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ABSTRACT

Humans and animals can flexibly choose their actions based on different information, ranging 

from objective states of the environment (e.g., apples are bigger than cherries) to subjective 

preferences (e.g., cherries are tastier than apples). Whether the brain instantiates these 

different choices by recruiting either specialized or shared neural circuitry remains debated. 

Specifically, domain-general theories of prefrontal cortex (PFC) function propose that 

prefrontal areas flexibly process either perceptual or value-based evidence depending on 

what is required for the present choice, whereas domain-specific theories posit that PFC sub- 

areas, such as the left superior frontal sulcus (SFS), selectively integrate evidence relevant 

for perceptual decisions. Here we comprehensively test the functional role of the left SFS for 

choices based on perceptual and value-based evidence, by combining fMRI with a 

behavioural paradigm, computational modelling, and transcranial magnetic stimulation. 

Confirming predictions by a sequential sampling model, we show that TMS-induced 

excitability reduction of the left SFS selectively changes the processing of decision-relevant 

perceptual information and associated neural processes. In contrast, value-based decision 

making and associated neural processes remain unaffected. This specificity of SFS function is 

evident at all levels of analysis (behavioural, computational, and neural, including functional 

connectivity), demonstrating that the left SFS causally contributes to evidence integration for  

perceptual but not value-based decisions. 
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INTRODUCTION

Humans and animals choose their actions based on diverse types of information. For 

instance, during perceptual decisions, organisms discriminate choice options based on 

objective states of the environment (e.g., apples are bigger than cherries), whereas during 

value-based decisions, organisms make choices based on subjective preferences (e.g., 

cherries are tastier than apples). The degree to which the brain instantiates these different 

types of choices by specialized or shared neural circuitry is debated (Summerfield and 

Tsetsos 2012, Tajima et al, 2016, Polania et al 2015, Deco et al., 2013). 

From a computational perspective, sequential-sampling frameworks propose that all 

types of choices should involve the continuous accumulation of evidence about the choice 

alternatives until a decision criterion is met and a motor action is executed (Busemeyer and 

Townsend 1993, Dutilh & Rieskamp 2016, Gold & Shadlen 2007, Krajbich 2019, Mazurek et 

al 2003, Ratcliff and Mckoon 1988, Usher & McClelland 2001). Computational modelling 

studies have largely confirmed that such a framework is applicable to both perceptual 

(Mazurek et al 2003, Moran 2015, Ratcliff and Mckoon 1988, Ratcliff & Rouder 1998) as well 

as value-based decisions (Busemeyer & Townsend 1993, Tajima et al 2016, Usher & 

McClelland 2001), suggesting that evidence accumulation processes may constitute a 

domain-general decision mechanism (Bogacz et al 2006, Dutilh & Rieskamp 2016, Gerstner 

et al 2012, Smith & Ratcliff 2004, Usher & McClelland 2001). 

Empirical support for the neural instantiation of such domain-general choice 

mechanisms, however, is sparse. Neuroimaging studies in the brains of rodents, monkeys and 

humans have largely focussed on perceptual evidence accumulation (Brody and Hanks 2016, 

Gold and Shadlen 2007, Hanks et al 2015, Mulder et al 2014). Seminal human imaging studies 

of perceptual decision making have repeatedly implicated the superior frontal sulcus (SFS), 

a portion of the dorsolateral prefrontal cortex (DLPFC), in that process (Heekeren et al 2004, 

Heekeren et al 2008, Kayser et al 2010, Keuken et al 2014, Mulder et al 2014, Ploran et al 
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2007, White et al 2012). Moreover, disruption of the human left SFS with non-invasive brain 

stimulation impacted on behavioural performance and response speed in a face-house 

classification task, in a manner consistent with reduction of evidence accumulation processes 

as defined in sequential sampling models (Philiastides et al 2011). This has been taken as 

causal evidence that the left SFS supports perceptual evidence accumulation during decision 

making. 

However, this specificity has been questioned, since the SFS is part of a frontoparietal 

network that has long been associated with domain-general attentional processing and 

cognitive control (Dodds et al 2011, Marek and Dosenbach 2018, Scolari et al 2015, Dixon et 

al 2018). It is therefore often argued that behavioural changes following SFS disruption may 

not reflect specific decision-making deficits but rather reductions in general levels of 

cognitive performance (Muhle-Karbe et al 2018, Mayer et al., 2017, Grueschow et al., 2020). 

Relatedly, animal lesion studies have questioned whether the structures showing activity 

resembling integration processes really serve this function (Erlich et al 2015, Hanks et al 

2015, Piet et al 2017). For instance, while earlier work in rodents associated neural firing 

with an accumulation mechanism in the DLPFC during the perceptual choice process (Ding 

and Gold 2012b, Heitz and Schall 2012, Kim and Shadlen 1999, Mante et al 2013, Purcell et al 

2010), recent inactivation studies argue that DLPFC activity appears more consistent with 

categorical encoding of decision choices, potentially even resembling a post-categorization 

memory trace (Erlich et al 2015, Hanks et al 2015, Piet et al 2017). Hence, while some causal 

contribution of SFS to perceptual decision making is undisputed, its precise contribution to 

the decision-making processes, and the selectivity of this contribution, remains to be 

resolved, in particular in relation to processes predicted by sequential sampling models. 

The ambiguity about the SFS’s precise causal function is also apparent in 

contradictory findings of human non-invasive brain stimulation studies employing the DDM 

(Philiastides et al 2011, Rahnev et al 2016). That is, one study reported that SFS disruption 
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during a speeded perceptual categorization task reduced accuracy and increased response 

times (Philiastides et al 2011) and found associated decreases in drift rate, the DDM 

parameter describing the efficiency of sensory evidence integration. In contrast, another 

human brain stimulation study suggested that behavioural changes due to SFS disruption 

during a perceptual 2AFC task reflect decreased response caution, characterized by faster 

response speed but decreased choice precision. Simulations with the same DDM modelling 

framework (Rahnev et al 2016) suggested that the decision threshold parameter, rather than 

the drift-rate, could account for individual behavioral changes. Simultaneously acquired fMRI 

data suggested that SFS does not code the rate of integration but rather the necessary amount 

of evidence to be accumulated for the perceptual choice at hand (Rahnev et al 2016). These 

inconsistent findings reveal a substantial level of uncertainty in the literature about which 

precise functional role the SFS serves during perceptual decision making.

Last but not least, the domain-specificity of the SFS contribution is unclear, since 

direct comparisons with other types of decision-making are largely missing. Even though 

some previous studies have suggested that DLPFC activity may reflect value-based evidence 

integration (Basten et al 2010, Sokol-Hessner et al 2012), it is hard to directly compare the 

implicated neural processes to those underlying perceptual choices, due to major differences 

in the stimuli and experimental approaches classically used in each domain (Balleine 2007, 

Gold and Shadlen 2007, Heekeren et al 2004, Krawczyk 2002). While there are good 

theoretical reasons to believe that common mechanisms may underlie both perceptual and 

value-based choices (Chawla and Miyapuram 2018, Summerfield and Tsetsos 2012), the 

number of studies directly comparing the neural mechanisms between both choice domains 

is surprisingly limited. The few existing studies have all used correlational neuroimaging 

techniques (Grueschow et al 2015, Polania et al 2014), and no study to date has used causal 

brain-stimulation techniques in combination with neuroimaging to directly compare the 

neuro-computational contributions of the SFS to both types of choice. 
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Here we provide such a detailed comparison. We applied continuous theta-burst 

transcranial magnetic stimulation (cTBS) followed by functional magnetic resonance imaging 

(fMRI) while human participants alternated between perceptual and value-based choices 

based on matched stimuli and involving the same motor responses. We modeled the 

observed behavioural changes with the DDM, allowing us to causally associate the stimulated 

SFS region to specific underlying latent sub-processes of the unfolding decision (Mulder et al 

2014, Polania et al 2015). This computational framework provides us with clear testable 

hypotheses regarding possible effect patterns on the behavioural, computational, and neural 

levels. For instance, if SFS neurons indeed selectively accumulate perceptual evidence, we 

should find that their inhibition by cTBS leads to decreases in choice precision and increases 

in reaction times,  a behavioural pattern that corresponds to a decrease in the DDM drift-rate 

parameter (Philiastides et al 2011) and to concurrent increases in BOLD signals (caused by 

prolonged neural evidence accumulation; Fig 1a-c). Critically, a different pattern can be 

expected when SFS neurons are involved in setting the criterion, i.e., determining the amount 

of evidence that needs to be accumulated for a perceptual choice to be taken. In this case, SFS 

inhibition should result in decreases in both choice precision and reaction times, a decrease 

in the DDM boundary parameter (Rahnev et al 2016), and a reduction in associated neural 

activity due to the lower amount of evidence accumulated during the shorter response time 

(Fig. 1d-f). Here we directly test these two contrasting scenarios, by characterizing the 

behavioral, neural, and neuro-computational consequences of cTBS to the left superior 

frontal sulcus (SFS). Crucially, we also investigate for both possible outcomes whether the 

functional contribution of the SFS during decision making is indeed specific for perceptual 

choices, by comparing the results between the two matched types of choices. 
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FIGURE 1. Study hypotheses. Scenario 1: left SFS is causally involved in evidence 

accumulation. Theta-burst induced inhibition of left SFS should lead to reduced evidence 

accumulation (A), expressed as lower accuracy (A, 2nd row, left), slowing of RTs (A, 2nd row, 

right), and a reduction of DDM drift rate (B, right) without any effect on the boundary 

parameter (B,  left). Since the neural activity devoted to evidence accumulation (area under 

the curve) should increase (C, left), we would expect higher BOLD signal in this case (C, 

right).  Scenario 2: left SFS is causally involved in setting the choice criterion. Theta-burst 

induced inhibition of left SFS should lead to a lower choice criterion (D), expressed as lower 

choice accuracy (D, 2nd row, left), faster RTs (D, 2nd row, right), and a reduced DDM decision 

boundary parameter (E, left) without any effect on the DDM drift-rate (E, right). At the 

neural level, we should observe reduced BOLD activity due to the lower amount of evidence 
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processed by the neurons (F, right), and reflected by the smaller area under the evidence-

accumulation curve when it reaches the lower boundary (F, left). 

RESULTS

The Experiment. We recorded functional magnetic resonance imaging (fMRI) data from 

hungry, healthy participants (𝑛 = 20) performing perceptual- and value-based choice-tasks 

in alternation (Methods and Fig. 2b). For perceptual decisions, participants chose the larger 

food item, while for value-based decisions, participants chose which food item they would 

prefer to receive and consume by the end of the experiment. The stimuli and motor responses 

were identical for both tasks. Choice pairings were predetermined based on participant’s 

individual subjective perceptual- and value-based ratings of the food items, obtained just 

prior to the scanning session. Perceptual evidence was defined as the size difference (SD) 

between the food items, whereas value evidence was defined as the difference in value 

ratings (VD) between the choice alternatives (see Methods and Fig. 2b). A choice was 

classified as correct when it was consistent with the previously acquired ratings regarding 

size and preference respectively, i.e., when the larger-rated item was chosen for perceptual 

decisions or the higher-valued item was chosen for value-based decisions (Polania et al., 

2014, 2015).

Before scrutinizing the role of the left SFS for either type of decision making, we first 

confirmed the validity of our choice paradigm behaviourally and neurally. Behavioral 

regressions confirmed that our experimental design allowed for a clear computational 

separation of both choice types: During perceptual decisions, participants relied exclusively 

on perceptual evidence, as reflected in both increased choice accuracy (main effect SD, 

𝛽 = 0.560,𝑝 < 0.001 and VD, 𝛽 = 0.023,𝑝 = 0.178; Fig. 2c) and faster reaction times (RTs) 

with larger perceptual evidence but not value-based evidence (main effect SD, 
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𝛽 = ―0.057,𝑝 < 0.001 and VD, 𝛽 = ―0.002,𝑝 = 0.281; Fig. 2c). Conversely, participants relied 

only on value evidence during value-based decisions, as evident from both choice accuracy 

(main effect VD, 𝛽 = 0.245,𝑝 < 0.001 and SD, 𝛽 = ―0.254,𝑝 = 0.123; Fig. 2c) and RTs (main 

effect VD, 𝛽 = ―0.016,𝑝 = 0.011 and SD, 𝜙 = ―0.003,𝑝 = 0.419; Fig. 2c) irrespective of the 

items’ size difference. Thus, our results replicate previous findings obtained with a similar 

paradigm (Polania et al., 2014, 2015; Grueschow et al., 2015) that participants can use 

exclusively task-relevant evidence to make choices, and they confirm the suitability of our 

paradigm for directly comparing perceptual and value-based decisions with matched stimuli 

and motor responses.

FIGURE 2. Behavioral food choice paradigm, theta-burst stimulation protocol, and 

behavioral regressions. (a) Example of decision stage. Participants were cued in advance 

about the type of decision required. Perceptual decisions required participants to choose the 

food item with the largest size while value-based decisions required participants to choose 

the food item they preferred to consume at the end of the experiment. Participants alternated 

between blocks of perceptual (blue) or value-based (red) choice trials (7-9 trials per task-

block). (b) Regression results show that the larger the evidence strength, the more likely 

decision makers will respond accurately. Choice accuracy is only related to the evidence that 
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is currently task-relevant (size difference SD for perceptual or value difference VD for value-

based choice), not to the task-irrelevant evidence (RT is reaction time of current choice) .  (c) 

Similarly, we show that RTs are negatively associated only with the task-relevant evidence 

(and lower for perceptual choices overall, captured by regressor CH (1 = perceptual, 0 = 

value-based)). Consistent with previous findings, the results in (b) and (c) confirm that our 

paradigm can distinguish and compare evidence processing for matched perceptual- and 

value-based decisions. Error bars in (b) and (c) represent the 95% confidence interval range 

of the estimated effect sizes. * 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. (d) Theta-burst 

stimulation protocol. After the fourth pre-TMS run, participants received continuous theta-

burst stimulation (cTBS) over the left SFS region of interest (ROI) (area encircled and colored 

blue). cTBS consisted of 200 trains of 600 pulses of 5 Hz frequency for 50 s. 

In line with the behavioural results that participants depended on different evidence 

for the two types of choices, initial fMRI analysis revealed that neural activations strongly 

differed between choice types (despite the fact that participants saw the same images and 

gave the same motor responses). In line with previous findings (Grueschow et al., 2015), we 

found that while visual and motor areas were jointly activated for both types of choices (

𝑝 < 0.05, FWE-corrected with cluster forming thresholds at 𝑇(19) > 2.9; Supplementary Fig 

1a. and Supplementary Table 1), perceptual decisions led to stronger recruitment of the 

posterior parietal cortex whereas value-based decisions led to stronger activations of  the 

medial prefrontal cortex and posterior cingulate cortex  (Supplementary Fig 1b. and 

Supplementary Table 2). These choice-type-specific brain activations, in response to 

identical visual input and motor output, ascertain that participants recruit task-specific brain 

regions depending on the choice domain. 

Behavior: Theta-burst stimulation reduces choice accuracy only for perceptual 

decisions

Our experiment was divided into pre- and post-stimulation blocks. After participants had 

performed four pre-stimulation session-blocks inside the scanner, they received continuous 
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theta burst stimulation (cTBS) (Huang et al., 2005; Di Lazzaro et al., 2005, 2008) over the left 

SFS (MNI coordinates, 𝑥 = ―24,𝑦 = 24,𝑧 = 36; Heekeren et al., 2004; Philiastides et al., 2011; 

Grueschow et al., 2018). Following this intervention, participants completed four post-

stimulation fMRI blocks. By comparing the effects of stimulation on both types of behavior 

and brain activity between post- and pre-stimulation blocks, we identify the role of SFS for 

either type of decision making. In particular, we examined whether the SFS is indeed 

selectively involved in perceptual decisions as previously suggested (Heekeren et al., 2004, 

2006; Rahnev et al., 2016; Philiastides et al., 2011). 

Our results support the hypothesis that the SFS has a specific role for perceptual 

decision making, on several experimental levels. Behaviourally, we found that SFS-cTBS led 

to a significant decrease from pre- to post-cTBS blocks in accuracy for perceptual choices 

(main stimulation effect, 𝛽 = ―0.465 ± 0.342, 𝑝 = 0.008; Fig. 3a and Supplementary Fig. 

2a), while value-based choice consistency remained unaffected by SFS stimulation (

𝛽 = ―0.042 ± 0.205,𝑝 = 0.691; Fig. 3a and Supplementary Fig. 2a). These differences were 

significant in direct comparison (stimulation ×  task interaction, 

𝛽 = ―0.094 ± 0.087,𝑝 = 0.034; Fig. 3a; Supplementary Fig. 2c and Supplementary Table 

2). Interestingly, SFS-cTBS had comparable effects on reaction times in both tasks: Faster RTs 

were observed after SFS-cTBS for both perceptual (main stimulation effect, 

𝛽 = ―0.116 ± 0.067,𝑝 = 0.003; Fig. 3b  and Supplementary Fig. 2b) and value-based 

choices (main stimulation effect, 𝛽 = ―0.125 ± 0.063,𝑝 = 0.001; Fig. 3b and Supplementary 

Fig. 2b), with no significant difference between these two effects (stimulation ×  task 

interaction, 𝛽 = 0.009 ± 0.069,𝑝 = 0.795; Fig. 3b; Supplementary Fig. 2c and 

Supplementary Table 2). These common changes in RTs from the first to the second half of 

the experiment may not reflect TMS-related changes in SFS function but rather general 

training effects common to both tasks (Hyman, 1953; Mowbray and Rhoades, 1959; Mawase 
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et al., 2018). We examined this possibility in more detail with computational modelling in the 

next section.

Modelling: SFS-TMS reduces decision boundary only for perceptual decisions 

To examine in detail which specific latent decision process was affected by the SFS-cTBS, we 

fit the hierarchical drift diffusion model (HDDM) simultaneously to the accuracy and RT data 

of our participants. This canonical model of choices allowed us to identify and disentangle 

the effect of stimulation on various latent variables representing distinct components of the 

choice mechanism (Ratcliff, 1978; Ratcliff and Smith, 2004; Ratcliff and McKoon, 2008; 

Polania et al., 2015; Supplementary Fig. 3 and see Methods). A specific focus of this analysis 

was on whether SFS-cTBS would change the way participants set the decision threshold 

(boundary parameter; Rahnev et al., 2016; Bogacz et al., 2010; Domenech and Dreher, 2010; 

Herz et al., 2016) or the efficiency with which choice-relevant evidence is accumulated (drift-

rate, Philiastides et al., 2011; Basten et al., 2010) (see Methods for more details and Figure 

1b,e). 

Our results are consistent with a causal role for the left SFS in setting the decision 

threshold of perceptual choices: For perceptual decisions, our computational analysis reveals 

a significant post-cTBS decrease in boundary (see Methods; 𝑝𝑀𝐶𝑀𝐶 = 0.003; Fig. 3c and 

Supplementary Fig. 5a) but no such effect for any of the other parameters (𝑝𝑀𝐶𝑀𝐶 = 0.822 

for drift rate; Fig 3d and Supplementary Fig. 5b,c). For value-based decisions, by contrast, 

no effect of cTBS was observed for either of the two decision-relevant parameters (𝑝𝑀𝐶𝑀𝐶

= 0.115 for boundary and 𝑝𝑀𝐶𝑀𝐶 = 0.758 for drift rate; Fig. 3c,d and Supplementary Fig. 

5a,b,c), supporting the specificity of the SFS involvement in perceptual decisions. This 

conclusion was further corroborated by direct comparison of these effects, which showed 

that SFS-cTBS had a significantly stronger impact on the boundary parameter for perceptual 

compared to value-based decisions (stimulation ×  task interaction for the decision 
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threshold, 𝑝𝑀𝐶𝑀𝐶 = 0.045; Supplementary Fig. 5a; there were no such differences for drift-

rate; 𝑝𝑀𝐶𝑀𝐶 = 0.685; Supplementary Fig. 5b). 

FIGURE 3 Theta-burst stimulation over the left SFS affects choice behavior and 

selectively lowers the decision boundary for perceptual but not value-based choices. 

(a) Accuracies and (b) response times (RTs) for perceptual (blue) and value-based (orange) 

decisions for different evidence levels during pre-cTBS (dark) and post-cTBS (light) 

stimulation periods. Error bars in (a) and (b) represent s.e.m. Consistent with previous 

findings, stronger evidence leads to more accurate choices and faster RTs in both types of 

decisions. Importantly, theta-burst stimulation significantly lowered choice accuracy 

selectively for perceptual, not value-based decisions (negative main stimulation effect for 

perceptual decisions and negative stimulation ×  task interaction; Supplementary Fig. 2c 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.462977doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462977
http://creativecommons.org/licenses/by/4.0/


14

and see also Supplementary Fig. 2a for changes in choice accuracy across runs). 

Additionally, theta-burst stimulation also significantly lowered RTs in both choice types 

(negative main stimulation effect; Supplementary Fig. 2c and see also Supplementary Fig. 

2b for changes in RTs across runs). (c) Theta-burst stimulation selectively decreased the 

decision boundary in perceptual decisions only (difference between estimated posterior 

population distributions; see Methods and Supplementary Fig. 5a for a detailed post-hoc 

analysis). All the other parameters, particularly (d) the drift rate (see also Supplementary 

Fig. 5b for post-hoc analysis) remain unaffected by stimulation. Error bars in (c) and (d) 

represent the 95% confidence interval range of the posterior estimates of the DDM 

parameters. * 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001.

Examining other DDM parameters showed that the faster RTs observed for value-

based decisions after the stimulation did not reflect evidence-dependent choice processes, 

but rather a change in non-decision-related sensorimotor processes (nDT) (see Methods; 

Supplementary Fig. 3), a DDM parameter that indexes constant latencies associated with 

sensory and motor preparation processes that are invariant across trials with different 

choice evidence (Verdonck and Tuerlinckx, 2016; Starns and Ma, 2017). This parameter was 

marginally decreased after stimulation for value-based (𝑝𝑀𝐶𝑀𝐶 = 0.062) but not perceptual 

decisions (𝑝𝑀𝐶𝑀𝐶 = 0.707) (Supplementary Fig. 4b and 5c), with a significant difference 

between these effects (𝑝𝑀𝐶𝑀𝐶 = 0.041; Supplementary Fig. 5c). A decrease in nDT is 

unrelated to changes in the evidence accumulation process (Feltgen and Daunizeau, 2020; 

White et al., 2018) and may therefore reflect learning processes (Hyman, 1953; Mawase et 

al., 2018). 

fMRI: SFS activation changes for perceptual choices in line with model predictions

To investigate whether our behavioural and computational results directly relate to task-

specific disruption of neural activity in left SFS, we investigated BOLD response changes in 

this brain area after stimulation. We exploited the fact that our fitted DDM and its latent 
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parameters make clear predictions about how BOLD responses in this area should change if 

the stimulation affects the neural computations involved in setting the boundary for the 

necessary amount of evidence accumulation. Importantly, these predictions translate to clear 

parametric regressors that we can use for trialwise analysis of fMRI data (Basten et al., 2010; 

Domenech et al., 2018; Liu and Pleskac, 2011). More specifically, we expected that the BOLD 

signal level is proportional to the DDM’s accumulated evidence (aE), defined as the area 

below the modelled evidence accumulation curve up until the accumulator reaches the 

decision boundary (Liu and Pleskac, 2011; Domenech et al., 2018; Basten et al., 2010). Using 

subject-wise DDM latent parameters, the average area below the decision boundary for each 

evidence level can be computed as a function of each participant’s decision boundary divided 

by the mean drift rate (see Fig. 1c and 1f and Methods for more details). Using the more 

detailed trialwise measures, however, the same area can be computed as a function of each 

trial’s RTs divided by the evidence level, since according to the DDM, the duration of response 

times is directly proportional to the decision boundary, and the evidence level is directly 

proportional to the slope of the drift rate (Ratcliff and Rouder, 1998; Ratcliff and McKoon, 

2008; see Methods for more details). Exploiting these two known facts from the DDM thus 

allows us to extend our test of the stimulation effect from individual-specific latent 

parameters to trialwise regressors and behavioral measures. Higher SFS BOLD signals are 

associated with higher 𝑎𝐸 and vice versa (Basten et al., 2010; Liu and Pleskac, 2011; Filimon 

et al, 2013; Tosoni et al., 2009), implying that a TMS intervention lowering the decision 

boundary should lower aE and therefore BOLD signals. Crucially, these latent changes 

predicted by the DDM should also be reflected in the subject-level simulations of accumulated 

evidence constructed from the DDM parameters. 

Thus, we first tested whether our neural hypotheses would already be evident in the 

simulated trial-wise aE regressors. We used individual parameters identified by fitting our 

computational framework to simulate expected neural activity on a trial-wise basis across 
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participants. To this end, we derived the predicted aE from the model parameters for each 

participant. A comparison across cTBS and task conditions confirmed the predicted cTBS-

related decrease in accumulated perceptual evidence for perceptual decisions (𝑝𝑚𝑐𝑚𝑐 =

0.003; Fig. 4a and Supplementary Fig. 6b), the corresponding null effect for value-based 

decisions (𝑝𝑚𝑐𝑚𝑐 = 0.100; Fig. 4b and Supplementary Fig. 6b), and a significant difference 

for this effect between both choice types (one-sided 𝑝𝑚𝑐𝑚𝑐 = 0.048; Supplementary Fig. 6b). 

In the next step, we used the trial-by-trial accumulated evidence as a regressor in the 

statistical analysis of the BOLD signals, allowing us to test whether the left SFS shows the 

predicted changes in neural response to varying levels of perceptual evidence. First, we 

tested whether our predictor of neural accumulated evidence was represented in BOLD 

signals of similar task-specific areas as reported previously for perceptual choices in SFS 

(Heekeren et al, 2004, 2006) and for value-based choices in vmPFC (De Martino et al, 2013; 

Grueschow et al, 2015). This was confirmed by the data: During perceptual choices, trialwise 

aE correlated with BOLD activity in the left SFS (peak at 𝑥 = ―21,𝑦 = 26,𝑧 = 37; SVC < 0.05; 

Supplementary Fig. 7b and Supplementary Table 3) whereas during value-based choices, 

it related to BOLD activity in the ventromedial prefrontal cortex (vmPFC) (peak at 

𝑥 = 3,𝑦 = 38,𝑧 = ―17; 𝑆𝑉𝐶 < 0.05; Supplementary Fig. 7e) and the nucleus accumbens 

(peak at 𝑥 = 9,𝑦 = 11,𝑧 = ―11; 𝑝 < 0.05, FWE-corrected with cluster-forming thresholds at 𝑇

(19) > 2.9; Supplementary Fig. 7e). For both types of choices, domain-general 

representations of aE were also evident (see Supplementary Fig. 7 and Supplementary 

Table 3). 
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FIGURE 4. Neural representation of accumulated evidence in the left SFS is disrupted 

after theta-burst stimulation, and is linked with behavior and neural computation. (a) 

Left panel: Accumulated evidence (AE) simulation derived from the fitted DDM (left panel). 

Previous studies have illustrated how the accumulation-to-bound process convolved with the 

hemodynamic response function (HRF) results in BOLD signals; hence, the simulated AE 

provides a suitable prediction of BOLD responses in brain regions involved in evidence 

accumulation. Theta-burst stimulation selectively decreased AE for (a) perceptual (blue), not 

(b) value-based (orange) decisions (see Supplementary Fig. 6b for post-hoc analysis). We 

constructed a trialwise measure of accumulated evidence using RTs and evidence strength 

for our parametric modulator (see Methods). Individual ROIs extracted from the left SFS 

representing accumulated evidence across runs (right panels; see Methods) show that 

consistent with the DDM prediction, theta-burst stimulation selectively decreased BOLD 

response representing AE in left SFS during perceptual, not value-based decisions. Error bars 
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in the left panels of (a) and (b) represent the 95% confidence interval range of the posterior 

estimates of the DDM parameters, while error bars in their respective right panels represent 

s.e.m. (c) Comparing pre- and post-cTBS contrasts of BOLD signals related to accumulated 

evidence, during perceptual decisions, show signal changes in left SFS (green) after theta-

burst stimulation. Further contrasts comparing pre-post difference across both choice types 

(blue) confirm the selectivity of TMS effects for perceptual decisions. (d) To test the link 

between neural and behavioural effects of TMS, regression results show that after 

stimulation, BOLD changes in left SFS are associated with lower choice accuracy (left panel) 

for perceptual (PDM, blue) (negative left SFS ×  stimulation interaction) but not value-based 

choices (VDM, red), with significant differences between the effects on both choice types 

(difference-in-difference, DID, green, negative left SFS ×  stimulation ×  task interaction). On 

the other hand, cTBA-induced changes in left SFS activity are unrelated to changes in RT 

(right panel). Error bars in (d) represent the 95% confidence interval range of the estimated 

effect sizes. * 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. (e) To test the link between neural 

activity and DDM computations, we included trialwise beta estimates of left-SFS BOLD signals 

as inputs to the DDM. Alternative models tested whether trialwise left-SFS (LD) activity 

modulates the decision boundary (𝛼) (Model 1), the drift rate (𝛽), or a combination of both 

(Models 3 and 4, see Methods and Supplementary Fig. 8 for more details). Model 

comparisons using the deviance information criterion (DIC, smaller values mean better fits) 

showed that Model 1 fits the data best, confirming that the left SFS is involved in selectively 

changing the decision boundary for perceptual decisions. 

We then tested whether the cTBS specifically reduced the neural representation of 

accumulated perceptual evidence in the left SFS for perceptual decisions, as predicted by the 

behavioral and modelling results. In line with these predictions, comparison of the post – pre 

trial-aE regressor showed a lower BOLD response in left SFS to the trialwise perceptual 

evidence during perceptual decisions (𝑆𝑉𝐶 < 0.05; Fig. 4c, green patch). This effect was 

significantly stronger than the corresponding effect on evidence representations in this area 

during value-based decisions (𝑆𝑉𝐶 < 0.05; Fig. 4c, blue patch). No effect was found for 

value-based decisions alone. Convergent evidence for the specificity of this effect was 

provided by an alternative hypothesis-guided region-of-interest (ROI) analysis of the 
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regression weights extracted from an a-priori ROI-Mask of the SFS (see Methods). This 

showed lower post-stimulation beta values for the trial-aE regressor during perceptual 

(main stimulation effect, 𝛽 = ―0.153 ± 0.054,𝑝 = 0.004; Fig. 4a) but not value-based choices 

(main stimulation effect, 𝛽 = 0.078 ± 0.053,𝑝 = 0.140; Fig. 4b) and a significant difference 

in these effects (stimulation ×  task interaction, 𝛽 = ―0.232 ± 0.075,𝑝 = 0.002; Fig, 4a,b). 

Thus, the fMRI results show that cTBS of the left SFS indeed affects neural processing in this 

brain structure selectively during perceptual choices, in a way that is consistent with a 

lowering of the boundary and less accumulated evidence as predicted by the fitted DDM 

model. This remarkable convergence between the behavioural, modelling, and fMRI results 

suggests that the left SFS is indeed causally involved in setting decision criteria for choices 

based on perceptual evidence, but not based on subjective values.  

fMRI: Perceptual-choice accuracy and boundary setting reflect trial-by-trial changes in 

SFS activity 

If perceptual-decision performance depends specifically on activity in the left SFS, then trial-

wise choice accuracy should relate to trial-wise BOLD activity in the SFS during perceptual 

decisions, over and above the mean effects of evidence level. To test this, we regressed choice 

accuracy on trial-by-trial BOLD activity extracted from the left SFS ROI, choice type, and TMS, 

while controlling for the evidence provided by the stimulus pairs on each trial (see Methods 

for details). In line with our prediction, we observed that the relation between  perceptual-

choice accuracy and trial-by-trial SFS activity was significantly decreased by TMS (SFS ×  

stimulation interaction, 𝛽 = ―0.196 ± 0.128,𝑝 = 0.003; Fig 4d), independently of the 

corresponding effects for choice evidence (SD main effect, 𝛽 = 0.524 ± 0.082, 𝑝 < 0.001, VD 

main effect, 𝛽 = 0.197 ± 0.012,𝑝 = 0.001,   SFS ×  SD interaction, 

𝛽 = ―0.041 ± 0.046, 𝑝 = 0.365, SFS ×  VD interaction, 𝛽 = 0.055 ± 0.041,𝑝 = 0.183). This 

effect was clearly specific for perceptual decisions, since no such effects were observed for 
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value-based choices (SFS ×  stimulation interaction 𝛽 = 0.099 ± 0.242,𝑝 = 0.422; SFS ×  

stimulation ×  task interaction,  𝛽 = ―0.072 ± 0.051,𝑝 = 0.005; 𝐅𝐢𝐠 𝟒𝐝) and for RTs during 

both types of choices (SFS ×  stimulation interaction, perceptual: 

𝛽 = ―0.031 ± 0.053,𝑝 = 0.367; Fig 4d; accuracy: SFS ×  stimulation interaction, 

𝛽 = ―0.012 ± 0.050,𝑝 = 0.650; Fig 4d).  

We further investigated whether the relation between trialwise SFS activity and 

choice outcome indeed reflected an SFS role for perceptual boundary setting, as suggested by 

the DDM results presented above. To confirm this neurally, we set up several DDMs with 

trialwise SFS activity as an additional modulator for DDM parameters (on top of choice 

evidence; see methods and Herz et al., 2016, 2017; Turner et al., 2015). More specifically, we 

tested several DDMs in which trialwise SFS activity either modulated the decision threshold 

only (Model 1; Supplementary Fig. 8a), the drift rate only (Model 2; Supplementary Fig. 

8b), or both parameters separately (Model 3; Supplementary Fig. 8c) or jointly (Model 4; 

Supplementary Fig. 8d). We compared these neural HDDMs to our baseline HDDM without 

neural inputs (see Methods for more details and Supplementary Fig. 3), allowing us to test 

across all conditions and choice types whether model evidence was enhanced when adding a 

potential trial-by-trial influences of SFS activity to the experimental inputs. Thus, the 

reported model evidence criterion (DIC) provides an additional formal test of whether the 

cTBS-influenced SFS activity relates selectively to the decrease of the decision boundary for 

perceptual choices only. Consistent with this prediction, Model 1 where SFS activity 

modulated the decision threshold only, outperformed all other models and model evidence 

showed improvements versus the baseline model (relative 𝐷𝐼𝐶 = ―28.65; Fig. 4b). These 

results provide direct evidence that neural computations in the left SFS support criterion 

setting for perceptual evidence accumulation.
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fMRI: TMS affects SFS functional connectivity during perceptual choices. 

Our results so far indicate that cTBS to the left SFS disrupts selectively a neural process 

related to setting the criterion for perceptual evidence accumulation. However, it is 

conceivable that SFS-cTBS may also change functional communication of the SFS with other 

brain areas involved in initial processing of the perceptual information necessary to make a 

choice. We investigated this possibility by testing whether cTBS affected functional coupling 

of the SFS. A psychophysiological interaction (PPI) analysis seeded in left SFS and modulated 

by aE indeed revealed stronger coupling with occipital cortex (OCC) after cTBS (peak at 

𝑥 = ―28,𝑦 = ―85,𝑧 = ―2; 𝑝 < 0.05, FWE-cluster-forming thresholds at 𝑇(19) > 2.9; Fig. 5a). 

Interestingly, the activity peak in visual cortex showing evidence-dependent coupling with 

SFS, overlaps with the spatiotopic neural representation of the stimulus items in the visual 

field during decision making. We identified this overlap using a conjunction analysis of the 

PPI result and a contrast regressing BOLD signal on trial-by-trial stimulus onsets of both 

choice types (at familywise-error-corrected thresholds). Moreover, we used the latter 

contrast to define fully independent regions-of-interest (ROIs) in occipital cortex processing 

the visual stimuli independent of task type and performed an ROI analysis on the individual 

SFS-OCC-PPI betas extracted for each participant. This confirmed that evidence-related 

functional coupling is increased by stimulation during perceptual (main stimulation effect, 

𝛽 = 0.330 ± 0.284,𝑝 = 0.022) but not value-based choices (main stimulation effect, 

𝛽 = ―0.186 ± 0.247,𝑝 = 0.139; Fig. 5b; stimulation ×  task interaction, 

𝛽 = 0.517 ± 0.44,𝑝 = 0.021; Fig. 5a). Thus, our results indicate that cTBS to the left SFS leads 

to stronger functional coupling with occipital areas involved in processing the visual stimuli, 

perhaps consistent with increased downstream demand on visual-related resources when 

upstream evidence accumulation regions are impaired. 
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FIGURE 5. SFS-TMS-related changes in behaviour and neural computations are 

accompanied by increased functional coupling between the left SFS and occipital 

cortex. (a) Psychophysiological interaction (PPI) analysis reveals an area in occipital cortex 

showing increased functional coupling with the left SFS during perceptual choices.  (b) ROI 

analysis of individual PPI betas shows that aE-related functional coupling between the left 

SFS and OCC is selectively increased post stimulation during perceptual (left panel) but not 

value-based decisions (right panel). Error bars in (b) represent s.e.m.  (c) Regression results 

testing the link between cTBS effects on left SFS-OCC functional coupling and behaviour. 

Increased SFS-OCC coupling is associated with lower choice accuracy (left panel) specifically 

for perceptual (PDM, blue, negative OCC ×  stimulation interaction) but not value-based 

choices (VDM, red). In addition, increased functional coupling is also associated with faster 

RTs (right panel) for perceptual (blue, negative OCC ×  stimulation interaction) and slower 

RTs for value-based choice (red, positive OCC ×  stimulation interaction). Error bars in (c) 
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represent the 95% confidence interval range of the estimated effect sizes. * 𝑝 < 0.05, ** 

𝑝 < 0.01, and *** 𝑝 < 0.001.

We further explored whether this TMS-induced increase in functional coupling 

between the left SFS and OCC is related to changes in behavior and specific neural 

computations during perceptual decisions. To test this, we related these effects to individual 

measures of choice behavior and latent DDM parameters for each participant. This revealed 

that stimulation-induced increases in SFS-OCC coupling were associated with lower accuracy 

(OCC ×  stimulation ×  task interaction, 𝛽 = ―0.225 ± 0.142,𝑝 = 0.002; Fig. 5c) and shorter 

RTs (OCC ×  stimulation ×  task interaction, 𝛽 = ―0.325 ± 0.238,𝑝 = 0.007; Fig. 5c) for 

perceptual, but not value-based decisions. Taken together, these results thus show that the 

causal behavioral and computational changes during perceptual decisions due to left SFS TMS 

relate not just to local neural changes in the SFS, but also to the way this brain structure 

communicates with visual cortex.

DISCUSSION

We investigated whether the left SFS serves a domain-specific or domain-general role in 

decision making, and which precise functional contribution it makes to the choice process. 

Previous work had implicated the left SFS in both perceptual and value-based decision 

making (Basten et al., 2010; Hare et al., 2011; Heekeren et al., 2004), but direct comparison 

between these choice domains were largely missing from the literature. Moreover, the 

precise role of the SFS has been debated, with contradictory results that either reported a 

role in setting the decision threshold (Rahnev et al., 2016) or tracking the evidence strength 

of incoming sensory information (Philiastides et al., 2011). Our findings resolve this 

uncertainty regarding the nature and specificity of left-SFS involvement in decision making, 
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by showing that it is causally involved in setting the criterion during evidence accumulation 

only for perceptual but not value-based choices.  

Implications for theories of PFC organization. Our results directly inform long-

standing debates about functional specialization versus integration in the prefrontal cortex 

(PFC). While it is widely agreed that the PFC is not a homogenous region (Goldman-Rakic, 

1984, 1994; Owen, 1997; Pandya and Barnes, 1987), considerable debate has surrounded the 

principles by which it is functionally organized (Badre and D’Esposito, 2007; Owen, 1997; 

Goldman-Rakic, 1995; Nee and D’Esposito, 2016; Koechlin, 2003; Petrides, 2005). Process-

specific and domain-general models posit that different PFC regions may contribute to specific 

aspects of information processing, in a manner that that can be flexibly applied to all types of 

information, be it from different sensory modalities or in different cognitive formats (Owen 

et al., 1996; Petrides, 1995, 2005). On the other hand, domain-specific models suggest that 

PFC regions are fractionated and functionally organized to process specific types of 

information, as determined based on their anatomical inputs (Goldman-Rakic, 1984, 1995; 

Goldman-Rakic and Leung, 2002; Levy and Goldman-Rakic, 2000; Snow, 2016). Our results 

are more consistent with the latter domain-specific account, since they revealed that causally 

interfering with the left SFS selectively affects perceptual decisions, leaving performance 

during value-based decisions unaffected. 

Moreover, while the PFC is implicated in various specific cognitive functions (Duncan 

and Owen, 2000; Meng et al., 2016; Raos and Savaki, 2016), prevailing perspectives have also 

characterized the PFC as an anterior-to-posterior hierarchy organized for the purpose of 

general cognitive control and executive function (Koechlin, 2003; Koechlin and Jubault, 2006; 

Koechlin et al., 1999; Nee and D’Esposito, 2016). This view suggests that the main role of the 

PFC is largely in the domain of higher-order cognitive and abstract operations that transcend 

specific functional domains (Domenech and Koechlin, 2015; Koechlin and Summerfield, 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.462977doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462977
http://creativecommons.org/licenses/by/4.0/


25

2007; Owen, 1997). However, an alternative account suggests that the left SFS plays a 

specialized role in the selective accumulation process for low-level perceptual evidence 

(Heekeren et al., 2004, 2006, 2008; Philiastides et al., 2011; Rahnev et al., 2016). Our results 

are more consistent with the latter view, as we provide not only causal evidence, but also 

demonstrate specificity for processing perceptual evidence in the SFS. 

Do value-based decisions also rely on distinct PFC areas? Previous work has 

suggested that during value-based decisions, the DLPFC interacts with the vmPFC in 

modulating the value signal to facilitate self-control (Hare et al., 2009; Rudorf and Hare, 2014; 

Maier et al., 2015). Our results do not contrast with these previous findings: The DLPFC sub-

regions reported by these previous self-control studies are found around the inferior and 

middle frontal gyri (Hare et al., 2009; Rudorf and Hare, 2014; Maier et al., 2015) and thus in 

PFC areas that are anatomically distinct (and in fact distant) from the superior frontal sulcus. 

This further underlines that our findings are most consistent with a functional organization 

of PFC as a collection of fractionated sub-regions, where each region processes different types 

of information (Goldman-Rakic, 1995; Goldman-Rakic and Leung, 2002; Levy and Goldman-

Rakic, 2000). Future studies should consider addressing this issue by causally targeting these 

specific regions in frontal gyri and compare whether it affects only the processing of self-

control during value-based decisions, or whether it may affect perceptual decisions as well. 

Our study used a well-established two-alternative forced-choice design with matched 

responses and relatively simple decisions (Polanía et al., 2014, 2015; Grueschow, 2018). 

However, the value-based choice domain entails a large array of choice types with varying 

degrees of complexity. For instance, more complex types of value-based decisions entail 

decisions under risk (Stewart et al., 2016; Glickman et al., 2019), intertemporal choice (Peters 

and D’Esposito, 2020), and strategic and social decisions (Hutcherson et al., 2015; 

Bottemanne and Dreher, 2019), which may plausibly recruit the PFC due to working memory 
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demands (Barbey et al., 2013; Skagerlund et al., 2016), adjustment of decision time (Sokol-

Hessner et al., 2012), or cost-benefit computations (Basten et al., 2010). In light of these many 

additional decision types based on preferences in the value-based choice domain, the 

functional specificity of SFS to perceptual decisions we claim here may have to be viewed 

with caution. Future studies should consider exploring the comparison between more 

complex types of value-based decisions with perceptual decisions, while taking great care in 

matching the degree of complexity between the two choice domains to avoid confounds 

induced by context or task difficulty. 

Specificity of the SFS for perceptual decisions – only in humans?  Our finding of a 

selective role of left SFS in perceptual evidence accumulation is particularly intriguing. The 

area appears to be uniquely developed in the human brain, with no close anatomical 

homologue in other species. In the animal literature, most prefrontal disruption studies in 

non-human primates have focused on the frontal eye fields (FEF) (Ding and Gold, 2012a; 

Hanks and Summerfield, 2017; Shadlen and Newsome, 1996) and in rodents on the frontal 

orienting fields (FOF) (Erlich et al., 2015; Hanks et al., 2015). While we and others observed 

disruption of the evidence accumulation process after interfering with SFS function in 

humans (Philiastides et al., 2011; Rahnev et al., 2016), disruption of the FOF in rodents has 

not affected behavior at all or in a qualitatively different manner (Brody and Hanks, 2016; 

Erlich et al., 2015; Hanks et al., 2015). However, the results of electrical stimulation of the 

FEF in monkeys (Ding and Gold, 2012a; Hanks and Summerfield, 2017) cannot necessarily 

be directly compared with TMS studies of human SFS, since FEF and SFS in humans are both 

structurally and functionally distinct (Murd et al., 2020; Rahnev et al., 2016). Thus, while it is 

tempting to speculate that the SFS perceptual evidence accumulation process identified here 

may be specific to humans, it is possible that researchers may have to further consider other 
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putative homologues across species that may truly correspond to the SFS area stimulated 

here (Brunton et al., 2013; Hanks and Summerfield, 2017).

Functional coupling between the left SFS and visual cortex. Our results suggest that 

the SFS role for domain-specific accumulation of perceptual evidence is not just a local 

phenomenon but extends to functional communication with visual areas. It is well-

established that the prefrontal cortex is structurally connected with many other brain 

regions (Wycoco et al., 2013) and may flexibly interact functionally with different areas 

depending on choice demands. For example, for value-based decisions, functional coupling 

has been established between the left prefrontal cortex and orbitofrontal cortex (Hare et al., 

2011; Sokol-Hessner et al., 2012), motor cortex (Filimon et al., 2013; Goldman and Nauta, 

1977; Tosoni et al., 2008), hippocampus (Courtney et al., 1998; Meng et al., 2016; Rowe et al., 

2000), and parietal cortex (Polanía et al., 2014). For perceptual decisions, numerous studies 

have shown that the frontal eye fields in humans and non-human primates are also 

functionally coupled with areas in visual cortex (Armstrong et al, 2009; Armstrong and 

Moore, 2014; Barbas and Mesulam, 1981; Goldman-Rakic, 1987; Cameron et al., 2015; Curtis 

and D’Esposito, 2006; Ruff et al., 2006). Our results are generally consistent with an occipito-

frontal information exchange but extend it specifically to the SFS during perceptual evidence 

accumulation (Bullier et al., 1996; Jao Keehn et al., 2019). Inhibition of this area’s functional 

contribution to evidence accumulation led to an increase in its functional coupling with areas 

in occipital cortex representing the stimuli visually upon which choices were based. The 

changes in functional coupling strength between the two cortical regions corresponded to 

observed behavioral and latent computational changes. This suggests that perceptual choices 

rely not only on local processing in SFS but on an integrated functional circuit, comprising 

both SFS and occipital cortex, at least for decisions based on visual stimuli as studied here. 

Future studies should test whether perceptual choices based on other sensory modalities 
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(e.g., touch, audition) lead to a flexible coupling of SFS with the specific sensory areas 

processing these stimuli. 

We can speculate why the occipital cortex may have been recruited after inhibition of 

the left SFS via cTBS stimulation. For example, it is possible that cTBS-related impairments 

in the accumulation mechanism implemented by the SFS biases the system to rely on second-

best suboptimal mechanisms for solving the tasks, such as template matching from working 

memory. Previous work has provided converging evidence that maintenance of visual 

information in working memory enhances coupling between sensory processing in visual 

cortex and information storage in lateral prefrontal cortex (Gazzaley et al., 2004, 2007; Postle 

et al., 2000; Serences et al., 2009). In fact, it has been suggested that  the dorsolateral PFC is 

canonically organized in “memory receptive fields” (Postle, 2016) that may be more heavily 

taxed when direct accumulation mechanisms for sensory input are impaired, as in the case 

of cTBS manipulations. Of course, there are many other candidate mechanisms, such as 

attention or working memory, that may be more heavily taxed to compensate for the 

excitability manipulation of the SFS area specialized for processing the sensory evidence, as 

suggested by previous work on prefontal-occipital interactions during various attention and 

working memory tasks (Awh and Jonides, 2001; Awh et al., 2006; Gazzaley et al., 2007; Zanto 

et al., 2011). In any case, our study shows clearly that in the healthy, undisrupted human 

brain, left SFS plays a key role in transforming perceptual evidence into choices. 

A specific role of left SFS for criterion setting during perceptual decisions. Previous 

work has shown that the SFS activity correlates with the evidence strength in the 

accumulation process, as reflected by the drift rate (Basten et al., 2010; Heekeren et al., 2004, 

2006). In support of this notion, cortical activity disruption with transcranial magnitude 

stimulation (rTMS) resulted in lower choice accuracy and slower RTs (Philiastides et al., 

2011). However, our findings support another view, namely that left SFS is causally involved 
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in modulating the decision threshold, with clearly consistent results across behavioral, 

computational, neural, and neural-behavioral levels. Thus, our findings are more in line with 

findings by Rahnev et al. (2016), who also suggested that SFS disruption leads to lower 

threshold setting. It is important to note that the results of all these studies are not entirely 

incompatible, since impairments in both boundary and drift account lead to lower choice 

consistency (Cavanagh et al., 2011; Domenech and Dreher, 2010; Georgiev et al., 2016; Green 

et al., 2012; Herz et al., 2016; Philiastides et al., 2011). The main difference in fact concerns 

reaction times: lower drift rate implies slower RTs while a lower boundary implies faster 

RTs. One may speculate whether this divergence in results indeed reflects fundamentally 

different functional contributions or mainly differences in task design, leading to different 

computational demands in different contexts. For instance, the study by (Philiastides et al., 

2011) presented dynamic series of briefly presented sequential stimuli, varying the strength 

of each stimulus within noise to vary the evidence levels.  By contrast, our study and that by 

Rahnev (2016) presented one static stimulus pair simultaneously during a two-alternative 

forced choice and varied evidence not by noise but by stimulus difference. These are 

fundamentally different task designs that may plausibly account for the differences in our 

findings: Dynamic stimulus streams demand quick, sequential choices on each of the noisy 

brief stimuli; longer reaction times may therefore reflect that the ability to filter out visual 

noise is reduced. In contrast, simultaneous static stimulus presentation requires the decision 

maker to discriminate the evidence contained in two clearly-presented choice alternatives, 

which may place much larger demands on a correct setting of the threshold for deciding 

whether one stimulus is larger than the other. 

In line with these considerations, previous studies have consistently shown that 

simultaneous versus sequential decisions have different effects on behavior (Ahmad et al., 

2017; Mogilner et al., 2013; Ricker and Cowan, 2014) and recruit different neural processing 

(Ballesta and Padoa-Schioppa, 2019; Ditz and Nieder, 2020; Zhang et al., 2013). Moreover, 
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the presentation of one or more competing stimuli would result in different degrees of 

adjustment in visual receptive fields via stimulus suppression (Beck and Kastner, 2007; Luck 

et al., 1997), which may potentially recruit a different evidence accumulation processes as 

opposed to when there is only one stimulus presented at a time.  Future studies should 

consider addressing this issue directly, by comparing within-subjects effects of SFS TMS on 

behavior, computation, and neural processing for simultaneous versus sequential stimulus 

presentations. 

 Implications for decision neuroscience. Many human decision neuroscience studies 

have employed model-based approaches to identify BOLD signals that correspond to 

computational processes (Carandini, 2012; Forstmann and Wagenmakers, 2015; Forstmann 

et al., 2011; Marr, 2010; Palmeri et al., 2017; Wijeakumar et al., 2017). However, the links 

between neural and latent computational processing established by these studies is largely 

correlational (Logothetis, 2008; Poldrack, 2006; Ramsey et al., 2010), and there are many 

model alternatives that could possibly account for BOLD signals. Our study illustrates that 

causal manipulations induced by targeted functional inhibition of brain areas can provide 

decisive information and provide more direct support for neurocomputational mechanisms 

posited by cognitive models. Specifically, our study underlines that the DDM provides a 

plausible mechanistic account of the decision process (Herz et al., 2016, 2017; Turner et al., 

2015), by showing that left SFS inhibition by cTBS affects the evidence representation posited 

by the model consistently across behavioral, computational, neural, neural-behavioral levels. 

Importantly, our results directly link changes in behavior to changes in both latent 

computations and neural processing, by demonstrating how raw trialwise neural signals 

from the left SFS can augment the DDM to explain behavior. This suggests that once brain 

stimulation studies have established (causal) correspondence between neural activity and 

latent variables in decision models, such models can be fruitfully extended by neural 
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measures to provide a more complete characterization and prediction of choice behavior and 

potentially its malfunctions.  

Implications for computational psychiatry. Accumulating evidence to a sufficient 

decision threshold is crucial for maintaining accurate decisions, and deficiencies in areas 

involved in threshold setting will likely lead to maladaptive behavior with potentially lifelong 

consequences (Beck et al., 2009; Gatto and Aldinio, 2019; Green et al., 2012; Herz et al., 2016, 

2017; Ide et al., 2017; Li et al., 2009; Specker et al., 1995). Manifestations of impulsive 

behavior (Heyes et al., 2012; Moeller et al., 2001) are largely apparent in clinical populations 

with aberrations in decision threshold setting (Herz et al., 2014,2016). However, most 

studies of these disorders have focused on impulsive behavior induced by reward or 

preferences (Barack and Platt, 2017; Glimcher et al., 2007; Mäntylä et al., 2012; Mcclure and 

Bickel, 2014; Mischel et al., 1972). It is important to note here that reward impulsivity is only 

one of the many domains of aberrant behavior in clinical populations. Perceptual impulsivity 

can also be important, since many of the behavioral and cognitive deficits are closely linked 

to impairments in perceptual function (Fuermaier et al., 2018). For instance, impulsive 

behavior can also arise in non-reward-related settings, such as when perceptually 

discriminating size differences where less accurate and faster responses have been observed 

in people with addiction disorders (Banca et al., 2016; Lawrence et al., 2009; Paasche et al., 

2019) and borderline personality disorder (Berlin and Rolls, 2004). Perceptual deficiencies 

are also prevalent in clinical populations with attention-deficit hyperactivity disorder 

(ADHD) or Parkinson’s disease, and thought to be linked to impairments in the dopaminergic 

system (Fuermaier et al., 2018; Sebastian et al., 2014; Caspers et al., 2017; Djamshidian et al., 

2014; Herz et al., 2014; Pote et al., 2016). Causal evidence from deep-brain stimulation (DBS), 

in particular, has shown that disrupting the STN lowered decision thresholds, thus increasing 

this perceptual impulsivity among Parkinson’s patients (Frank, 2007; Herz et al., 2016, 2017). 
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Our findings that TMS of the left SFS causally and selectively lowered the decision boundary 

during perceptual decisions suggest that the SFS may also be involved in speed-accuracy 

tradeoff regulation, suggesting that the lateral prefrontal cortex may be functionally 

integrated with these cortico-striatal and cortico-subthalamic nuclei (STN) pathways 

(Bogacz et al., 2010; Forstmann et al., 2010; Green et al., 2012, 2013). Overall, impulsive 

behavior is not exclusive to the reward domain, and our results suggest that there is 

something to gain from understanding impulsive behavior in non-reward settings requiring 

decisions on perceptual information. Maladaptive behavior may not only reflect individual 

wants or likings, often assumed by addiction studies, but could also be a function of low-level 

sensory or higher-order cognitive processes that have so far not fully been accounted for 

(Bartoshuk et al., 2006; Demmel and Schrenk, 2003; Fuermaier et al., 2018). This may have 

serious implications for how cognitive therapies or interventions are designed, and our 

findings may provide useful insights in guiding such future work. Particularly, it is worth 

exploring to what degree the left SFS and its connections are structurally or functionally 

different in clinical populations, and whether these impulsive tendencies can be captured by 

sequential sampling models, such as the DDM.
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MATERIALS AND METHODS

Participants. Twenty healthy right-handed volunteers (ages 20-30; 8 female) with normal 

or corrected-to-normal vision participated in the study. Participants were fully informed 

about the features of the experiment. No participant suffered from any neurological or 

psychological disorder or took medication that interfered with their participation in the 

study. Participants received monetary compensation for participation and performance of 

the perceptual choices, as well as a one food item to consume after the experiment depending 

on a random value-based choice trial. The experiments conformed to the Declaration of 

Helsinki and the experimental protocol was approved by the Ethics Committee of the Canton 

of Zurich.

Experimental Paradigm. We asked participants to refrain from eating for 3 hours before 

the start of the experiment. Our experiments took place between 0800 and 1900 hr during 

the day. The experiment consisted of two steps: (1) a rating task outside the scanner and (2) 

a decision-making task inside the scanner. During the rating task, we asked participants to 

provide perceptual- and value-based ratings of the same set of 61 food images using an on-

screen slider scale. All of the food items were in stock in our lab and participants were 

informed about this via visual inspection. For perceptual ratings, participants rated—on a 

scale from 5 to 100 percent in steps of 5 percent— how much of the black background within 

the white square perimeter was occupied by the food item. For value-based ratings, 

participants rated—on a scale from 5 to 100 in steps of 5—how much they wanted to eat the 

presented food item at the end of the experiment. We instructed participants that the 
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midpoint of the scale in value-based ratings indicated indifference. The ratings phase 

required participants to rate the same food items twice for each task.

 After rating the food items, an algorithm selected a balanced set of perceptual and 

value-based trials divided into four evidence levels, 𝐸. The evidence levels are based on the 

absolute difference between the average ratings of the food items paired in each trial. We 

define perceptual evidence as the absolute size difference between the two food items. On 

the other hand, we define value-based evidence as the absolute value difference between the 

two food items. In particular, the evidence levels for perceptual trials, 𝐸𝑝, are:

𝐸𝑝 = |𝑟𝐛𝐢𝐠𝐠𝐞𝐬𝐭 ― 𝑟𝐬𝐦𝐚𝐥𝐥𝐞𝐬𝐭| ∈ {5%,10%,15%,20%} (1)

while the evidence levels for value-based trials, 𝐸𝑣, are:

𝐸𝑣 = |𝑟𝐛𝐞𝐬𝐭 ― 𝑟𝐰𝐨𝐫𝐬𝐭| ∈ {1,2,3,4} (2)

where 𝑟 = 𝑟1 + 𝑟2

2  is the average food item from the two ratings while 𝑟𝐛𝐢𝐠𝐠𝐞𝐬𝐭 ― 𝑟𝐬𝐦𝐚𝐥𝐥𝐞𝐬𝐭 and 

𝑟𝐛𝐞𝐬𝐭 ― 𝑟𝐰𝐨𝐫𝐬𝐭 represent the ratings’ difference for the pairs presented for perceptual and 

value-based choices, respectively.

Inside the scanner, participants performed the decision-making task for which they 

chose between two food items, based on whether they were accumulating perceptual or 

value-based evidence. We matched the visual sensory stimuli of the food items as well as their 

motor outputs across the two choice types. The only difference was the type of evidence 

participants had to accumulate to make a choice. Each trial started with presentation of a 

central fixation marker (length ~ 0.8°, height ~ 0.3°). Next, a centrally presented word 

indicated whether participants would perform a perceptual (word ‘AREA’) or value-based 
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(word ‘LIKE’) choice. On the subsequent screen, the task cue was replaced by either the letter 

‘A’ or ‘L’ (~ 0.2°) to remind participants that they were in a perceptual or value-based block, 

respectively. Two food items were simultaneously displayed, one above and one below the 

screen (y eccentricity 3.6°; a white square of 6° width surrounded each food item).

Blocks alternated between perceptual and value-based choices in a given session (7-

9 trials per task block). Participants pressed one of two buttons on a keypad with their right 

middle finger (upper item) or right index finger (lower item) to indicate their choice. On a 

given trial, participants had 3 seconds for their choice; otherwise, the trial would be regarded 

as a ‘missed trial’ and would not enter the analysis. After the experiment, participants stayed 

in the room with the experimenter while they ate the food that was selected based on the 

participants choice in one randomly selected VDM trial. 

Participants made correct choices when they chose the food item with the higher 

rating as indicated in the double ratings task prior to entering the scanner. The experiment 

had a total of 256 trials divided into 8 sessions of 32 trials each. The first 4 sessions were pre-

stimulation sessions where participants performed the task without stimulation. The last 4 

sessions were post-stimulation sessions during which participants performed the choices 

with decreased neural excitability in the SFS due to the preceding continuous theta-burst 

stimulation. The 256 trials were fully balanced across all factors (trial type: perceptual or 

value-based; evidence levels: 1 to 4; correct response: up or down). 

Stimulation Protocol. We applied continuous theta-burst stimulation (cTBS) (Huang et al., 

2005; di Lazzaro et al., 2005, 2008) to exogenously induce cortical inhibition of our region of 

interest (ROI), an area in the left superior frontal sulcus (SFS) (MNI coordinates: 

𝑥 = ―24, 𝑦 = 24, 𝑧 = 36) (Heekeren et al., 2004; Philiastides et al., 2011). Before the main 

fMRI experiment, we identified the stimulation site over the left SFS as well as each 

individual’s stimulation intensity. In an initial fMRI session, we acquired high-resolution T1-
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weighted 3D fast-field echo anatomical scans used for subsequent neuro-navigation (181 

sagittal slices, matrix size = 256 ×  256, voxel size = 1 mm3, TR/TE/ TI = 8.3/2.26/181 ms, 

3T Philips Achieva). The hand area of the left M1 (motor hotspot) was determined by 

identifying the first dorsal interosseous (FDI) movement-evoked potentials (MEPs) induced 

by transcranial magnetic stimulation (TMS) pulses. We delivered single monophasic TMS 

pulses using a figure-of-eight coil attached to the TMS stimulator. We then marked an 

equidistant circular grid on each individual’s anatomical MRI scan using a neuro-navigation 

system over the hand motor region, located at the anterior portion of the central sulcus. We 

localized the optimal motor hotspot as the point in the grid that elicited the strongest FDI 

MEPs from TMS pulses. Once we selected the motor hotspot, we asked participants to activate 

their FDI by pressing their thumb and index finger at about 20% maximum force in order to 

obtain their active motor threshold (AMT). We defined the AMT as the minimal TMS intensity 

required to produce MEPs of ≥  200 mV amplitude (measured with Magventure MRi-B91) in 

≥  5–10 consecutive pulses.

We retested the AMT by visually inspecting the FDI twitches triggered by TMS pulses 

over the marked optimal hotspot. The average AMT outside the scanner was 52.35 ±  6.27 

percent while the AMT inside the scanner was 52.91 ±  6.18 percent. We applied cTBS at an 

intensity of 80% of the individual’s AMT. The cTBS protocol contained bursts of 3 pulses at 

50 Hz. This protocol has been shown to reduce cortical excitability for at least 30 minutes 

(Huang et al., 2005). Every burst was repeated at a rate of 5 Hz, resulting in 200 bursts with 

a total of 600 pulses delivered within 40 seconds. 

Before moving our participant into the scanner, we marked the motor hotspot as well 

as the stimulation site on a swimming cap fixed in position by straps. Participants wore this 

cap while they were inside the scanner. Before the start of the fifth session, participants 

received cTBS over the left SFS. We used a figure-of-eight MR-compatible TMS coil (MRi-B91) 

attached to a TMS stimulator. After receiving stimulation, participants returned to the 
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scanner and proceeded to complete the last four sessions. On average, the post-stimulation 

fMRI task started 228 ±  41 sec after the end of theta-burst stimulation following established 

protocols from previous studies (Knecht et al., 2003; Philiastides et al., 2011; Thut and 

Pascual-Leone, 2010).

Given the established timeline of cTBS effects (Huang et al., 2005), we expected the 

stimulation effects to weaken over time due to neural recovery. Hence, we treated the first 

two post-stimulation sessions as the actual post-cTBS period and the last two post-

stimulation sessions as the recovery period, in line with established procedures (Philiastides 

et al., 2011). 

Differences-in-Differences Framework. We implemented a differences-in-differences 

(DID) framework to identify causal relationships based on stimulation-induced neural 

inhibition in the SFS. We used the identical DID contrast framework for behavioral, 

computational, neuroimaging and connectivity analyses. We employ the following notation: 

Task conditions 𝑇𝑎𝑠𝑘 (perceptual (𝑇𝑎𝑠𝑘 = 1) and value-based (𝑇𝑎𝑠𝑘 = 0)) and stimulation 

conditions 𝑇𝑀𝑆 (pre- (𝑇𝑀𝑆 = 0) and post-stimulation (𝑇𝑀𝑆 = 1)). Let 𝑉 be our variable of 

interest, and either behavioral or neural. The causal treatment effect,  𝝓(𝑉|𝑇𝑎𝑠𝑘,𝑇𝑀𝑆), takes 

the following structural form: 

𝝓(𝑉|𝑇𝑎𝑠𝑘,𝑇𝑀𝑆) = [𝔼(𝑉|𝑇𝑀𝑆 = 1,𝑇𝑎𝑠𝑘 = 1) ― 𝔼(𝑉|𝑇𝑀𝑆 = 0,𝑇𝑎𝑠𝑘 = 1)]
― [𝔼(𝑉|𝑇𝑀𝑆 = 1,𝑇𝑎𝑠𝑘 = 0) ― 𝔼(𝑉|𝑇𝑀𝑆 = 0,𝑇𝑎𝑠𝑘 = 0)]

(3)

where 𝔼(𝑉|𝑇𝑎𝑠𝑘,𝑇𝑀𝑆) is the expected value of the variable of interest, 𝑉, given task, 𝑇𝑎𝑠𝑘 

and condition, 𝑇𝑀𝑆. The first difference on the right-hand side captures the average 

stimulation effect for perceptual choice while the second difference captures the average 

stimulation effect for value-based choice. The overall difference assumes that if behavior will 

be the same after stimulation, then 𝜙 = 0 (Angrist and Pischke, 2009; Bertrand et al., 2004). 
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Informed by previous studies, we expect that left SFS stimulation will affect perceptual 

decisions (Heekeren et al., 2004, 2006; Philiastides et al., 2011) but not value-based 

decisions. If this holds, we expect the DID estimate to be negative, 𝜙 < 0, suggesting inhibition 

of either behavior or neural activity. 

Behavioral Analyses of Choice. We analyzed the influence of continuous theta-burst 

stimulation on choice using a logit regression on choices, 𝜌 (correct = 1, incorrect = 0) over 

various regressors of interest, including stimulation condition, 𝑇𝑀𝑆 (pre-cTBS = 0, post-cTBS 

= 1); task condition, 𝑇𝑎𝑠𝑘 (perceptual = 1, value-based = 0); its interaction (𝑇𝑎𝑠𝑘 × 𝑇𝑀𝑆), 

which measures the causal stimulation effect, 𝝓; and, other regressors, 𝑋𝑘 that we used to 

control for during the regression analysis, and this includes the task-relevant evidence levels 

(SD for perceptual and VD for value-based, 1 to 4), response times (RTs), and task-irrelevant 

evidence levels (i.e. VD for perceptual and SD for value-based, 1 to 4). The full model is:

Pr (𝜌𝐷𝐼𝐷
𝑡,𝑐,𝑠,𝑖) =

1

1 + exp ( ―[𝛽0 + 𝛽1𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖) + 𝛽2𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖) + 𝝓𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖)𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖) + ∑𝑛
𝑘=4 𝛽𝑘𝑋𝑘

(𝑡,𝑐,𝑠,𝑖))
(4)

where t indexes Task, c indexes TMS, s indexes subject, and i indexes trial. Since our model 

contains a DID interaction term, nonlinearity of the logit regression results in a non-zero 

estimate even if the true causal effect is zero, 𝜙 = 0. To remove nonlinearity bias and isolate 

the true causal effect, we ran another logit regression without the interaction term, 

Pr (𝜌𝑁𝑂𝐷𝐼𝐷
𝑡,𝑐,𝑠,𝑖 ) =

1

1 + exp ( ― [𝛽0 + 𝛽1𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖) + 𝛽2𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖) + ∑𝑛
𝑘=4 𝛽𝑘𝑋𝑘

(𝑡,𝑐,𝑠,𝑖)])
(5)

and we took the difference between the two logit models (Ai and Norton, 2003; Karaca-

Mandic et al., 2012; Puhani, 2012),  
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Pr (𝜌𝑇𝑅𝑈𝐸𝐷𝐼𝐷
(𝑡,𝑐,𝑠,𝑖) ) = Pr (𝜌𝐷𝐼𝐷

(𝑡,𝑐,𝑠,𝑖)) ― Pr (𝜌𝑁𝑂𝐷𝐼𝐷
(𝑡,𝑐,𝑠,𝑖)) (6)

We used cluster-robust standard errors at the subject level under the assumption that each 

individual performance is independent across participants. We also ran variations of the 

model to test for the effect’s robustness, particularly GLMs with or without control variables, 

and using various stimulation runs. We implemented this analysis using STATA/SE 13.1.  We 

summarize these results in Supplementary Table 5.

Behavioral Analyses of Response Times. We used a similar DID framework to analyze the 

influence of cTBS on response times (𝑟𝑡). We ran a general linear model (GLM) for our 

regression,

𝑟𝑡𝑡,𝑐,𝑠,𝑖 = 𝛽0 + 𝛽1𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖) + 𝛽2𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖) + 𝝓𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖)𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖) +
𝑛

𝑘=4
𝛽𝑘𝑋𝑘

(𝑡,𝑐,𝑠,𝑖) + 𝜀(𝑡,𝑐,𝑠,𝑖)
(7)

We also used cluster-robust standard errors at the subject level. Moreover, we also ran 

variations of the model and summarized the results in Supplementary Table 5.

Hierarchical Bayesian DDM. We analyzed the effect of cTBS on perceptual and value-based 

decisions using a hierarchical drift diffusion model (HDDM). This decision-making model 

follows a one-dimensional Wiener process, a dynamical system where the state of evidence, 

𝑥𝑡 at time 𝑡 evolves through a stochastic differential equation,

𝑑𝑥𝑡

𝑑𝑡 ~ℕ(𝛿,𝜎2) (8)
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where 𝛿 is the accumulated evidence at time t,

𝛿 = 𝜅𝑐,𝑠𝐸𝑐,𝑠,𝑖 (9)

where 𝐸 represents the evidence level and 𝜅 is the drift rate that linearly scales the evidence 

and is typically interpreted as quality of information processing. For the initial conditions 

(Equation (10)), 𝛽 represents the start point of the process and we assume that the process 

takes a decision 𝜌 at time 𝑡𝑑 as soon as the evolving variable is either 𝑥𝑡 > 𝛼 (a correct 

decision) or 𝑥𝑡 ≤ 0 (an incorrect decision). We also accounted for visual sensory processing 

and motor response delays with the non-decision time parameter, 𝜏. We define reaction time 

as the sum of non-decision time and the decision time, 𝑡𝑑, 𝑅𝑇 = 𝑡𝑑 +𝜏. 

Given these latent parameters, our goal is to find the Wiener distribution, 𝜔(𝛿,𝛼,𝜏,𝛽), 

that best explains the distribution of the empirical choices, 𝑦(𝜌,𝑟𝑡). To this end, we 

implemented a hierarchical Bayesian model where each individual point 𝑦𝑐,𝑠,𝑖(𝜌,𝑟𝑡) follows a 

Wiener distribution, 𝜔,

𝑦(𝑐,𝑠,𝑖) ~ 𝜔(𝛿,𝛼,𝜏,𝛽) (10)

with indices 𝑐 for task conditions (𝑐 = 𝑝 for perceptual, 𝑐 = 𝑣 for value-based), 𝑠 for 

participants (𝑠 = 1,…,𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠), and 𝑖 for trials (𝑖 = 1,…,𝑁𝑡𝑟𝑖𝑎𝑙𝑠). 

The hierarchical structure contains three random variations at the trial, subject, and 

condition levels. We treated all interindividual differences per stimulation condition level as 

random effects: 
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𝛿(𝑐,𝑠,𝑖) ~ 𝑁(𝜇𝛿(𝑠)𝐸(𝑐,𝑠,𝑖) ,𝜎2
𝛿(𝑠))

𝜏(𝑐,𝑠,𝑖) ~ 𝑁(𝜇𝜏(𝑠),𝜎2
𝜏(𝑠))

𝛼(𝑐,𝑠,𝑖) ~ 𝑁(𝜇𝛼(𝑠),𝜎2
𝛼(𝑠))

(11)

(12)

(13)

where 𝑁(𝜇, 𝜎) is a normal distribution with mean, 𝜇, and standard deviation, 𝜎; 𝐸 are trial-

by-trial evidence levels. Using absolute value difference as evidence level, we assume an 

unbiased fixed starting point of 𝛽𝑐,𝑠,𝑖 =  0.5. Furthermore, we used Bayesian hypothesis 

testing to compare posterior probability densities. 

In summary, we fit a DDM to observed trialwise choices and reaction times to 

decompose the decision process into distinct latent parameters. These correspond to distinct 

features of the choice process, which include: (1) the drift rate (𝛿) or the efficiency of sensory 

evidence accumulation; (2) the decision boundary (𝛼) or the criteria set to accumulate an 

amount of evidence to execute a decision; (3) the non-decision time (𝜏) or the time to process 

sensory information and execute a motor response; and, (4) the starting point (𝛽) or the bias 

in the choice process. 

Theoretical Accumulated Evidence. We computed estimates for decision times (𝑡𝑑(𝑐,𝑠)) and 

accumulated evidence (𝑎𝐸𝑐,𝑠) to test whether 𝑎𝐸 is a plausible representation of the 

accumulation process at the neural level. Following the literature (Bogacz et al., 2006, 2010), 

we define mean decision time as the ratio between the decision threshold and the drift rate 

shaped by a hyperbolic tangent function,
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𝑡𝑑(𝑐,𝑠) = (αc,s

𝜅𝑐,𝑠)tanh(𝜅𝑐,𝑠 × 𝛼𝑐,𝑠) (14)

Recall that reaction time, 𝑟𝑡, is the sum of both decision and non-decision times, 𝑟𝑡 = 𝑡𝑑 +𝜏.

Finally, we define accumulated evidence (𝑎𝐸)  as the area below the drift process up 

until the accumulator reaches the decision boundary. We can derive 𝑎𝐸 using a triangle’s area 

equation, where decision time 𝑡𝑑(𝑐,𝑠) is the base and the decision boundary, 𝛼𝑐,𝑠, is the height,

𝑎𝐸𝑐,𝑠 =
𝛼𝑐,𝑠 × 𝑡𝑑(𝑐,𝑠)

2
(15)

To estimate all parameters, we performed Gibbs sampling via Markov Chain Montecarlo 

(MCMC) in JAGS (Plummer, 2003, 2016) to generate parameter posterior inferences. We 

drew a total of 10,000 samples from an initial burn-in step and subsequently drew a total of 

new 10,000 samples with three chains each. We derived each chain based on different 

random number generator engines with different seeds. We applied a thinning of 10 to this 

final sample, resulting in a final set of 1,000 samples for each parameter. This thinning 

assured auto-decorrelation for all latent variables of interest. We conducted Gelman-Rubin 

tests for each parameter to confirm chain convergence. All latent parameters in our Bayesian 

model had 𝑅 < 1.05, suggesting that all three chains converged to a target posterior 

distribution. We compared the difference in posterior population distributions estimated for 

each parameter between the stimulation conditions (pre-cTBS/post-cTBS) and the 

differences of these stimulation differences between task conditions (DID, perceptual/value-

based). We tested whether the resulting distribution (i.e., the causal stimulation effect) is 

significantly different from zero (i.e., the null hypothesis) using the cumulative function up to 

or from 0 depending on the direction of the effect. We refer to this probability as 𝑝𝑀𝐶𝑀𝐶.  
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Hierarchical Bayesian Neural DDM. We also analyzed whether the inclusion of raw trial-

by-trial left SFS neural activity in the DDM can improve model evidence. Such a result would 

suggest that neural activity in the left SFS directly related to the model’s latent decision-

relevant parameters (Cavanagh et al., 2011; Herz et al., 2016, 2017). We used z-scored single-

trial neural beta estimates extracted from the left SFS target site. We implemented four a-

priori models regarding the role of the left SFS on the decision parameters. Model 1 assumes 

that the left SFS modulated the decision threshold (Supplementary Fig. 8a), while Model 2 

assumes that left SFS modulated the drift rate (Supplementary Fig. 8b):

𝛼𝑁𝐸𝑈𝑅𝐴𝐿
𝑐,𝑠,𝑖 = 𝛼𝑐,𝑠,𝑖 + 𝛾𝜃𝑐,𝑠,𝑖

𝛿𝑁𝐸𝑈𝑅𝐴𝐿
𝑐,𝑠,𝑖 = 𝜅𝐸𝑐,𝑠,𝑖 + 𝛾𝜃𝑐,𝑠,𝑖

(16)

(17)

where 𝛾 is the scale parameter for trial-by-trial left SFS activity, 𝜃. On the other hand, Models 

3 and 4 assume that the left SFS modulates both boundary and drift. More specifically, Model 

3 assumes separate scale parameters for each latent process (see Supplementary Fig. 8c) 

while Model 4 assumes a common scale parameter for both boundary and drift (see 

Supplementary Fig. 8d). We compared our models’ deviance information criterion (DIC) 

relative to the model without any neural data. Here, the smaller the DIC, the better model 

performance. We also used the best model for Bayesian post-hoc inferences. Please note that 

DIC accounts for model complexity (Herz et al., 2016, 2017). 

fMRI Data Analysis. Participants performed eight choice-task sessions while BOLD images 

were recorded with a Philips Achieva 3T whole-body scanner. We used statistical parametric 

mapping (SPM8, Wellcome Trust Center for Neuroimaging) for image pre-processing and 

analysis. In particular, images were slice-time corrected (to the acquisition time of the middle 
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slice) and realigned to account for subject’s head motion. Each participant’s T1-weighted 

structural image was co-registered with the mean functional image and normalized to the 

standard T1 MNI template using the new-segment procedure in SPM8. The functional images 

were normalized to the standard MNI template using the same transformation, spatially 

resampled to 3mm isotropic voxels, and smoothed using a Gaussian kernel (FWHM, 8mm).

We estimated two general linear models (GLM), constructed by convolving series of 

appropriately placed indicator functions with the default model of the BOLD response 

embedded in SPM8. GLM1 contained only the two indicator functions for the onsets of 

perceptual or value-based trials. GLM2 contained four indicator functions for the onsets of 

task (perceptual and value-based trials) and stimulation (pre- or post-stimulation) runs, 

coupled with one regressor each for parametric modulation of the BOLD response by the 

trialwise accumulated evidence (aE). Earlier, we have shown that the theoretical average 

accumulated evidence can be derived from subject-level latent DDM parameters by dividing 

the estimated decision boundary by the estimated drift rate. To construct a trialwise measure 

of 𝑎𝐸, we exploit the fact that the length of the RTs is directly proportional to the size of the 

decision boundary while the evidence level, 𝐸, is directly proportional to the drift rate 

(Basten et al., 2010; Domenech et al., 2017; Kiani et al., 2014). Given this mapping from 

subject-wise parameters to trialwise behavioral measures, we can then derive a parametric 

trialwise measure of accumulated evidence, 𝑎𝐸𝑡,𝑐,𝑠,𝑖,

𝑎𝐸𝑡,𝑐,𝑠,𝑖 = 𝑅𝑇𝑡,𝑐,𝑠,𝑖

𝐸𝑡,𝑐,𝑠,𝑖

(18)

We included a square root function to account for the particular concave nonlinearity in 

accumulated evidence. Previous work (Tajima et al., 2016) has shown theoretically that the 

shape of the accumulated evidence is indeed concave, where it suggests that the rate of 
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accumulating evidence is decreasing as the decision process continues to accumulate. This 

concavity in the shape of the aE consistent with the predictions from the DDM where 

evidence strength is steep during earlier responses and flat at later response (Ratcliff and 

McKoon, 2008; Ratcliff and Smith, 2004).

We convolved our GLMs with a canonical hemodynamic response function, modeled 

MR image autocorrelations with first-order autoregressive model, and included 6 motion 

parameters (obtained during realignment) as regressors of no interest. After fitting the 

model to the BOLD data, we tested regressors for statistical significance at the second-level, 

in random-effects group one-sample t-tests of the corresponding single-subject contrast 

images. We performed statistical inference at the cluster level, using a whole-brain family-

wise-error-corrected (FWE-corrected) statistical threshold of 𝑝 < 0.05 based on a cluster-

forming voxel cutoff at 𝑝 < 0.005 (or 𝑇(19) = 2.9). For hypothesis-guided region of interest 

(ROI) analysis, particularly our left SFS stimulation site (𝑥 = ―24,𝑦 = 24,𝑧 = 36) (Heekeren 

et al., 2004; Philiastides et al., 2011), we corrected for multiple comparisons using small-

volume correction (SVC, p < 0.05) restricted within a 10 mm sphere around the target 

coordinates. We extracted neural betas from this spherical SFS ROI for each participant to 

perform hypothesis testing and correlational analysis.

Functional Connectivity Analysis. To investigate changes in functional connectivity 

between the left SFS and other regions in the brain due to cTBS, we ran a psychophysiological 

interaction (PPI) analysis (Friston et al., 1997). Specifically, we investigated whether brain 

regions related to accumulated evidence exhibited changes in functional coupling with left 

SFS as a consequence of the cTBS. To this end, we extracted physiological time series in the 

left SFS seed region, corresponding to the timecourse of the first eigenvariate across all voxels 

in the region in a principal component analysis (Friston et al., 1993). The psychological 

regressor corresponded to the difference in accumulated evidence (as described in GLM2) 
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between perceptual and value-based decisions. We generated a psycho-physiological 

interaction (PPI) of the psychological regressors and the time series from the left SFS and 

computed the PPI contrasts of interest for PDM and VDM. Statistical inference on the subject-

specific PPI maps was performed in a second-level random-effects analysis across 

participants to allow for group-level inferences. For each participant, we also extracted PPI 

neural betas representing the functional coupling between the left SFS and to perform 

hypothesis testing and correlational analysis.

Correlating Causal Changes between Neural, Latent, and Behavioral Variables. We 

tested whether correlations between neural, v, and behavioral, 𝜋, measures had changed after 

theta-burst stimulation. We define the marginal effect, 𝑟, as the correlational change in neural 

measure, 𝜈, given behavioral measure, 𝜋: 

𝑟(𝜈𝑐,𝑠|𝜋𝑐,𝑠) =
∂

∂𝜋𝑐,𝑠
𝔼(𝜈𝑐,𝑠|𝜋𝑐,𝑠) (19)

We test the marginal effect, 𝑟, of the correlational change between our neural and behavioral 

measures using our DID framework. In particular, we tested the marginal effect of stimulation 

on the neural-behavioral correlations at the trial and subject levels. At the trial level, we used 

a logit regression to test whether the marginal effect of trialwise left SFS neural modulation, 

𝑁𝑒𝑢𝑟, will affect choices, 𝜌. Like previous models, we included various regressors of interest, 

especially the triple interaction (𝑁𝑒𝑢𝑟 × 𝑇𝑎𝑠𝑘 × 𝑇𝑀𝑆), which measures the causal 

stimulation effect, 𝝓; and, other regressors, 𝑋𝑘. The full model is,

Pr (𝜌𝐷𝐼𝐷
(𝑡,𝑐,𝑠,𝑖)) = (1 + exp [ ― (𝛽0 + 𝛽1𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖) + 𝛽2𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖) + 𝛽3𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖) + 𝛽4[𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖)𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖)] + 𝛽5[𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖)𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖)] + 𝛽6[𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖)𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖)] + 𝝓[𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖)𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖)𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖)] +

𝑛

𝑘=4
𝛽𝑘𝑋𝑘

(𝑡,𝑐,𝑠,𝑖))])
―1(2

0)
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Because our model contains a triple interaction term, we removed the nonlinearity bias and 

isolate the true causal effect, we ran another logit regression without 𝜙, 

Pr (𝜌𝑁𝑂𝐷𝐼𝐷
(𝑡,𝑐,𝑠,𝑖)) = (1 + exp [ ― (𝛽0 + 𝛽1𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖) + 𝛽2𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖) + 𝛽3𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖) + 𝛽4[𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖)𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖)] + 𝛽5[𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖)𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖)] + 𝛽6[𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖)𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖)] +

𝑛

𝑘=4
𝛽𝑘𝑋𝑘

(𝑡,𝑐,𝑠,𝑖))])
―1(2

1)

and we took the difference between the two logit models,

Pr (𝜌𝑇𝑅𝑈𝐸𝐷𝐼𝐷
(𝑡,𝑐,𝑠,𝑖) ) = Pr (𝜌𝐷𝐼𝐷

(𝑡,𝑐,𝑠,𝑖)) ― Pr (𝜌𝑁𝑂𝐷𝐼𝐷
(𝑡,𝑐,𝑠,𝑖)) . (22)

We also ran a GLM to test whether the marginal effect of trialwise left SFS neural betas 

will causally affect RTs, 

𝑟𝑡(𝑡,𝑐,𝑠,𝑖)
= 𝛽0 + 𝛽1𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖) + 𝛽2𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖) + 𝛽3𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖) + 𝛽4[𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖)𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖)] + 𝛽5

[𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖)𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖)] + 𝛽6[𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖)𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖)] + 𝝓[𝑁𝑒𝑢𝑟(𝑡,𝑐,𝑠,𝑖)𝑇𝑎𝑠𝑘(𝑡,𝑐,𝑠,𝑖)
𝑇𝑀𝑆(𝑡,𝑐,𝑠,𝑖)] + 𝜀(𝑡,𝑐,𝑠,𝑖)

(23

)

For both choice and RT models, we also used cluster-robust standard errors at the subject 

level. 

At the subject level, we similarly used linear mixed-effects regression models to test 

whether the marginal effect of subject-level neural betas (left SFS betas or PPI betas) 𝜈, will 

affect the behavioral outcomes or DDM-latent parameters, 𝜋. Similarly, we estimate the 

marginal effect, 𝝓, from the three-way interaction, (𝜈 ×  𝑇𝑎𝑠𝑘 × 𝑇𝑀𝑆),
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𝜋(𝑐,𝑠)
= 𝛽0 + 𝛽1𝑇𝑎𝑠𝑘(𝑐,𝑠) + 𝛽2𝑇𝑀𝑆(𝑐,𝑠) + 𝛽3𝜈(𝑐,𝑠) + 𝛽4[𝑇𝑎𝑠𝑘(𝑐,𝑠) × 𝑇𝑀𝑆] + 𝛽5

[𝜈(𝑐,𝑠) × 𝑇𝑎𝑠𝑘(𝑐,𝑠)] + 𝛽6[𝜈(𝑐,𝑠) × 𝑇𝑀𝑆(𝑐,𝑠)] + 𝝓[𝜈(𝑐,𝑠) × 𝑇𝑎𝑠𝑘(𝑐,𝑠) × 𝑇𝑀𝑆(𝑐,𝑠)]
+ 𝜀(𝑐,𝑠)

(24

)

In general, the three-way interaction reflects whether the correlations between neural 

(subject-wise left SFS or PPI betas) and behavioral (choice or DDM parameters) measures 

are causally affected by stimulation, 𝑇𝑀𝑆, and whether the effect is specific only during task, 

𝑇𝑎𝑠𝑘.
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