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Abstract— Matrix-assisted laser desorption ionization
time-of-flight (MALDI-TOF) Mass Spectrometry (MS) is a
reference method for microbial identification. Currently,
machine learning techniques are used to predict Antibi-
otic Resistance (AR) based on MALDI-TOF data. How-
ever, current solutions need costly preprocessing steps,
their reproducibility is difficult due to hyperparameter
cross-validation, they do not provide interpretable re-
sults, and they do not take into account the epidemi-
ological difference inherent to data coming from differ-
ent laboratories. In this paper, we validate a multi-view
heterogeneous Bayesian model (SSHIBA) for AR mecha-
nism prediction based on MALDI-TOF MS. This novel ap-

Submitted on XX/XX/XXXX. This work was supported by Spanish
MINECO (Agencia Estatal de Investigación) [TEC2017-92552-EXP to
P.O., RTI2018-099655-B-100 to P. O., TEC2017-83838-R to A. G., C. S.
and V. G., PID2020-115363RB-I00 to A. G., C. S. and V. G.]; and Comu-
nidad de Madrid [IND2017/TIC-7618, IND2018/TIC-9649, IND2020/TIC-
17372, Y2018/TCS-4705 to P. O.]; and the BBVA Foundation under the
Domain Alignment and Data Wrangling with Deep Generative Models
(Deep-DARWiN) project to P. O.; and the European Union (European
Regional Development Fund and the European Research Council)
through the European Union’s Horizon 2020 Research and Innovation
Program [714161 to P. O.]; and Intramural Program of the Gregorio
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Health Research Institute, Hospital General Universitario Gregorio
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proach allows exploiting local epidemiology differences
between data sources, gets rid of preprocessing steps,
is easily reproducible because hyperparameters are opti-
mized by Bayesian inference, and provides interpretable
results. To validate this model and its advantages, we
present two domains of Klebsiella pneumoniae isolates:
282 samples of Hospital General Universitario Gregorio
Marañón (GM) domain and 120 samples for Hospital Uni-
versitario Ramón y Cajal (RyC) domain that discrimi-
nates between Wild Type (WT), Extended-Spectrum Beta-
Lactamases (ESBL)-producers and ESBL + Carbapene-
mases (ESBL+CP)-producers. Experimental results prove
that SSHIBA outperforms state-of-the-art (SOTA) algo-
rithms by exploiting the multi-view approach that allows
it to distinguish between data domains, avoiding local
epidemiological problems. Moreover, it shows that there
is no need to preprocess MALDI-TOF data. Its imple-
mentation in microbiological laboratories could improve
the detection of multi-drug resistant isolates, optimizing
the therapeutic decision and reducing the time to ob-
tain results of the resistance mechanism. The proposed
model implementation, specifically adapted to AR predic-
tion, and data collections are publicly available on GitHub
at: github.com/alexjorguer/RMPrediction

Index Terms— Semi-supervised, missing data, heteroge-
neous, Bayesian, ESBL, CP, MALDI-TOF, Klebsiella pneu-
moniae, antibiotic resistance prediction

I. INTRODUCTION

Multidrug-resistant Klebsiella pneumoniae is considered
a global public health threat by major international health
organizations due to its rapid spread, high morbidity and mor-
tality, and the economic burden associated with its treatment
and control [1]–[3]. Resistance to carbapenems is a major
challenge, as recognized by the World Health Organization
(WHO) [4], where some carbapenemases have been shown
to hydrolyze almost all beta-lactam antibiotics. Concretely, K.
pneumoniae has shown a great capability to acquire antibiotic
resistant mechanisms, mainly beta-lactamases and carbapene-
mases, over the last two decades. The presence of K. pneumo-
niae isolates hosting these resistance mechanisms complicates
the treatment options and patients’ outcome [5]. Thus, besides
the routinely Antimicrobial Susceptiblity Testing (AST), rapid
diagnostic methods such as Matrix-assisted laser desorption
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ionization time-of-flight (MALDI-TOF) Mass Spectrometry
(MS), beyond identification, should be implemented in clinical
microbiology laboratories for early detection of multidrug-
resistant isolates.

MALDI-TOF MS is designed for microbial identification,
but also allows the detection of ESBL and Carbapenemases
(CP) due to the different molecular weight of the antibiotic
after its hydrolysis by resistant bacteria [6]. This approach
is faster than conventional AST (30-60 min vs. 18-24 h),
but requires highly trained personnel and its use is limited
to clinical laboratories. However, Machine Learning (ML)
approaches can automatically analyze and predict AR based
on the MALDI-TOF MS protein profiles, as suggested in
[7]. The most relevant limitation for this methodology is
the high complexity of the MALDI-TOF spectrum, which is
also influenced by the particularities of each lineage and its
accessory genome. In this sense, two isolates carrying the
same CP gene could differ in their MS due to their particular
genetic background. Therefore, useful ML models have to be
able to jointly learn from their MALDI-TOF MS and their
epidemiology to model these particularities.

In the literature, ML has been widely used for microbial
species identification [8]–[13]. However, there is a lack of
quality publications on prediction of AR using ML. A first
preprocessing step is commonly performed by using the R
package MALDIquant (MQ) (MQ) [14]. After this first step,
supervised ML methods such as Support Vector Machine
(SVM) or Random Forest (RF) are applied for the detection
of different antibiotic resistances in S. aureus [15]–[17]. One
of the most commonly used tools is the ClinProTools soft-
ware [18] which contains plug-and-play classification models
such as Genetic Algorithm (GA), Supervised Neural Network
(SNN), SVM or Quick Classifier (QC) [19], although they are
used as a black box. Other previous work dealing specifically
with AR prediction in K. pneumoniae [20] points out that
RF is the best model for predicting the production of CP,
although it is worth mentioning that the data set was small
(less than 100 samples). Although supervised SOTA models
are a powerful classification tool, they are not designed to deal
with high dimensionality data such as the MALDI-TOF MS.
Consequently, it is necessary to reduce the dimensionality of
these data; in this regard, some authors [21], [22] proposed the
use of a GA as a dimenionality reduction technique. Then,
they used a SVM as a classifier to perform susceptibility
prediction of S. aureus. Other approach [23], proposed using a
RF as a peak selector to subsequently predict AR using simpler
methods such as Logistic Regressor (LR) or Linear Discrim-
inat Analysis (LDA). Other authors [24], used unsupervised
learning to identify relevant features and then applied Binary
Discriminant Analysis (BinDA) [25] and SVM as classifiers.
Nowadays, Bayesian models are starting to be applied in this
field, as they get rid of cross-validation problems and can
provide a predictive distribution with a measure of confidence.

A recent study [26] proposed a new SOTA approach where
they first reduce the dimensionality of the MALDI-TOF to
only 200 peaks per sample by implementing topological peak
filtering. Then, they proposed a specifically tailored non-linear
kernel which exploits the correlation between the peaks inten-

sity and their relative position in m/z dimension. Finally, they
perform the prediction by a Bayesian probabilistic method,
such as a Gaussian Process (GP).

In this paper, we propose to predict the AR using
MALDI-TOF by means of a new Bayesian multivariate
model called Kernelized Sparse Semi-Supervised Interbattery
Bayesian Analysis (KSSHIBA) [27], [28] which is able to
outperform SOTA algorithms in the prediction of CP and
ESBL susceptibility while:

• Avoids preprocessing steps: the model is able to effi-
ciently handle the raw MALDI-TOF data with only Total
Ion Current (TIC) normalization, so it does not need to
use external preprocessing packages such as MQ.

• Eliminates hyperparameter cross-validation: since the
hyperparameters can be automatically optimized by max-
imizing the variational lower bound.

• Achieves dimensionality reduction: the model is able
to use kernelized data representation (reducing the data
dimension to the number of data points) and, besides, it
obtains a low dimensional data representation by project-
ing all data views to a common latent space.

• Provides interpretability: since it computes a weight
matrix associated with each view, capable of explaining
how the different views correlate with each other.

II. METHODS

A. Isolates selection and processing
We include two different data domains. The first data

domain has 282 consecutive clinical K. pneumoniae isolates
collected between 2014 and 2019 and later isolated at Hospital
General Universitario Gregorio Marañón (GM). Therefore, this
data domain is called from now on the GM domain. The
second data domain has 120 isolates which were characterized
in surveillance programs (STEP and SUPERIOR) [29], [30]
sourcing from 8 Spanish and 11 Portuguese hospitals. The
AST determination of these 120 isolates has been performed
in the Hospital Universitario Ramón y Cajal (RyC). Therefore,
this data domain is called from now on the RyC domain.

The AST determination has been performed separately
in their origin center by the automated broth microdilution
method Microscan® System (Beckman-Coulter, CA, USA),
using EUCAST (2021) common criteria. The presence of
ESBL/CP genetic resistant mechanisms has been corroborated
by molecular testing. Each isolated is labelled as Wild Type
WT), ESBL-producers or ESBL+CP-producers as shown in
Table I.

TABLE I
DATASET DETAILED BY DOMAIN AND LABEL TYPES

Dataset Label Samples

GM
WT 85

ESBL 6
ESBL+CP 191

RyC
WT 9

ESBL 58
ESBL+CP 53

Isolates have been kept frozen at -80ºC in skimmed milk
and, after thawing, they have been cultured overnight at 37ºC
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in Columbia Blood agar (bioMérieux, Lyon, France) during
3 subcultures for metabolic activation. The MS analysis has
been centralized and performed by the same operator using
a MBT Smart MALDI Biotyper mass spectrometer (Bruker
Daltonics, Bremen), in 6 separated replicates (2 positions
on 3 consecutive days). The protein extraction has been
performed adding 1µl 100% formic acid and then drying at
room temperature. Next, 1µl of HCCA matrix solution (Bruker
Daltonics) have been added to each spot. The MALDI-TOF
spectra has been acquired in positive linear mode in the range
of 2,000 to 20,000 Da, using default settings [31], although
only data between 2,000-12,000 m/z [32], [33] has been used.

The Ethics Committees of both GM and RyC (codes
MICRO.HGUGM.2020-002, and 087-16, respectively) have
approved this study. The study has been performed on micro-
biological samples, not human products, and patient informed
consent has not been required.

B. Proposed model

In this context, we propose the use of SSHIBA [27], a
Bayesian semi-supervised model that assumes that there is a
latent representation capable of generating the different views
of the heterogeneous data. We consider a multi-view problem
composed of 3 views: one view is the MALDI-TOF MS data
kernelized, another view is the AR we want to predict, and
another is the domain label representing the hospital where the
data belong. This can be seen in the graphical model presented
in Fig. 11.

The MALDI-TOF data, i.e. the first view, is kernelized
to reduce its dimension. Our observations are denoted as
K ∈ RN×N , where N is the number of samples in each
experiment, since it is a kernel matrix computed between all
the MALDI-TOF MS samples. Then, each row represents a
kernelized observation, denoted askn,::

kn,: = [kf(MD1,MD1), ..., kf(MD1,MDN )] (1)

where kf(MDa,MDb) is a kernel function between MDa

and MDb, which are an arbitrary pair of MALDI-TOF mass
spectra.

Using the kernelized extension of the model called
KSSHIBA [28], we consider that there exists some low-
dimensional latent variable vector zn,: ∈ R1×Kc which is
linearly combined with a set of dual variables A ∈ RN×Kc ,
where Kc is the dimension of the low-dimensional latent
space, and a zero-mean Gaussian noise τ (M) to generate each
row of the kernelized observations kn,:, as:

kn,: = zn,: A
T + τ (M) (2)

where the prior over the latent space is given by zn,: ∼
N (0, IKc) and the prior over the dual variables is given by
A ∼ N (0, (αk)

−1IKc). The random variable αk ∼ Γ(a, b)
follows an Automatic Relevance Determination (ARD) prior
[34] over the columns of A to automatically select the columns
of zn,: that are indeed relevant to explain the current data view.

1Icons images were provided by smart.servier.com

For the AR observations, denoted as T, we propose to use
a one-hot encoding for the WT, ESBL and ESBL+CP tags.
Likewise, for the data domain, denoted as D, we consider
binary encoding where a 0 value means that the data come
from the GM domain and a value of 1 means that the data
come from the RyC domain.

To accommodate for these two binary observations, we first
consider that there exists two real latent variables X(m), m ∈
{T, D}, that are generated by the common low-dimensional
latent variables zn,: ∈ RN×Kc , which as before, are linearly
combined with a projection matrix W(m) ∈ RD×Kc (where
D is the observation dimension) and a zero-mean Gaussian
noise τ (m), as follows:

x(m)
n,: = zn,: W

(m)T + τ (m) for m ∈ {T, D} (3)

where W(m)’s prior is identical to A’s to automatically select
which columns of zn,: are needed to explain these two views.
Then, we are able to generate T(m) by conditioning to this new
latent representation X(m) using and independent Bernoulli
probability model, for AR view, as:

p
(
tn,: |x(m)

n,:

)
=

3∏
d=1

p
(
tn,d | x(T)

n,d

)
(4)

where:
p
(
tn,d | x(T)

n,d

)
= ex

(T)
n,d tn,dσ

(
− x

(T)
n,d

)
(5)

and for domain view, as it is binary:

p
(
dn,1 |x(m)

n,1

)
= ex

(D)
n,1 dn,1σ

(
− x

(D)
n,1

)
(6)

The model is trained by evaluating the posterior distribution
of all the random variables posteriors given the observed
data. These posteriors are approximated through mean-field
variational inference [35] maximizing the evidence lower
bound (ELBO). For more details, see [27], [28]. Furthermore,
the Bayesian nature of the model allows it to work in a
semi-supervised fashion, using all available information to
determine the approximate distribution of the variables. In
turn, the model can marginalize out any type of missing values
in the data, as well as predict the test samples for AR by
sampling its variational distribution.

C. Model training and validation
We study two different scenarios: (1) training and testing

in each domain separately (intra-domain analysis), and (2)
training and testing in both domains simultaneously (inter-
domain analysis). For each analysis, we divide each domain
into 5 random training-test folds. Due to the label imbalance
seen in Table 1, we correct it in each training fold by
oversampling the minority class, which ultimately result in
stratified folds with a consistent class ratio.

For inter-domain analysis, we merge the two randomized
5-folds of training previously used in the first analysis in two
different ways: (1) directly combining both domains, i.e., train
with only two views (kernelized MALDI-TOF view and AR
view) and (2) combining both domains by adding a third view
indicating to which domain each data belongs. In other words,
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Fig. 1. Probabilistic graphical model for the evaluated data set: view D corresponds to the label of the domain they come from (GM or RyC), view
M corresponds to the kernelized MALDI-TOF MS data, and view T corresponds to the AR (WT, ESBL or ESBL+CP). The white circles represent
random variables that the model learns, while the gray circles represent the observations.

in the first case we do not use the D observations, meanwhile
in the second case we are using the D observations. In this
way, we analyze the importance of knowing the origin of the
data.

Finally, we measure the performance in terms of Area Under
the ROC Curve (AUC) of AR prediction over the test folds.

D. Methods under study
We compare KSSHIBA with a SVM and a GP since all

three models can work with kernel formulations. As a kernel
function, we first test a nonlinear approach, such as Radial
Basis Function (RBF) that is given by:

kf(MDa,MDb) = exp

(
− ||MDa − MD′

b||2

2σ2

)
(7)

where σ is the variance hyperparameter. Then, we also test a
linear kernel which follows:

kf(MDa,MDb) = MDT
a MDb (8)

Finally, we work with a SOTA kernel function called Peak
Information KErnel (PIKE) [26], which exploits the nonlinear
correlations between the MALDI-TOF peaks as follows:

kf(MDa,MDb) =
1

2
√
2πt

Peaks∑
i,j

λiλ
′
j exp

(
−

(pi − p′j)
2

8t

)
(9)

where t is a smoothing parameter that has to be cross-
validated, λi,j correspond to the intensity value of each pair
of peaks, and pi,j is their m/z position in the spectra. Let’s
remind that each MALDI-TOF consists of 12,000 different
peaks. Due to the computational cost to evaluate Eq. 9 in that
amount of peaks, the spectra are preprocessed beforehand by

topological peak selection keeping only 200 peaks per sample,
as the authors of [26] indicate in their paper.

Since we are solving a multi-class classification problem,
we train the SVMs and GPs in a one-vs-all scheme. Besides,
we also compare ourselves against a multitask RF.

Regarding cross-validation, we use an inner 5-fold over
the training folds to validate all hyperparameters. We cross-
validate the C value (0.01, 0.1, 1, 1, 10) for the SVM and
both the number of estimators (50, 100, 150) and the maximum
number of features (auto, log2) for the RF. For both KSSHIBA
and GP, the hyperparameters are optimized by maximizing the
ELBO and the marginal log likelihood of the data, respectively.
In case of using PIKE, we also cross-validate t smoothing
value.

Finally, when we use the MQ package for preprocessing the
MS we denoted it using the prefix MQ-, e.g. MQ-KSSHIBA-
RBF.

III. EXPERIMENTS

In this section, we present the results obtained using the
proposed model and the different SOTA algorithms. First,
we study the classification performance in the intra-domain
scenario. Then, we analyze the performance in the inter-
domain scenario to evaluate the advantages of working with
multi-view data sources. Finally, we study the latent space
projection learned by KSSHIBA to understand the correlation
between the source domain and the labels.

A. Intra-domain scenario

Table II summarizes the results obtained by training and
testing independent models for each domain (GM and RyC).
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TABLE II
RESULTS OF ALL MODELS IN THE INTRA-DOMAIN SCENARIO IN TERMS OF MEAN AUC AND STANDARD DEVIATION W.R.T. THE 5 RANDOM SPLITS.

THE BEST RESULT FOR EACH CASE IS SHOWN IN BOLD.

Dataset Label KSSHIBA KSSHIBA KSSHIBA GP MQ-GP SVM RF
RBF LINEAR PIKE LINEAR PIKE [26] RBF

GM
WT 0.61±0.14 0.70±0.15 0.71±0.16 0.70±0.18 0.75±0.11 0.67±0.12 0.70±0.17

ESBL 0.57±0.28 0.46±0.19 0.56±0.32 0.54±0.18 0.35±0.14 0.40±0.29 0.39±0.21
ESBL+CP 0.85±0.14 0.77±0.16 0.78±0.09 0.80±0.20 0.79±0.07 0.82±0.19 0.80±0.19

RyC
WT 0.47±0.35 0.49±0.22 0.64±0.19 0.48±0.28 0.56±0.20 0.45±0.15 0.57±0.26

ESBL 0.70±0.10 0.59±0.08 0.43±0.09 0.58±0.14 0.43±0.11 0.72±0.14 0.69±0.10
ESBL+CP 0.67±0.12 0.66±0.05 0.43±0.09 0.62±0.06 0.55±0.05 0.71±0.17 0.71±0.07

For the GM domain, as shown in Table II, KSSHIBA
outperforms the baselines in terms of AUC in both ESBL
and ESBL+CP prediction. Nonlinear kernels provide the best
results in the three tasks. Specifically, the RBF kernel is the
best choice for both ESBL and ESBL+CP while the PIKE
kernel outperforms all other functions in WT prediction.

In contrast, the RyC domain turns out to be the most
complex to deal with, since no model works correctly on all
three labels simultaneously due to the overall sample size.
Despite this, we observe the same results as for GM: nonlinear
techniques such as PIKE, RBF or RF performed better than
the linear ones.

B. Inter-domain scenario

Table III shows the results obtained by different models
when trained jointly on both GM and RyC domains. The
name of every model is constructed by four terms, indicat-
ing Preprocess-Model-Kernel-Views. For example, KSSHIBA-
LINEAR-DOMAIN means that we use raw MALDI-TOF data,
a KSSHIBA model with a linear kernel function, and we add
the D labels. In contrast, MQ-GP PIKE means that we use
MQ package to preprocess MQ data, and a GP model with a
PIKE kernel function without using the D observations.

By combining both domains, the linear version of
KSSHIBA DOMAIN outperforms all SOTA models for both
WT and ESBL+CP predictions. Besides, KSSHIBA DOMAIN
also outperforms all models in the previous experiment which
were targeted to each particular domain. Since KSSHIBA
works with heterogeneous data, such as the domain label, it
is able to exploit the information inherent in both data sets.

Regarding the kernel function, when using the RBF kernel
the results worsen significantly making it clear that both distri-
butions are far apart and, therefore, a linear kernel can better
explain these differences. This is due to the fact that, setting
a common γ parameter in the RBF kernel that adequately
explains the similarity of the data in both domains is not
feasible. Thus, a simpler linear kernel gets better results.

If we compare the versions of KSSHIBA with domain
view and without it, e.g. KSSHIBA LINEAR DOMAIN ver-
sus KSSHIBA LINEAR, the improvement in the first case
indicates that the model is able to get rid of the possible
local epidemiological bias induced by the domain and properly
merges both datasets.

In addition, KSSHIBA shows a new advantage for WT and
ESBL+CP prediction: no external preprocessing with MQ is
required when we merge data coming from different domains.

Although MQ preprocessing presents better results in the GM
domain, it performs poorly in the RyC domain. The MQ
pipeline defines reference peaks based on most frequent peaks.
We hypothesize that this pipeline leads the data to be biased
to the bigger domain, being GM in our scenario. As we
can see, using the raw data allows us to maintain an almost
identical performance in the GM domain while we improve
all predictions for the RyC.

The remaining models, apart from not outperforming
KSSHIBA, refute the linear kernel hypothesis: these kernels
are better for prediction of both WT and ESBL+CP. This
indicates that in the first experiment, by only taking into
account one domain, the model overfitted the samples in that
domain. Whereas, by adding out-of-distribution data, the linear
kernel is able to generalize better.

Regarding ESBL prediction, there is no model that achieves
high AUC values without losing in all other predictions.
Therefore, we would need more data from this label to be
able to generalize correctly.

C. Latent space analysis

Since KSSHIBA LINEAR DOMAIN exhibits the best per-
formance, we analyze the latent space projection learned to
understand the importance of the domain label.

KSSHIBA automatically determines the number of latent
features needed to explain at the same time all three views by
performing dimensionality reduction.

Fig. 2 represents the average weight of each latent factor
W(m) for m ∈ {MD,T, D}, i.e. the average across every
column. We recover W(MD) by moving from the dual space
A variables to primal space as follows:

W(MD) = MDT A (10)

where MD are the raw MALDI-TOF observations. Due to the
sparsity induced by the ARD prior explained above, W(m)

automatically selects the k features of zn,: that are only
relevant for each m data view.

In this case, KSSHIBA decided that only 76 latent features
are needed, as shown in Fig. 2. It is noteworthy that, from
these 76 variables, only 13 latent factors are used to predict
the label AR. From these 13, all of them share information
with the MALDI-TOF view but only 3 of them simultaneously
correlate all available information. Finally, note that 51 private
latent features are necessary for the MALDI-TOF view, which
corresponds to an unsupervised projection of the data that
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TABLE III
RESULTS OF ALL MODELS IN THE INTER-DOMAIN SCENARIO IN TERMS OF MEAN AUC AND STANDARD DEVIATION W.R.T THE 5 RANDOM SPLITS.

THE BEST RESULT FOR EVERY CASE IS SHOWN IN BOLD.

Dataset Label KSSHIBA KSSHIBA KSSHIBA MQ-KSSHIBA KSSHIBA GP SVM MQ-GP SVM
LINEAR PIKE RBF LINEAR LINEAR LINEAR LINEAR PIKE [26] RBF
DOMAIN DOMAIN DOMAIN DOMAIN

GM
WT 0.77±0.11 0.64±0.17 0.59±0.16 0.78±0.06 0.72±0.14 0.76±0.10 0.62±0.13 0.74±0.14 0.65±0.13

ESBL 0.46±0.19 0.44±0.37 0.32±0.23 0.51±0.25 0.39±0.21 0.43±0.20 0.39±0.21 0.40±0.12 0.40±0.19
ESBL+CP 0.88±0.08 0.73±0.12 0.81±0.12 0.90±0.05 0.86±0.08 0.86±0.08 0.85±0.08 0.77±0.10 0.85±0.08

RyC
WT 0.70±0.16 0.51±0.14 0.63±0.07 0.48±0.28 0.66±0.16 0.68±0.17 0.59±0.20 0.62±0.22 0.57±0.26

ESBL 0.55±0.09 0.39±0.14 0.66± 0.05 0.53±0.07 0.49±0.09 0.60±0.10 0.69±0.12 0.49±0.09 0.69±0.12
ESBL+CP 0.68±0.10 0.51±0.14 0.59±0.11 0.63±0.10 0.64±0.06 0.64±0.04 0.66±0.14 0.59±0.06 0.68±0.14

Fig. 2. Each row represents the mean of each w
(m)
d,: d-row having then 76 values, one per each k latent feature. Each subplot represents one

W(m) matrix per view. The most important features (the highest weight value) are represented in black, and the least important features (the lowest
weight value) are represented in white. Finally, the features were ordered by their relevance to the prediction task

Fig. 3. The 14 latent variables of Z that are relevant for the domain
view has been projected to a 2-dimensional using a t-SNE. Every cross
stand for a zn,: whose observation comes from GM domain, while every
dot stand for a zn,: whose observation comes from RyC domain.

exclusively models the behavior of the MALDI-TOF view, as
a Principal Component Analysis could do.

Fig. 2 also shows that there is a correlation between the
origin domain of each strain and its AR, as they have 3
shared latent features. In addition, the domain label is also
used to explain the projection of the MS, proving that the
MALDI-TOF distributions differs based on epidemiology.

Regarding the low dimension projection, in Fig. 3 we use

a T-distributed Stochastic Neighbor Embedding (t-SNE) to
project the 14 latent features that w(2)

d,k indicates are relevant
to explain the domain view to a 2-dimensional space. It
can be seen that both domains can be expressed by two
different distributions and that a simple linear classifier can
separate both distributions. The GM domain presents a more
compact space as they are all coming from the same hospital.
In contrast, as RyC domain is a collection of 19 different
hospitals, we can see that it presents a sparser distribution
with different clusters of data points. In fact, the four black
circles in Fig. 3 correspond to four different hospitals of the
RyC domain collection. This means that our model clusters the
data not only by domain but also by hospital without knowing
that information.

KSSHIBA is able to is able to reduce the dimensionality
from an initial MALDI-TOF of 10,000 features to only 76
latent features. This low-dimensional latent space representa-
tion justifies the better results of KSSHIBA over all SOTA
approaches in the inter-domain scenario, as it is able to detect
the differences between the MALDI-TOF depending on their
domain learning to generalize better the prediction.

IV. CONCLUSION

In this work, two different bacterial assemblages were
presented: one from the same hospital domain without any
particular inclusion criteria (GM); and another that groups
strains from 18 geographically dispersed hospitals, selected
by their phenotypic and genotypic resistance to beta-lactams
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(RyC). The latter domain was characterized by whole genome
sequencing and includes both frequent and rare clonal lineages.
Although the same AST methodology was used in both
settings, a different person performed it, thus, we cannot rule
out possible discrepancies linked to each facility/person. On
the contrary, all the MALDI-TOF spectra were performed by
a single worker.

We fitted and validated a Bayesian semi-supervised model
to clinical isolates of K. pneumoniae for prediction of ESBL
and CP production based on both the MALDI-TOF spectra
and their origin.

As we could see, the intra-domain experiment (Table II)
yielded a first hypothesis where the nonlinear kernels per-
formed better for each separate domain. In contrast, the
second experiment disproved this hypothesis when dealing
with both domains simultaneously. Table III demonstrates that
one cannot take lightly how to deal with different distributions.
Therefore, the KSSHIBA LINEAR DOMAIN version shows
that exploiting a multi-view heterogeneous model is better
when dealing with inter-domain data. The domain information
improved the learning process by making KSSHIBA able to
properly model the different data distributions by getting rid
of the bias introduced by the data itself. This is because, when
dealing with different distributions, we can overfit to one of
the distributions if it presents unbalanced data. Moreover, this
last experiment make it clear that linear kernels area better
choice when dealing with out-of-distribution data as they can
generalize better.

Therefore, the application of multi-view Bayesian models,
such as KSSHIBA, to this type of problem represents a step
forward in the SOTA AR prediction. We outpeform, in terms
of AUC, to all previously used models in this field, at the
same time that: (i) we get rid of parameter cross-validation
facilitating the reproducibility of the study; (ii) we deal with
the high dimensionality of the MALDI-TOF by kernels; (iii)
we provide dimensionality reduction by projecting all views
to a common low-dimensional latent space; (iv) we get rid
of external preprocessing being now able to work with raw
data; (v) we provide interpretability by means of a weight
matrix W(m) associated to each view; and finally, (vii) we
provide a multi-view approach where we exploit epidemiolog-
ical information resolving the overfitting to one distribution.
Our contribution is, therefore, a step forward towards the goal
of reducing ineffective antibiotic prescribing by being able to
predict possible resistance mechanisms in K. pneumoniae. Its
implementation in microbiological laboratories could improve
the detection of multidrug-resistant isolates, optimizing the
therapeutic decision and reducing the time to obtain resistance
mechanism results.

As a future work, K. pneumoniae isolates identified by
MALDI-TOF could be automatically classified by KSSHIBA.
The results obtained (WT, ESBL-producer or ESBL+CP-
producer) would be validated during a period of time using K.
pneumoniae isolates from different geographic origin. Finally,
it could be implemented as a rapid AST method in laboratories
equipped with MALDI-TOF.
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bers: José Melo-Cristino (Serviço de Microbiologia Cen-
tro Hospitalar Lisboa Norte, Lisboa, Portugal); Margarida
F. Pinto, Cristina Marcelo, Helena Peres, Isabel Lourenço,
Isabel Peres, João Marques, Odete Chantre and Teresa Pina
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Verdejo, “Bayesian Sparse Factor Analysis with Kernelized
Observations,” arXiv:2006.00968 [cs, stat], Jan. 2021, arXiv:
2006.00968. [Online]. Available: http://arxiv.org/abs/2006.00968

[28] C. Sevilla-Salcedo, V. G’omez-Verdejo, and P. Olmos, “Sparse Semi-
supervised Heterogeneous Interbattery Bayesian Analysis,” Pattern
Recognit., 2021.

[29] M. Hernández-Garcı́a, S. Garcı́a-Fernández, M. Garcı́a-Castillo,
G. Bou, E. Cercenado, M. Delgado-Valverde, X. Mulet, C. Pitart,
J. Rodrı́guez-Lozano, N. Tormo, D. López-Mendoza, J. Dı́az-Regañón,
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C. Chaves, L. Pássaro, L. Paixão, J. Romano, and R. Cantón,
“Confronting Ceftolozane-Tazobactam Susceptibility in Multidrug-
Resistant Enterobacterales Isolates and Whole-Genome Sequencing
Results (STEP Study),” International Journal of Antimicrobial Agents,
vol. 57, no. 2, p. 106259, Feb. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0924857920304799

[31] B. Rodrı́guez-Sánchez, M. Marı́n, C. Sánchez-Carrillo, E. Cerce-
nado, A. Ruiz, M. Rodrı́guez-Créixems, and E. Bouza, “Improve-
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A. GUERRERO-LÓPEZ et al.: EXTENDED-SPECTRUM BETA-LACTAMASE AND CARBAPENEMASE-PRODUCING PREDICTION IN KLEBSIELLA PEUMONIAE
BASED ON MALDI-TOF MASS SPECTRA 9

[32] C. Rodrigues, V. Passet, A. Rakotondrasoa, and S. Brisse, “Identification
of Klebsiella pneumoniae, Klebsiella quasipneumoniae, Klebsiella
variicola and Related Phylogroups by MALDI-TOF Mass Spectrometry,”
Frontiers in Microbiology, vol. 9, p. 3000, 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fmicb.2018.03000

[33] M. E. Zvezdanova, M. J. Arroyo, G. Méndez, A. Candela, L. Mancera,
J. G. Rodrı́guez, J. L. Serra, R. Jiménez, I. Lozano, C. Castro,
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