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While the vast majority of well-structured single protein chains can now be predicted to high accuracy due
to the recent AlphaFold [1] model, the prediction of multi-chain protein complexes remains a challenge
in many cases. In this work, we demonstrate that an AlphaFold model trained specifically for multimeric
inputs of known stoichiometry, which we call AlphaFold-Multimer, significantly increases accuracy of pre-
dicted multimeric interfaces over input-adapted single-chain AlphaFold while maintaining high intra-chain
accuracy. On a benchmark dataset of 17 heterodimer proteins without templates (introduced in [2]) we
achieve at least medium accuracy (DockQ [3] ≥ 0.49) on 14 targets and high accuracy (DockQ ≥ 0.8) on
6 targets, compared to 9 targets of at least medium accuracy and 4 of high accuracy for the previous state
of the art system (an AlphaFold-based system from [2]). We also predict structures for a large dataset
of 4,433 recent protein complexes, from which we score all non-redundant interfaces with low template
identity. For heteromeric interfaces we successfully predict the interface (DockQ ≥ 0.23) in 67% of cases,
and produce high accuracy predictions (DockQ ≥ 0.8) in 23% of cases, an improvement of +25 and +11
percentage points over the flexible linker modification of AlphaFold [4] respectively. For homomeric inter-
faces we successfully predict the interface in 69% of cases, and produce high accuracy predictions in 34%
of cases, an improvement of +5 percentage points in both instances.

1. Introduction

The formation of permanent and transient protein complexes underpins most biological processes, and
understanding the structure of these complexes is a key step towards understanding and modifying
their function. In silico protein structure prediction is playing an increasingly important role in biological
research and applications as it has approached experimental accuracy, with the recent structure prediction
system AlphaFold [1] providing a step change in structure prediction accuracy. Though AlphaFold was
trained on individual protein chains, including many proteins whose structure was solved in complex
with other proteins, it has shown remarkable ability to predict protein structures with bound co-factors
or proteins stabilised by their multimeric interactions. Subsequent work has also shown that providing
pseudo-multimer inputs (e.g. residue gap insertion or chains joined with a flexible linker) to the single-
chain AlphaFold model is often successful at predicting multimer interactions [4, 5, 6, 7, 8, 9]. These
papers have shown surprising generalization performance of the original trained AlphaFold model but
leave open the question of how much more accurate AlphaFold is when training is also adapted for
multimeric inputs.

The AlphaFold system has recently been described in publication [1] along with source code and
model parameters [10]. To summarize briefly, it combines information from the amino acid sequence,
multiple sequence alignments and homologous structures in order to predict the structure of individual
protein chains. The core part of the neural network, called Evoformer, consists of a neural representation
of the multiple sequence alignment (MSA) and pairwise relations between the different amino acids
in the protein. These two representations are mixed and processed by a collection of neural network
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modules. The pair representation can be thought of as containing information about the relative positions
of amino acids in the chain. This representation is used to predict the relative distances between the
amino acids in the chain via a binned distance distribution (distogram). The first row of the MSA
embedding is then used together with the pair embedding to predict the final structure. The model is
trained end-to-end with gradients propagating from the predicted structure through the entire network.

In this work we extend AlphaFold to multiple chains during both training and inference, with native
support for multi-chain featurization and symmetry handling. We refer to this system as AlphaFold-
Multimer and demonstrate superior performance compared to existing approaches, including those
based on using AlphaFold.

2. Methods

Multiple changes to the AlphaFold system were made to adapt it to training on protein complexes, which
are detailed below. Summarizing briefly, we modify the losses to take into account permutation symmetry
among identical chains, pair the MSA alignments between individual chains to surface cross-chain genetic
information, introduce a new way of selecting subsets of residues for training, and make various small
adjustments to the structure losses and the model architecture.

2.1. Multi-Chain Permutation Alignment

When computing the losses and scoring homomeric components, permutation symmetry must be taken
into account. When a protein of a given sequence appears multiple times in the complex, the mapping
between the predicted and the ground-truth coordinates is arbitrary and so the model cannot be assumed
to predict chains in the same order as in the ground truth. To account for this we aim to pick the
optimal permutation of predicted homomer chains that best matches the ground truth. The complexity
of optimizing over all permutations grows combinatorially so we employ a simple heuristic that greedily
tries to find a good permutation. The details of this heuristic are explained in subsection 7.3.

2.2. Cross-Chain Genetics

It has been shown that pairwise correlation in a Multiple Sequence Alignment (MSA) is a useful feature
in predicting contacts and 3D structure, but this requires determination of interacting homologs in the
heteromeric case, which is in general ambiguous [11]. In this work we provide explicit aligned sequences
to the network following the procedure of Zhou et al. [12]. We pair sequences using the UniProt species
annotation and resolve ambiguities using the following procedure. If the target protein is prokaryotic,
the within-species pairing is done using the smallest genetic distance (approximated by the difference
between their UniProt accession IDs). If the target protein is eukaryotic, we rank the candidate rows
of each chain by similarity to their respective target sequence, and concatenate pairs of the same rank.
More details are available in subsection 7.4.

2.3. Multi-Chain Cropping

The number of residues that AlphaFold-Multimer can be trained on is limited by memory and compute
considerations as both memory use and compute use increase rapidly with the total number of amino
acids in the complex. To ameliorate this, the AlphaFold system is trained on cropped segments of full
length proteins, where these cropped regions are contiguous blocks of residues up to 384 residues.

We modified this procedure when training on complexes as the cropped regions need to involve
multiple chains in a given complex, and binding interfaces between chains are crucial for modelling
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protein complexes. Therefore, we designed a cropping procedure that maximizes chain coverage and
crop diversity whilst ensuring good balance between interface and non-interface regions. We balance
per-chain contiguous cropping in sequence space with interface biased spatial cropping in coordinate
space. The details of this procedure are described in subsection 7.2.

2.4. Architecture and Losses

AlphaFold uses a Frame Aligned Point Error (FAPE) loss [1], whereby the distances between ground
truth and predicted atoms are computed in the local reference frame of every residue. In AlphaFold, this
loss was clamped at 10 Å. For training the multimer model we made changes to the loss function used:
for the intra-chain amino acid pairs of the complex we keep the same 10 Å clamping; for the inter-chain
pairs we use an unclamped FAPE loss. This provides a better gradient signal for incorrect interfaces.
Moreover, we add extra positional encodings denoting whether a given pair of amino acids corresponds
to different chains and whether they belong to different homomer or heteromer chains.

We also made various small changes to the model and implementation in order to facilitate inference
of larger proteins for a given amount of memory. The details of these, and all other modifications
mentioned in this section, are explained in the Supplementary Information.

2.5. Training Regimen

AlphaFold-Multimer was trained in a very similar way to AlphaFold [1]. The training dataset comprised
structures from the Protein Data Bank (PDB) [13] with a maximum release date of 2018-04-30. Chains
were sampled in inverse proportion to cluster size and their corresponding mmCIFs selected as input to
the data pipeline, meaning that the rest of the chains in the bio-assembly will be included. This means
that the probability of sampling a particular PDB entry is proportional to the sum of probabilities of the
individual chain clusters for all chains in the file. The chain clusters are 40% identity clusterings of the
Protein Data Bank with MMSeqs2 [14].

We randomly crop to 384 residues according to the sampling procedure outlined in subsection 2.3.
We train the model to convergence (approximately 10M samples, for 2 weeks) across 128 TPUv3 cores
with a batch size of 1 per TPU core. Then we halve the learning rate and double the number of sequences
fed into the MSA stack before running two separate fine-tuning stages (one further day of training each),
the first with the experimentally resolved and predicted LDDT (pLDDT) heads switched on, and the
second with violation losses enabled. These extra heads and losses are identical to those used in the
AlphaFold paper [1]. We trained 3 models for the first stage; the best model on the validation set was
then fine tuned with 5 different random seeds for the two fine-tuning stages, producing 5 models in
total.

2.6. Inference Regimen

As with AlphaFold [1], at inference time we run all 5 trained models and select the best model on each
target according to model confidence. The only difference to AlphaFold is that our model confidence
metric is slightly modified to upweight accuracy on interfaces, as described in subsection 2.7. The
inference times for different sequence lengths are similar to those reported in [1].

2.7. Model Confidence

The AlphaFold model provides intrinsic model accuracy estimates in the form of a predicted TM-score
(pTM) [1, §1.9.7]. We provide a similar metric for the AlphaFold-Multimer model, but modified to score
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interactions between residues of different chains, since we are predominantly interested in the accuracy
of interfaces. We call this metric Interface pTM, or ipTM. See subsection 7.9 for more details.

In practice we use a weighted combination of pTM and ipTM as our model confidence metric, in
order to account for some intra-chain confidence in our model ranking:

model confidence = 0.8 · ipTM + 0.2 · pTM (1)

3. Related Work

Traditional approaches to multimeric structure prediction have tended to rely on a hybrid of template-
based modelling and free docking [15, 16, 17, 18]. Template-based modelling approaches search for
homologous complexes of known structure to serve as template models for the system under study. Free
docking approaches start from individual subunits of known structure and attempt to select the most
plausible interfaces from thousands of sampled orientations. The top 3 entrants of CASP14 Multimers —
Baker-experimental [19], Venclovas [20] and Takeda-Shitaka lab [21] — all used methodologies based
on these approaches. Takeda-Shitaka used a purely template-based approach, whilst Baker-experimental
and Venclovas used a combination of template-based and free-docking. Baker-experimental additionally
employed a deep learning based system to infer inter-chain contacts from co-evolution information,
which were used to guide the overall sampling and scoring of docked structures.

Inspired by AlphaFold’s recent success at CASP14, there have now been a number of attempts to apply
the trained AlphaFold network to the task of complex structure prediction. Many of these approaches
simply add a gap or linker segment between chains of a complex, and then fold it with pre-trained
AlphaFold as if it were a single chain [4, 5, 6, 7, 8, 9], the residue gap trick having been previously
applied to RoseTTAFold [22]. The idea is that the neural network should identify the linker segment
as unstructured and fold the single multi-domain chain in a similar way to multiple chains. Bryant et
al. [9] benchmarked AlphaFold with a residue gap against RoseTTAFold and the rigid-docking method
GRAMM [23], and AlphaFold substantially outperformed both other methods. Ghani et al. [2] combine
this approach with docking using the ClusPro docking server [17]. Humphreys et al. [24] used AlphaFold
with RoseTTAFold pre-screening to generate a dataset of 712 high confidence complexes, with previously
unknown structure. All of these approaches use a single-chain trained AlphaFold or AlphaFold-like
system at inference time; predictions on complexes are achieved simply by modifying the input. In this
work we natively handle multimer chains at both training and inference time, and our system is trained
on a dataset that includes multimers.

A key aspect of the AlphaFold model is its ability to learn to identify residue conservation and
co-evolution directly from the MSA. Such an ability has also been shown to be a useful factor for
predicting protein-protein interactions [25, 26]. However, constructing an informative multi-chain MSA
is a challenging task, often involving the careful pairing of sequences between chains in order to construct
valid interlogs of the target sequence that expose interface information. Various heuristic methods exist
to perform this pairing [27, 28, 29, 12]. We follow the approach of Zhou et al. [12] by pairing by species
label, disambiguating using genetic distance for prokaryotes, and similarity to the target sequence
for eukaryotes. Note that [5] only performs pairing for prokaryotes (using genetic distance), whilst
[9] doesn’t distinguish between prokaryotes and eukaryotes, disambiguating in both cases with the
similarity-based method.

4. Results

AlphaFold-Multimer predictions are generated as described in subsection 2.6. We benchmarked AlphaFold-
Multimer on two datasets: Benchmark 2 from [2], and Recent-PDB-Multimers. Benchmark 2 is a set
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of 17 heterodimers from PDB after the training set cutoff date. The authors selected the targets such
that there are no homologous complexes in PDB. Recent-PDB-Multimers is a homology-reduced set of
4,433 recent protein complexes from PDB. Predictions were made on full complexes before splitting into
in-contact chain pairs (according to the ground truth) for analysis. These pairs were clustered to remove
redundancy and filtered so that neither chain in the pair had greater than 40% template identity to the
training set, yielding 2,603 unique pairs upon which we report metrics. For details see subsection 7.8.
For both datasets we compare models using DockQ score [3, 30]. DockQ measures the quality of the
interface and yields a score in the range [0, 1], interfaces with score < 0.23 are considered incorrect
and scores > 0.8 are of the highest quality.

4.1. Benchmark 2

On Benchmark 2 we compare AlphaFold-Multimer to the following systems:

• AlphaFold-Linker: In this setup we add a 21 residue repeated Glycine-Glycine-Serine linker between
each chain before running it as a single chain through the AlphaFold model. Similar linker
modifications to AlphaFold have previously been used [4].

• AlphaFold-Gap (ColabFold [5]): This is a third-party Google Colab, version from 2021-08-16, that
runs AlphaFold with a 200 residue gap in the residue index between chains. It uses MMSeqs2 [14]
for genetics, includes MSA pairing and doesn’t include templates.

• ClusPro: This setup runs AlphaFold on the individual chains before docking them together using
ClusPro.

• AlphaFold refined ClusPro: The ClusPro predictions are refined by feeding them back into the
AlphaFold model as templates. The resulting 10 predictions are re-ranked according to the
interface predicted aligned error (PAE) score.

• AlphaFold refined ClusPro plus AlphaFold: This pools the AlphaFold-Gap predictions with those of
AlphaFold refined ClusPro and re-ranks all 15 predictions using interface PAE.

For ClusPro, AlphaFold refined ClusPro and AlphaFold refined ClusPro plus AlphaFold we use the top 1
numbers from [2]. Figure 1a compares the average DockQ score between the different systems. The
AlphaFold-Multimer system has an average DockQ Score of 0.65, while the ClusPro refined AlphaFold
system has a score of 0.49. In order to demonstrate statistical significance, in Figure 1b we compare
the relative difference in DockQ score between each system and AlphaFold-Multimer and estimate 95%
confidence intervals using bootstrapping over the targets. A further breakdown of the results, and the
per target DockQ scores are provided in Table S1 and Table S2.

4.2. Recent-PDB-Multimers

In Figure 2a we show the performance of the system for different levels of similarity to the training set on
the Recent-PDB-Multimers dataset. Similarity is defined as identity × coverage for the least well-matched
chain of the pair, maximised over all training set templates for which there is a match for both chains.
Here we can see that there is fairly little correlation between similarity to the training set and model
quality.

In Figure 2b we compare the average DockQ score between AlphaFold-Multimer and AlphaFold-
Linker. We see that AlphaFold-Multimer is more accurate on both homomeric and the heteromeric
interfaces: in the homomeric case the improvement is relatively modest with +0.05 mean DockQ score,
but in the heteromeric case the improvement is more pronounced with +0.19 mean DockQ score. On
average the performance on homomeric interfaces is better than for heteromeric ones. In Figure 2c
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we show the difference between the two systems with bootstrapped error bars, showing clearly that
AlphaFold-Multimer demonstrates a statistically significant improvement. The proportion of targets above
different DockQ scores is shown in Figure 2d, a further breakdown into DockQ categories (Incorrect,
Acceptable, Medium and High) is available in Table S3. The AlphaFold-Multimer system successfully
predicts (DockQ ≥ 0.23) heteromeric interfaces in 67% of cases, and successfully predicts homomeric
interfaces in 69% of cases.

In Figure 3 we show the distribution of DockQ score as a function of predicted interface TM-score for
the AlphaFold-Multimer system. The figure shows that our predicted accuracy metric is a good predictor
of model quality with the majority of high confidence predictions also having high accuracy.

In Figure 4 we show a number of examples where AlphaFold successfully predicted the right multi-
meric structure. In order to illustrate how to understand the predicted error metric we show an example
of a case with incorrect coordinates (PDB code: 6QF7) which is also predicted to be wrong in Figure 5.
In this case the individual chains are predicted to be correct, while their predicted relative position is
uncertain, as can be seen from the blocks with a high predicted error.

The AlphaFold system was trained to predict the individual chains of multimeric complexes, and as
such the model was not given the context provided by the other chains explicitly. Nevertheless AlphaFold
has been shown to often implicitly model structures with missing context correctly. In the AlphaFold
paper [1] an example is provided of a heavily intertwined multimer with correctly predicted but not
physically meaningful chain structure. This leads us to ask the question whether the individual chain
predictions of AlphaFold-Multimer are more accurate than the corresponding AlphaFold predictions. In
Figure 6 we compare the performance of AlphaFold-Linker to AlphaFold-Multimer under two regimes. In
AlphaFold-Multimer the full complex is folded before extracting the individual chains, so that the system
sees additional context. In the second regime (AlphaFold-Multimer as Monomers and AlphaFold) the
individual chains are folded in isolation. We can see that in the case of heteromers AlphaFold-Multimer
is less accurate than AlphaFold when given the single chains with incorrect monomer stoichiometry, but
is more accurate than AlphaFold when the single chains are predicted as part of the full complex. We do
not observe a similar effect in the AlphaFold-Linker system.

5. Discussion

We have shown that by modifying the AlphaFold architecture to natively handle multimers and training
explicitly on oligomeric data, we are able to provide high accuracy predictions for a large fraction of
PDB complexes, surpassing the accuracy of inference-only modifications to AlphaFold. We have not
yet implemented multimer templates or self-distillation of multimer predictions, so there is also likely
substantial scope for future accuracy improvements.

We observe that performance is generally higher for homomeric interfaces than for heteromeric
interfaces; this is presumably since in the homomeric case the MSA will readily encode evolutionary
information about the complex interfaces, while this information is more limited and harder to access in
the case of heteromeric interfaces. As a limitation, we observe anecdotally that AlphaFold-Multimer is
generally not able to predict binding of antibodies and this remains an area for future work. We have
also shown that the confidence metrics provided by the model correlate well with the true accuracy,
something that is vital for the useability of a structure prediction model. By allowing accurate prediction
of protein complexes we hope that this method will enable biologists to further accelerate the recent
progress in structural bioinformatics.

The source code and weights for the trained models will be made available shortly.
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Figure 1 | The performance of AlphaFold-Multimer against several published baselines is shown on the
Benchmark 2 dataset, consisting of 17 heterodimer targets with low training set homology. AlphaFold-
Linker is AlphaFold with a 21 residue linker of repeated Glycine-Glycine-Serine residues, similar to
previous AlphaFold modifications [4]. AlphaFold-Gap (ColabFold [5]), version from 2021-08-16, is a
published system that runs AlphaFold with a gap between residue indices between chains, uses MMSeqs2
for genetics, includes MSA pairing and does not include templates. ClusPro, AlphaFold refined ClusPro,
and AlphaFold refined ClusPro plus AlphaFold are all systems and results based on combining the docking
algorithm ClusPro with AlphaFold, results are as reported in [2]. Error bars represent a 95% confidence
interval around the mean.
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Figure 2 | The performance of AlphaFold-Multimer on the Recent-PDB-Multimers dataset: the structures of
4,433 non-redundant protein complexes from recent PDB were predicted, from which all non-redundant
pairs in contact were extracted (defined as any heavy atom of one chain being within 5A of any heavy
atom of the other chain), yielding 5,271 pairs. For figures b, c and d this set was further reduced such
that no chain in the pair had greater than 40% template overlap (identity × coverage) to the training
set, yielding 1,282 homomeric and 1,321 heteromeric scored interfaces. All error bars represent a 95%
confidence interval around the mean.
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Figure 3 | The correlation between AlphaFold-Multimer model confidence (predicted interface TM-score)
and the true DockQ score is shown for the 2,648 homology reduced in-contact chain pairs from the
Recent-PDB-Multimers dataset. Error bars represent a 95% confidence interval around the mean. In (a)
interface pTM is grouped into intervals of size 10, (b) shows the raw data points.
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(a) A2B2C2 heteromer
TM-score = 98.0, #res = 1,246, PDB ID = 6E3K

(b) A3B3 heteromer
TM-score = 89.3, #res = 795, PDB ID = 7KHD

(c) Protein-peptide complex
TM-score = 96.0, DockQ = 0.948,
#res = 385, PDB ID = 6JMT

(d) A2B2 heteromer
TM-score = 98.3, #res = 716, PDB ID = 6IWD

Figure 4 | Structure examples predicted with the AlphaFold-Multimer. Visualised are the ground truth
structures (blue) and predicted structures (coloured by chain).
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TM-score = 67.4, DockQ = 0.04, #res = 628, PDB ID = 6QF7

Figure 5 | Example of a predicted heterodimer with incorrect geometry that is correctly predicted as
low confidence by the predicted aligned error (PAE). Visualised are the ground truth structures (blue),
predicted structures (coloured by chain), and PAE heat map. The PAE heat map shows the predicted
error (in Angstroms) between all pairs of residues.
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Figure 6 | Comparison on 5,029 clustered single chains extracted from the Recent-PDB-Multimers dataset.
Metrics for AlphaFold-Linker and AlphaFold-Multimer are computed by predicting the full-complex, then
cropping out the individual chains. For AlphaFold and AlphaFold-Multimer as Monomers the individual
chains are run with A1 stoichiometry instead of the true stoichiometry. All error bars represent a 95%
confidence interval around the mean.
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7. Supplementary Information

7.1. Data

This section describes the AlphaFold-Multimer data pipeline, which generates features for the model.
The input to the data pipeline is an mmCIF file containing one or more chains. The AlphaFold-Multimer
data pipeline follows similar steps to the single-chain AlphaFold system [1], with a few key differences
that are described below.

We derive the details about the structure’s biological assemblies from the mmCIF file and uniformly
sample a single bio-assembly from all the available bio-assemblies. The MSA features are merged using
the cross-genetics method outlined in subsection 7.4.

The AlphaFold-Multimer system uses only per-chain templates. The template search is similar to the
AlphaFold system template search, except that it uses HMMER suite v3.3 hmmsearch and hmmbuild
instead of HHsearch. First, the Uniref90 MSA obtained in the MSA search is converted to an HMM using
hmmbuild (the only flag set to a non-default value is –hand). HMMER hmmsearch is then used to search
for matches of the HMM against pdb_seqres.txt, downloaded from ftp://ftp.wwpdb.org/pub/pdb/derived_data/pdb_

seqres.txt on 2020-05-14. We limit the number of templates to 20. Further processing is as described in the
AlphaFold paper. Any structure released after 2018-04-30 is excluded from training. The HMMSearch
flags used are –F1 0.1 –F2 0.1 –F3 0.1 –incE 100 -E 100 –domE 100 –incdomE 100.

The training data rebalancing procedure is very similar to the AlphaFold single chain setup: we
uniformly sample a chain cluster, then uniformly sample a chain within that cluster and select the mmCIF
to which it belongs as input to the pipeline. The chain clusters are 40% identity clusterings of the Protein
Data Bank with MMSeqs2 [14].

During the training procedure we use a different self-distillation set, set of filters, MSA preprocessing,
and residue cropping methods from the AlphaFold data pipeline. The self-distillation set is created using
the clustered MGnify dataset [31], filtered to clusters with more than 10 sequences, resulting in about
13M sequences.

We filter out proteins during training if:

• The input mmCIF has resolution greater than 9 Å.
• Any single amino acid accounts for more than 80% of the complex sequences.
• The example comes from the distillation set and has less than 200 residues.

Features of the individual chains are merged before further processing. For all identical chains, the
features are concatenated along the residue dimension. #res ×#seq features of different chains are paired
using the cross-chain genetics method outlined in subsection 7.4. #res features were simply concatenated
along the residue dimension.

The merged features are processed in a similar manner to AlphaFold, including MSA sampling and
clustering. MSA block deletion is not included in the AlphaFold-Multimer data pipeline.

The features input to the multimer model are identical to the AlphaFold with one extra feature:
asym_id, an integer indicating the chain number. The ordering of the input chains is arbitrary as the
network is agnostic to chain order.
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7.2. Multi-chain Cropping

7.2.1. Contiguous Cropping

In this method (Algorithm 1), we iterate through the list of chains, selecting a contiguous crop from each
until we have reached our #res budget. We keep track of two variables during the procedure: =added is
the number of residues selected so far, and =remaining is the combined length of yet to be cropped chains
(excluding the current chain). crop_size_min taken for each chain ensures we use as much of our #res
budget as possible, and crop_size_max ensures we don’t go over it. The input to the algorithm is the set
of chain lengths, {=: }, and the total residue budget #res. The output is a set of masks to apply to each
chain in order to extract the corresponding crops, {m: }. The chains are first randomly shuffled to avoid
bias.

Algorithm 1 Crop Contiguous
def CropContiguous({=: }, #res) : =: , #res ∈ N
1: =added ← 0
2: =remaining ← #res

3: for all : ∈ [0 . . . #chains − 1] do
4: =remaining −= =:
5: crop_size_max← minimum(#res − =added, =: )
6: crop_size_min← minimum(=: ,maximum(0, #res − (=added + =remaining))
7: crop_size← uniform(crop_size_min, crop_size_max+1)
8: =added += crop_size
9: crop_start← uniform(0, =: − crop_size+1)

10: m: ← 0 m: ∈ {0, 1}=:
11: keep← [crop_start, . . . , crop_start+ crop_size]
12: m:keep = 1
13: end for
14: return {m: }

7.2.2. Spatial Cropping (Interface Biased)

In this method (Algorithm 2), we specifically target interface regions by selecting a 3D spatial crop
around a randomly selected interface residue. The crop consists of the #res spatially nearest neighbours
to the selected interface residue, as defined by distances between CU coordinates. The input to the
algorithm is the set of CU coordinates across all chains, {x8}, and the index of the selected interface
residue, 2. The output is a set of binary values indicating which residues to include in the crop, {<8}.
Distance ties are broken by adding small uniquifying values. We found empirically that a 50:50 ratio of
interface cropping to contiguous cropping worked best for multimers (always contiguous cropping for
monomers).

7.3. Multi-Chain Permutation Alignment

Stoichiometry must be carefully accounted for when scoring multimer structure predictions. In a
prediction for A2B, both orderings of the A chains are equally valid, regardless of their ordering in the
ground truth. In particular, if this is not accounted for in the loss then correct predictions will be unfairly
penalized and the network will fail to train properly.

To address this issue, before scoring a multimer prediction we first permute chains with identical
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Algorithm 2 Crop Spatial

def CropSpatial({x8}, 2) : x8 ∈ R3, 2 ∈ N
# Add small uniquifying values to the distances to break ties.
1: 38 = | |x8 − x2 | | + 8 · 10−3 38 ∈ R
# Select distance to the #res

th spatially nearest neighbour as cutoff.
2: 3cutoff ← partition(d, #res − 1) [#res − 1] 3cutoff ∈ R
3: <8 ← 38 ≤ 3cutoff <8 ∈ {0, 1}
4: return {<8}

sequences such that they are best-effort aligned with those of the prediction. One could imagine
considering the best alignment over all possible permutations, however this quickly becomes intractable,
so a heuristic method is needed. Our method is a simple greedy heuristic that can be performed efficiently
on TPU; other multi-chain alignment algorithms also exist [32, 33]. The optimal ground truth chain
permutation is found using Algorithm 3, which can be broken down into the following alignment and
assignment stages.

7.3.1. Alignment Stage

In the alignment phase, we pick a pair of anchor chains to align, one in the ground truth and one in
the prediction. The ground truth anchor chain 0gt is chosen to be the least ambiguous possible, for
example in an A3B2 complex an arbitrary B chain is chosen. In the event of a tie e.g. A2B2 stoichiometry,
the longest chain is chosen, with the hope that in general the longer chains are likely to have higher
confident predictions. The prediction anchor chain is chosen from the set {0pred< } of all prediction chains
with the same sequence as the ground truth anchor chain. We then transform the ground truth chain CU
coordinates {xgt

;
} onto the prediction chain CU coordinates {xpred

:
} such that the chosen pair of anchor

chains is optimally aligned (line 2).

7.3.2. Assignment Stage

In the assignment stage (Algorithm 4), we greedily assign each of the predicted chains to their nearest
neighbour of the same sequence in the ground truth. These assignments define the optimal permutation
to apply to the ground truth chains. Nearest neighbours are defined as the chains with the smallest
distance between the average of their CU coordinates.

We repeat the above alignment and assignment stages for all valid choices of the prediction anchor chain
{0pred< } given the ground truth anchor chain 0gt. Finally, we pick the permutation (line 8) that minimizes
the RMSD between the CU coordinate averages of the predicted and ground truth chains.

The above procedure must be modified during training to account for cropping. In particular, in the
alignment stage, we must first restrict the ground truth anchor chain to the same crop region as the
paired prediction chain before alignment. Similarly, in the assignment stage, for each predicted chain
the ground truth chains must be restricted to the same crop region before assignment.
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Algorithm 3 Multi-chain permutation alignment
def MultiChainPermutationAlignment(
{xpred

:
}, {xgt

;
},

{0pred< }, 0gt) : xpred
:
∈ R=:×3, xgt

;
∈ R=;×3, 0

pred
< ∈ N, 0gt ∈ N

# Transform ground truth onto prediction such that anchors are aligned.
1: )< ← get_transform(xgt

0gt
, xpred

0
pred
<

)

2: xgt
;
← )< · xgt;

3: Ḡpred
:
← mean(xpred

:
) Ḡ

pred
:
∈ R3

4: Ḡgt
;
← mean(xgt

;
) Ḡ

gt
;
∈ R3

5: p< = FindOptimalPermutation({Ḡpred
:
}, {Ḡgt

;
}) p< ∈ N#chains

6: B<: ← rmsd(Ḡpred
:

, Ḡ
gt
?<:
) B<: ∈ R

7: B< ← sum(s<)
8: best_idx← argmin({B<})
9: return pbest_idx

Algorithm 4 Find Optimal Permutation

def FindOptimalPermutation({Ḡpred
:
}, {Ḡgt

;
}) :

1: 3:; ← ||Ḡpred
:
− Ḡgt

;
| | 3:; ∈ R

2: for all : ∈ [0, . . . , #chains − 1] do
3: best_idx← argmin(d: )
# Ensure this ground truth chain index cannot be picked again.
4: d:best_idx += 109

5: ?: ← best_idx
6: end for
7: return {?: }

7.4. Cross-Chain Genetics

In order to make cross-chain coevolutionary information available to the network, it is necessary to pair
sequences between the per-chain MSAs such that they form valid orthologs of the target sequence. In
practice, this pairing can’t be done exactly, and various heuristic methods are used instead to approxi-
mate it. We follow the procedure of Zhou et al. [12], which pairs sequences of the same species and
disambiguates according to either genetic distance or sequence similarity, depending on whether the
species is prokaryotic or eukaryotic. Our exact steps are as follows:

1. For each chain, JackHMMER v3.3 [34] is used to query the unclustered UniProt 2020_05 database
[35] with maximum MSA depth set to 50,000, and non-default flags values set to -N 1 -e 0.0001
-Z 119222328.

2. The per-chain MSA sequences are grouped by species, using species labels derived from UniProt’s
idmapping downloaded from https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/

for the 2020_05 UniProt version.
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3. Sequences are then paired within a specific species. If there is only one sequence per species,
we simply concatenate them. Otherwise, we need to disambiguate. The disambiguation method
differs depending on whether the species is eukaryotic or prokaryotic.

• Prokaryote: we match the chain MSAs by minimizing the base-pair distance between chains.
(a) The chains are considered in order of the chain id. Candidate MSA hits from the first

chain are considered in order of e-value provided by JackHMMER.
(b) Hits for second and subsequent chains are chosen to minimize the base-pair distance

from the previous chain’s hit, with a hard cut-off if the distance is too great. Base-pair
distance is approximated using the lexicographic difference of the Uniprot accession IDs.

(c) If a candidate MSA hit has more than 90% sequence identity to the query chain, or more
than 50% unmatched gaps, the entire matched set of hits up to that chain is discarded
and we move onto the next candidate MSA hit from the first chain.

• Eukaryote: we match the chain MSAs by ordering them by sequence identity to the target
sequence and matching sequences of the same rank. There will be as many matches as there
are hits in the shortest MSA.

4. In both cases, chains with empty MSAs are not matched and the resulting paired MSA will be
padded with gap (no-match) symbols.

5. The target complex is identified as eukaryotic or prokaryotic from the PDB entry for the complex,
using the NCBI taxonomy database [36] and UniProt taxonomy [35] to determine the domain.
We default to the eukaryotic method where the domain is unknown.

7.5. Chain Relative Positional Encoding

In AlphaFold [1], relative positional features are encoded into the initial pair representation of the
network, allowing the network to reason about the positions of residues in the chain and break symmetry
between identical residues. In the case of multimers, we also need to tell the network when two
residues are in different chains, allowing it to break symmetry between homomer chains. To do this
(Algorithm 5) we simply add an extra bin to the relative position encoding 5

rel_pos
8 9

of AlphaFold to
denote ‘different chain’. Furthermore, we also provide a feature to the network 5

same_entity
8 9

encoding

whether the residues are from chains with identical sequences, and another feature 5
rel_chain
8 9

encoding
relative chain index between chains of identical sequence. Relative residue indices are clipped between
[−Amax, Amax], with Amax = 32, and relative chain indices are clipped between [−Bmax, Bmax], with Bmax = 2.
5
residue_index
8

is the index of residue 8, and 5
asym_id
8

, 5 entity_id
8

and 5
sym_id
8

are chain identifiers for residue
8: 5 asym_id

8
distiguishes between chains, 5 entity_id

8
distinguishes between unique chain sequences, and

5
sym_id
8

distinguishes between chains of the same sequence.

7.6. Mixed Frame Aligned Point Error (FAPE) Clamping

In AlphaFold the frame aligned point error (FAPE) backbone loss is clamped at 10 Å, emphasizing
accurate positioning of residues within their local neighbourhood, but de-emphasizing longer range
errors. For multimer chains, we also want to encourage accurate positioning of interface residues, which
are in general much farther apart than neighbouring within-chain residues. We achieve this by splitting
the FAPE loss into two. The first is clamped at 10 Å and applied to within-chain residue-pairs; the second
is unclamped and applied to between-chain residue-pairs. These two losses are then summed (which
also has the effect of upweighting between-chain residue-pairs).
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Algorithm 5 Relative position encoding

def relpos({5 residue_index
8

}, {5 asym_id
8

}, {5 entity_id
8

}, {5 sym_id
8

}, Amax, Bmax) :

1: 08 9 ← 5
asym_id
8

− 5
asym_id
9

08 9 ∈ Z

2: 38 9 ← clip(5 residue_index
8

− 5
residue_index
9

+ Amax,

0, 2 · Amax) if 08 9 == 0 else Amax + 1 38 9 ∈ N

3: 5
rel_pos
8 9

← one_hot(38 9 , 2 · Amax + 2)

4: 48 9 ← 5
entity_id
8

− 5
entity_id
9

48 9 ∈ Z

5: 5
same_entity
8 9

← 5
entity_id
8

== 5
entity_id
9

6: B8 9 ← clip(5 sym_id
8

− 5
sym_id
9

+ Bmax,

0, 2 · Bmax) if 48 9 == 0 else Bmax + 1 B8 9 ∈ N

7: 5
rel_chain
8 9

← one_hot(B8 9 , 2 · Bmax + 2)

8: p8 9 ← Linear(concat( [5 rel_pos
8 9

, 5
same_entity
8 9

, 5
rel_chain
8 9

])) p8 9 ∈ R#channels

9: return {p8 9 }

Algorithm 6 One-hot encoding with nearest bin
def one_hot(G, =1) : G ∈ R =1 ∈ N
1: vbins = [0, . . . , =1 − 1]
2: p = 0 p ∈ {0, 1}#bins

3: 1 = arg min( |G − vbins |)
4: ?1 = 1

5: return p

7.7. Architectural Modifications

We made various small architecture changes to facilitate inferencing proteins of larger size, and made
some further minor changes to make different components of the model more consistent with one
another.

We swap the order of the attention and triangular multiplicative update layers in the template stack
relative to the AlphaFold model. This is to make it consistent with the order in the Evoformer stack. The
template unit vectors that were disabled in the AlphaFold model are enabled here, i.e. they are not set
to zero but computed from the template coordinates. We changed the way the template embeddings are
aggregated. Before the model would give a pairwise representation of embeddings for each template,
which were then aggregated via attention independently for each pair of residues. Here we use a simpler
approach whereby we simply average the template embeddings. For efficiency we compute this similarly
to how a moving average would be computed: we sum the embeddings as they are getting produced
and divide by number of templates at the end. This has the advantage that it does not require template
embeddings for all templates in order to average them, which leads to a substantial reduction in memory
consumption. We have observed no significant drop in accuracy when aggregating templates in this way.
Furthermore we moved the outer product mean to the start of the Evoformer block. This allows the pair
representation and the MSA representation to evolve independently within a given block, with all cross
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communication happening at the start of the block. At training time this means that we do not need
to keep all of the MSA stack activations and all the pair stack activations in memory at the same time
during backpropagation. At inference time both stacks can be processed in parallel.

7.8. Datasets

The Recent-PDB-Multimers set consists of all targets in the Protein Data Bank [13] released between
2018-04-30 and 2021-08-02. This set was filtered to proteins with more than one chain, less than 9
chains and less than 1,536 total residues. It was also clustered with the following approach, which yields
a set of 4,433 protein complexes:

1. Assign each chain to its 40% overlap cluster (using the clusters provided by PDB (link)).
2. Assign each protein complex a cluster identifier that is the union of all the single-chain cluster ids

from step 1.
3. Randomly pick a single protein complex from every full-complex cluster.

Predictions were made on the full complexes, however for Recent-PDB-Multimers metrics were
computed for each chain-pair separately. The chain pairs were selected if they were ’in contact’ in the
ground truth, defined as any heavy atom of one chain being within 5A of any heavy atom of the other
chain. They were then clustered to remove redundancy: chain pairs were greedily selected if the cluster
id pair was unique amongst those already selected. Finally the data was filtered such that no chain
has greater than 40% template identity to the training set. This resulted in 2,603 unique in-contact
chain-pairs (5,271 pre-filtering).

7.9. Interface pTM

Defining an interface version of AlphaFold’s predicted TM-score metric [1, §1.9.7] amounts to modifying
[1, Equation 40] so that 8 and 9 come from different chains.

Concretely, if we follow the notation in [1, §1.9.7] such that - true = {®G true
9 }, - = {®G 9 } are the CU

positions of the ground truth and predicted structures respectively, {) true
8 }, {)8} are the corresponding

backbone frames, 48 9 = ‖) −1
8 ◦ ®G 9 −) true

8
−1 ◦ ®G true

9 ‖ is the error in the position of the CU atom of residue 9

when the predicted and true structures are aligned using the backbone frame of residue 8, #res is the total
number of residues, and 30(#res) = 1.24 3

√
maximum(#res, 19) − 15 − 1.8 is the TM-score normalization

constant, then we can obtain a interface TM-score prediction as:

ipTM = max
8

1
|D−chain(8) |

∑
9 ∈D−chain(8 )

E
1

1 +
(

48 9

30 ( |D−chain(8 ) |)

)2 , (2)

where D−chain(8) is the set of all residues except those of the chain of residue 8. As in [1, §1.9.7], the
expectation is taken over the probability distribution defined by 48 9 , which is predicted by a neural
network.
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Method
Mean
DockQ
Score

Incorrect
Count

Acceptable
Count

Medium
Count

High
Count

AlphaFold-Multimer 0.65 3 0 8 6
AlphaFold refined ClusPro 0.49 7 1 4 5
AlphaFold refined ClusPro

plus AlphaFold 0.47 7 1 5 4

AlphaFold-Linker 0.41 7 1 5 4
AlphaFold-Gap (ColabFold) 0.40 8 1 6 2
ClusPro 0.25 10 3 4 0

Table S1 | Performance on the Benchmark 2 dataset from [2] consisting of 17 heterodimers with low
training set similarity. The following CAPRI definitions were used:
Incorrect: 0 ≤ DockQ < 0.23
Acceptable: 0.23 ≤ DockQ < 0.49
Medium: 0.49 ≤ DockQ < 0.80
High: 0.80 ≤ DockQ

Target DockQ Score

5ZNG 0.02
6A6I 0.05
6GS2 0.50
6H4B 0.80
6IF2 0.74
6II6 0.73
6ONO 0.64
6PNQ 0.56
6Q76 0.91
6U08 0.93
6ZBK 0.79
7AYE 0.88
7D2T 0.78
7M5F 0.89
7N10 0.86
7NLJ 0.06
7P8K 0.86

Table S2 | Results per target for AlphaFold-Multimer, on the 17 heterodimer Benchmark 2 dataset from
[2]
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(a) Homomeric Interfaces

Method
Mean
DockQ
Score

Incorrect % Acceptable % Medium % High %

AlphaFold-Linker 0.476 35.7 10.1 25.4 28.8
AlphaFold-Multimer 0.523 30.7 9.83 25.1 34.3

(b) Heteromeric Interfaces

Method
Mean
DockQ
Score

Incorrect % Acceptable % Medium % High %

AlphaFold-Linker 0.290 57.5 10.4 20.6 11.4
AlphaFold-Multimer 0.479 32.7 11.9 33.1 22.3

Table S3 | Performance on the Recent-PDB-Multimers dataset, evaluated on homology-reduced chain pairs
with low training set similarity (see subsection 7.8), broken down into DockQ categories as in Table S1.
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