Abstract
While the vast majority of well-structured single protein chains can now be predicted to high accuracy due to the recent AlphaFold [1] model, the prediction of multi-chain protein complexes remains a challenge in many cases. In this work, we demonstrate that an AlphaFold model trained specifically for multimeric inputs of known stoichiometry, which we call AlphaFold-Multimer, significantly increases accuracy of predicted multimeric interfaces over input-adapted single-chain AlphaFold while maintaining high intra-chain accuracy. On a benchmark dataset of 17 heterodimer proteins without templates (introduced in [2]) we achieve at least medium accuracy (DockQ [3] ≥ 0.49) on 13 targets and high accuracy (DockQ ≥ 0.8) on 7 targets, compared to 9 targets of at least medium accuracy and 4 of high accuracy for the previous state of the art system (an AlphaFold-based system from [2]). We also predict structures for a large dataset of 4,446 recent protein complexes, from which we score all non-redundant interfaces with low template identity. For heteromeric interfaces we successfully predict the interface (DockQ ≥ 0.23) in 70% of cases, and produce high accuracy predictions (DockQ ≥ 0.8) in 26% of cases, an improvement of +27 and +14 percentage points over the flexible linker modification of AlphaFold [4] respectively. For homomeric inter-faces we successfully predict the interface in 72% of cases, and produce high accuracy predictions in 36% of cases, an improvement of +8 and +7 percentage points respectively.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
This revision updates the results for new models trained with a between chain centre-of-mass loss, re-weighting of the violation losses and removal of the prokaryote specific MSA pairing. These changes significantly reduce the number of structures with clashes and improve the overall accuracy.