Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing prediction in Klebsiella pneumoniae based on MALDI-TOF mass spectra

View ORCID ProfileA. Guerrero-López, View ORCID ProfileC. Sevilla-Salcedo, A. Candela, View ORCID ProfileM. Hernández-García, View ORCID ProfileE. Cercenado, View ORCID ProfileP. M. Olmos, View ORCID ProfileR. Cantón, View ORCID ProfileP. Muñoz, View ORCID ProfileV. Gómez-Verdejo, View ORCID ProfileR. del Campo, View ORCID ProfileB. Rodríguez-Sánchez
doi: https://doi.org/10.1101/2021.10.04.463058
A. Guerrero-López
1Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés, 28911, Spain
2Gregorio Marañón Health Research Institute, Hospital General Universitario Gregorio Marañón, Madrid, 28009, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Guerrero-López
  • For correspondence: alexjorguer27@gmail.com
C. Sevilla-Salcedo
1Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés, 28911, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Sevilla-Salcedo
A. Candela
2Gregorio Marañón Health Research Institute, Hospital General Universitario Gregorio Marañón, Madrid, 28009, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Hernández-García
3Department of Microbiology, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, 28034, Spain
4CIBER en Enfermedades Infecciosas, Madrid, 28034, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Hernández-García
E. Cercenado
2Gregorio Marañón Health Research Institute, Hospital General Universitario Gregorio Marañón, Madrid, 28009, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Cercenado
P. M. Olmos
1Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés, 28911, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. M. Olmos
R. Cantón
3Department of Microbiology, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, 28034, Spain
4CIBER en Enfermedades Infecciosas, Madrid, 28034, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Cantón
P. Muñoz
2Gregorio Marañón Health Research Institute, Hospital General Universitario Gregorio Marañón, Madrid, 28009, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Muñoz
V. Gómez-Verdejo
1Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés, 28911, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Gómez-Verdejo
R. del Campo
3Department of Microbiology, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, 28034, Spain
4CIBER en Enfermedades Infecciosas, Madrid, 28034, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. del Campo
B. Rodríguez-Sánchez
2Gregorio Marañón Health Research Institute, Hospital General Universitario Gregorio Marañón, Madrid, 28009, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Rodríguez-Sánchez
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) Mass Spectrometry (MS) is a reference method for microbial identification. Currently, machine learning techniques are used to predict Antibiotic Resistance (AR) based on MALDI-TOF data. However, current solutions need costly preprocessing steps, their reproducibility is difficult due to hyperparameter cross-validation, they do not provide interpretable results, and they do not take into account the epidemiological difference inherent to data coming from different laboratories. In this paper, we validate a multi-view heterogeneous Bayesian model (SSHIBA) for AR mechanism prediction based on MALDI-TOF MS. This novel approach allows exploiting local epidemiology differences between data sources, gets rid of preprocessing steps, is easily reproducible because hyperparameters are optimized by Bayesian inference, and provides interpretable results. To validate this model and its advantages, we present two domains of Klebsiella pneumoniae isolates: 282 samples of Hospital General Universitario Gregorio Marañón (GM) domain and 120 samples for Hospital Universitario Ramón y Cajal (RyC) domain that discriminates between Wild Type (WT), Extended-Spectrum Beta-Lactamases (ESBL)-producers and ESBL + Carbapenemases (ESBL+CP)-producers. Experimental results prove that SSHIBA outperforms state-of-the-art (SOTA) algorithms by exploiting the multi-view approach that allows it to distinguish between data domains, avoiding local epidemiological problems. Moreover, it shows that there is no need to preprocess MALDI-TOF data. Its implementation in microbiological laboratories could improve the detection of multi-drug resistant isolates, optimizing the therapeutic decision and reducing the time to obtain results of the resistance mechanism. The proposed model implementation, specifically adapted to AR prediction, and data collections are publicly available on GitHub at: github.com/alexjorguer/RMPrediction

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • This work was supported by Spanish MINECO (Agencia Estatal de Investigación) [TEC2017-92552-EXP to P.O., RTI2018-099655-B-100 to P. O., TEC2017-83838-R to A. G., C. S. and V. G., PID2020-115363RB-I00 to A. G., C. S. and V. G.]; and Comunidad de Madrid [IND2017/TIC-7618, IND2018/TIC-9649, IND2020/TIC-17372, Y2018/TCS-4705 to P. O.]; and the BBVA Foundation under the Domain Alignment and Data Wrangling with Deep Generative Models (Deep-DARWiN) project to P. O.; and the European Union (European Regional Development Fund and the European Research Council) through the European Union’s Horizon 2020 Research and Innovation Program [714161 to P. O.]; and Intramural Program of the Gregorio Marañón Health Research Institute to A. G.; and Health Research Fund (Instituto de Salud Carlos III. Plan Nacional de I+D+I 2013-2016) of the Carlos III Health Institute (ISCIII, Madrid, Spain) [PI15/01073, PI18/00997 to A. C. and B. R.] partially financed by the European Regional Development Fund (FEDER) ‘A way of making Europe’; and Health Research Fund Miguel Servet contract [CPII19/00002 to B. R.]

  • (e-mail: alexjorguer{at}tsc.uc3m.es, pa-martin{at}ing.uc3m.es).

  • (e-mail: casevill{at}pa.uc3m.es, vanes-sag{at}ing.uc3m.es)

  • (email: acandelagon{at}gmail.com, emilia.cercenado{at}salud.madrid.org, pamunoz{at}iisgm.com, mbelen.rodriguez{at}iisgm.com)

  • (e-mail: martahernandez1986{at}gmail.com, rafael.canton{at}salud.madrid.org, rosacampo{at}yahoo.com)

  • Title corrected;

  • https://github.com/alexjorguer/RMPrediction

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted February 02, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing prediction in Klebsiella pneumoniae based on MALDI-TOF mass spectra
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing prediction in Klebsiella pneumoniae based on MALDI-TOF mass spectra
A. Guerrero-López, C. Sevilla-Salcedo, A. Candela, M. Hernández-García, E. Cercenado, P. M. Olmos, R. Cantón, P. Muñoz, V. Gómez-Verdejo, R. del Campo, B. Rodríguez-Sánchez
bioRxiv 2021.10.04.463058; doi: https://doi.org/10.1101/2021.10.04.463058
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing prediction in Klebsiella pneumoniae based on MALDI-TOF mass spectra
A. Guerrero-López, C. Sevilla-Salcedo, A. Candela, M. Hernández-García, E. Cercenado, P. M. Olmos, R. Cantón, P. Muñoz, V. Gómez-Verdejo, R. del Campo, B. Rodríguez-Sánchez
bioRxiv 2021.10.04.463058; doi: https://doi.org/10.1101/2021.10.04.463058

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4246)
  • Biochemistry (9184)
  • Bioengineering (6808)
  • Bioinformatics (24072)
  • Biophysics (12167)
  • Cancer Biology (9570)
  • Cell Biology (13847)
  • Clinical Trials (138)
  • Developmental Biology (7666)
  • Ecology (11742)
  • Epidemiology (2066)
  • Evolutionary Biology (15548)
  • Genetics (10676)
  • Genomics (14372)
  • Immunology (9523)
  • Microbiology (22923)
  • Molecular Biology (9139)
  • Neuroscience (49175)
  • Paleontology (358)
  • Pathology (1488)
  • Pharmacology and Toxicology (2584)
  • Physiology (3851)
  • Plant Biology (8356)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2302)
  • Systems Biology (6207)
  • Zoology (1304)