi:10.1007/s00125-020-05205-5 

23.  Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. 

Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 2017;11: 

637–645. doi:10.1016/j.redox.2017.01.013 

24.  Lovy A, Molina AJA, Cerqueira FM, Trudeau K, Shirihai OS. A faster, high resolution, mtPA-GFP-

based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal 

microscopy. J Vis Exp. 2012; e3991. doi:10.3791/3991 

25.  Zhang C-L, Rodenkirch L, Schultz JR, Chiu SY. A novel method to study the local mitochondrial 

fusion in myelinated axons in vivo. J Neurosci Methods. 2012;207: 51–58. 

doi:10.1016/j.jneumeth.2012.03.013 

26.  Chaudhry A, Shi R, Luciani DS. A pipeline for multidimensional confocal analysis of mitochondrial 

morphology, function, and dynamics in pancreatic β-cells. Am J Physiol Endocrinol Metab. 

2020;318: E87–E101. doi:10.1152/ajpendo.00457.2019 

27.  Zahedi A, On V, Phandthong R, Chaili A, Remark G, Bhanu B, et al. Deep analysis of mitochondria 

and cell health using machine learning. Sci Rep. 2018;8: 16354. doi:10.1038/s41598-018-34455-y 

28.  Chai X, Ba Q, Yang G. Characterizing robustness and sensitivity of convolutional neural networks 

for quantitative analysis of mitochondrial morphology. Quant Biol. 2018;6: 344–358. 

doi:10.1007/s40484-018-0156-3 

29.  Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image 

Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing 

and Computer-Assisted Intervention (MICCAI). Cham: Springer International Publishing; 2015. pp. 

234–241. doi:10.1007/978-3-319-24574-4_28 

30.  Gauthier LD, Greenstein JL, Winslow RL. Toward an integrative computational model of the 

Guinea pig cardiac myocyte. Front Physiol. 2012;3: 244. doi:10.3389/fphys.2012.00244 

31.  Nguyen M-HT, Dudycha SJ, Jafri MS. Effect of Ca2+ on cardiac mitochondrial energy production is 

modulated by Na+ and H+ dynamics. Am J Physiol Cell Physiol. 2007;292: C2004–20. 

doi:10.1152/ajpcell.00271.2006 

32.  Cortassa S, O’Rourke B, Winslow RL, Aon MA. Control and regulation of mitochondrial energetics 

in an integrated model of cardiomyocyte function. Biophys J. 2009;96: 2466–2478. 

doi:10.1016/j.bpj.2008.12.3893 

33.  Wei A-C, Aon MA, O’Rourke B, Winslow RL, Cortassa S. Mitochondrial energetics, pH regulation, 

and ion dynamics: a computational-experimental approach. Biophys J. 2011;100: 2894–2903. 

doi:10.1016/j.bpj.2011.05.027 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462897


 

41 
 

34.  Zhou L, Cortassa S, Wei A-C, Aon MA, Winslow RL, O’Rourke B. Modeling cardiac action potential 

shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig 

cardiomyocytes. Biophys J. 2009;97: 1843–1852. doi:10.1016/j.bpj.2009.07.029 

35.  Cortassa S, Aon MA. Computational modeling of mitochondrial function. Methods Mol Biol. 

2012;810: 311–326. doi:10.1007/978-1-61779-382-0_19 

36.  Magnus G, Keizer J. Minimal model of beta-cell mitochondrial Ca2+ handling. Am J Physiol. 

1997;273: C717–33. doi:10.1152/ajpcell.1997.273.2.C717 

37.  Bertram R, Gram Pedersen M, Luciani DS, Sherman A. A simplified model for mitochondrial ATP 

production. J Theor Biol. 2006;243: 575–586. doi:10.1016/j.jtbi.2006.07.019 

38.  Saa A, Siqueira KM. Modeling the ATP production in mitochondria. Bull Math Biol. 2013;75: 1636–

1651. doi:10.1007/s11538-013-9862-1 

39.  Fridlyand LE, Philipson LH. Pancreatic Beta Cell G-Protein Coupled Receptors and Second 

Messenger Interactions: A Systems Biology Computational Analysis. PLoS One. 2016;11: 

e0152869. doi:10.1371/journal.pone.0152869 

40.  Fridlyand LE, Ma L, Philipson LH. Adenine nucleotide regulation in pancreatic beta-cells: modeling 

of ATP/ADP-Ca2+ interactions. Am J Physiol Endocrinol Metab. 2005;289: E839–48. 

doi:10.1152/ajpendo.00595.2004 

41.  Fridlyand LE, Tamarina N, Philipson LH. Bursting and calcium oscillations in pancreatic beta-cells: 

specific pacemakers for specific mechanisms. Am J Physiol Endocrinol Metab. 2010;299: E517–32. 

doi:10.1152/ajpendo.00177.2010 

42.  Fridlyand LE, Philipson LH. Glucose sensing in the pancreatic beta cell: a computational systems 

analysis. Theor Biol Med Model. 2010;7: 15. doi:10.1186/1742-4682-7-15 

43.  Tam ZY, Gruber J, Halliwell B, Gunawan R. Mathematical modeling of the role of mitochondrial 

fusion and fission in mitochondrial DNA maintenance. PLoS One. 2013;8: e76230. 

doi:10.1371/journal.pone.0076230 

44.  Dalmasso G, Marin Zapata PA, Brady NR, Hamacher-Brady A. Agent-Based Modeling of 

Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity. PLoS One. 

2017;12: e0168198. doi:10.1371/journal.pone.0168198 

45.  Hoffman TE, Barnett KJ, Wallis L, Hanneman WH. A multimethod computational simulation 

approach for investigating mitochondrial dynamics and dysfunction in degenerative aging. Aging 

Cell. 2017;16: 1244–1255. doi:10.1111/acel.12644 

46.  Sukhorukov VM, Dikov D, Reichert AS, Meyer-Hermann M. Emergence of the mitochondrial 

reticulum from fission and fusion dynamics. PLoS Comput Biol. 2012;8: e1002745. 

doi:10.1371/journal.pcbi.1002745 

47.  Kornick K, Bogner B, Sutter L, Das M. Population dynamics of mitochondria in cells: A minimal 

mathematical model. Front Phys. 2019;7. doi:10.3389/fphy.2019.00146 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462897


 

42 
 

48.  Fridlyand LE, Phillipson LH. Mechanisms of glucose sensing in the pancreatic β-cell: A 

computational systems-based analysis. Islets. 2011;3: 224–230.  

49.  Gregg T, Poudel C, Schmidt BA, Dhillon RS, Sdao SM, Truchan NA, et al. Pancreatic β-Cells From 

Mice Offset Age-Associated Mitochondrial Deficiency With Reduced KATP Channel Activity. 

Diabetes. 2016;65: 2700–2710. doi:10.2337/db16-0432 

50.  Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307: 384–

387. doi:10.1126/science.1104343 

51.  Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol 

Rev. 2009;89: 799–845. doi:10.1152/physrev.00030.2008 

52.  Boissan M, Montagnac G, Shen Q, Griparic L, Guitton J, Romao M, et al. Membrane trafficking. 

Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane 

remodeling. Science. 2014;344: 1510–1515. doi:10.1126/science.1253768 

53.  Lacombe M-L, Tokarska-Schlattner M, Boissan M, Schlattner U. The mitochondrial nucleoside 

diphosphate kinase (NDPK-D/NME4), a moonlighting protein for cell homeostasis. Lab Invest. 

2018;98: 582–588. doi:10.1038/s41374-017-0004-5 

54.  Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, et al. Mitochondrial 

bioenergetics and structural network organization. J Cell Sci. 2007;120: 838–848. 

doi:10.1242/jcs.03381 

55.  Koopman WJH, Verkaart S, Visch H-J, van der Westhuizen FH, Murphy MP, van den Heuvel LWPJ, 

et al. Inhibition of complex I of the electron transport chain causes O2-. -mediated mitochondrial 

outgrowth. Am J Physiol Cell Physiol. 2005;288: C1440–50. doi:10.1152/ajpcell.00607.2004 

56.  Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, et al. Functional and morphological 

alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia. 

2005;48: 282–289. doi:10.1007/s00125-004-1627-9 

57.  Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to 

functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12: 537–577. 

doi:10.1089/ars.2009.2531 

58.  Dlasková A, Spacek T, Santorová J, Plecitá-Hlavatá L, Berková Z, Saudek F, et al. 4Pi microscopy 

reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an 

experimental model of type-2 diabetes. Biochim Biophys Acta. 2010;1797: 1327–1341. 

doi:10.1016/j.bbabio.2010.02.003 

59.  Amartuvshin O, Lin C-H, Hsu S-C, Kao S-H, Chen A, Tang W-C, et al. Aging shifts mitochondrial 

dynamics toward fission to promote germline stem cell loss. Aging Cell. 2020;19: e13191. 

doi:10.1111/acel.13191 

60.  Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and 

healthy aging. EMBO Rep. 2019;20: e48395. doi:10.15252/embr.201948395 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462897


 

43 
 

61.  Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic 

conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA. 

2006;103: 2653–2658. doi:10.1073/pnas.0511154103 

62.  Stark R, Kibbey RG. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) 

and glucose homeostasis: has it been overlooked? Biochim Biophys Acta. 2014;1840: 1313–1330. 

doi:10.1016/j.bbagen.2013.10.033 

63.  Lien EC, Vander Heiden MG. Pancreatic β cells put the glutamine engine in reverse. Cell Metab. 

2021;33: 702–704. doi:10.1016/j.cmet.2021.03.010 

64.  Zhang G-F, Jensen MV, Gray SM, El K, Wang Y, Lu D, et al. Reductive TCA cycle metabolism fuels 

glutamine- and glucose-stimulated insulin secretion. Cell Metab. 2021;33: 804–817.e5. 

doi:10.1016/j.cmet.2020.11.020 

65.  Jesinkey SR, Madiraju AK, Alves TC, Yarborough OH, Cardone RL, Zhao X, et al. Mitochondrial GTP 

links nutrient sensing to β cell health, mitochondrial morphology, and insulin secretion 

independent of oxphos. Cell Rep. 2019;28: 759–772.e10. doi:10.1016/j.celrep.2019.06.058 

66.  Klec C, Ziomek G, Pichler M, Malli R, Graier WF. Calcium Signaling in ß-cell Physiology and 

Pathology: A Revisit. Int J Mol Sci. 2019;20. doi:10.3390/ijms20246110 

67.  Bertram R, Sherman A, Satin LS. Electrical, calcium, and metabolic oscillations in pancreatic islets. 

In: Islam MS, editor. Islets of Langerhans. Dordrecht: Springer Netherlands; 2015. pp. 453–474. 

doi:10.1007/978-94-007-6686-0_10 

68.  Mouli PK, Twig G, Shirihai OS. Frequency and selectivity of mitochondrial fusion are key to its 

quality maintenance function. Biophys J. 2009;96: 3509–3518. doi:10.1016/j.bpj.2008.12.3959 

69.  Lin S-C, Hardie DG. AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metab. 2018;27: 

299–313. doi:10.1016/j.cmet.2017.10.009 

70.  Toyama EQ, Herzig S, Courchet J, Lewis TL, Losón OC, Hellberg K, et al. Metabolism. AMP-activated 

protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351: 

275–281. doi:10.1126/science.aab4138 

71.  Curry DW, Stutz B, Andrews ZB, Elsworth JD. Targeting AMPK signaling as a neuroprotective 

strategy in parkinson’s disease. J Parkinsons Dis. 2018;8: 161–181. doi:10.3233/JPD-171296 

72.  Zamponi N, Zamponi E, Cannas SA, Billoni OV, Helguera PR, Chialvo DR. Mitochondrial network 

complexity emerges from fission/fusion dynamics. Sci Rep. 2018;8: 363. doi:10.1038/s41598-017-

18351-5 

73.  Dash RK, Beard DA. Analysis of cardiac mitochondrial Na+-Ca2+ exchanger kinetics with a 

biophysical model of mitochondrial Ca2+ handling suggests a 3:1 stoichiometry. J Physiol (Lond). 

2008;586: 3267–3285. doi:10.1113/jphysiol.2008.151977 

74.  Golding EM, Teague WE, Dobson GP. Adjustment of K’ to varying pH and pMg for the creatine 

kinase, adenylate kinase and ATP hydrolysis equilibria permitting quantitative bioenergetic 

assessment. J Exp Biol. 1995;198: 1775–1782.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462897


 

44 
 

75.  Nicholls DG. The Pancreatic β-Cell: A Bioenergetic Perspective. Physiol Rev. 2016;96: 1385–1447. 

doi:10.1152/physrev.00009.2016 

76.  Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to numerical computing. 

SIAM Rev. 2017;59: 65–98. doi:10.1137/141000671 

77.  Rackauckas C, Nie Q. DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for 

Solving Differential Equations in Julia. J Open Res Softw. 2017;5. doi:10.5334/jors.151 

78.  Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007;9: 90–95. 

doi:10.1109/MCSE.2007.55 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462897

