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Abstract

Theories  of  predictive  coding  hypothesize  that  cortical  networks  learn  internal

models  of  environmental  regularities  to  generate  expectations  that

are  constantly  compared  with  sensory  inputs.  The  prefrontal  cortex

(PFC) is thought to be critical for predictive coding. Here, we show how prefrontal

neuronal  ensembles  encode  a  detailed  internal

model  of  sequences  of  visual  events  and  their  violations.  We  recorded  PFC

ensembles  in  a  visual  “local-global”  sequence  paradigm  probing  low  and

higher-order  predictions  and  mismatches.  PFC  ensembles  formed

distributed,  overlapping  representations  for  all  aspects  of  the  dynamically

unfolding  sequences,  including  information  about  image  identity  as  well

as  abstract  information  about  ordinal  position,  anticipated  sequence  pattern,

mismatches  to  local  and  global  structure,  and  model  updates.  Model  and

mismatch  signals  were  mixed  in  the  same  ensembles,  suggesting  a

revision  of  predictive  processing  models  that  consider  segregated  processing.

We  conclude  that  overlapping  prefrontal  ensembles  may  collectively  encode

all aspects of an ongoing visual experience, including anticipation, perception, and

surprise.
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Introduction

A central function generally ascribed to the primate prefrontal cortex (PFC) is the

generation,  maintenance  and  flexible  use  of  representations  and  schemas,

including abstract rules, in order to guide behavior and facilitate cognitive control

(Miller and Cohen, 2001; Wallis et al., 2001). Within the theoretical framework of

predictive  coding,  these  prefrontal  representations  can  be  conceptualized  as

internal  models that  generate predictions onto the external  world  (Euler,  2018;

Meirhaeghe et al.,  2021; Pinotsis et al.,  2019; Summerfield et al., 2006, 2008) .

Assemblies of PFC neurons would form abstract internal models of the statistical

regularities that are frequently  encountered in the environment,  and use these

models  to  project  predictions  that  guide  decisions  and  facilitate  sensory

processing  (Dehaene  et  al.,  2015;  Friston,  2005;  Summerfield  and  de  Lange,

2014).  Although  the  neuronal  correlates  of  cognitive  control  and  decision

processes have been extensively studied in the primate PFC (Mante et al., 2013;

Markowitz et al., 2015; Merten and Nieder, 2012; Miller et al., 1996; Siegel et al.,

2015; Stokes et al., 2013), the implementation of internal models and predictive

coding computations in PFC ensembles has not been yet characterized at the cell

assembly  level,  but  only  inferred  indirectly  from  macroscopic  brain  signals,

particularly responses to sequence violations (Chao et al., 2018; Gil-da-Costa et

al., 2013; Uhrig et al., 2014; Wang et al., 2015; Wilson et al., 2017).

In predictive coding models, indeed, the incongruence of sensory information with

an already established internal model results in a surprise signal that serves to

update the model (Friston, 2010). Based on this theoretical framework, deviations

from learned stimulus sequences of variable complexity have been used to probe

the respective complexity of predictive representations in the brain, showing that
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these models unfold at multiple hierarchical scales, reflecting different levels of

abstraction and engaging different cortical areas (Dehaene et al., 2015). 

The most commonly studied brain signal to sequence deviants is the mismatch

negativity  (MMN;  Näätänen  et  al.,  1978).  In  the  classical  auditory  oddball

paradigm, a local  regularity is established by the repetition of one tone, which

leads to a reduction in brain responses; at this point, the presentation of a rare

(deviant) tone yields the MMN signal, a stronger negative deflection of the scalp

EEG compared  to  repeated  stimuli  (for  a  review  see  Näätänen  et  al.,  2007).

Although feed-forward adaptation may contribute to the MMN (Garrido et al., 2009;

May and Tiitinen, 2010), several results indicate that it, and similar visual violation

responses  (Pazo-Alvarez  et  al.,  2003) primarily  reflects  predictive  processing

(Garrido et al., 2009; Summerfield et al., 2008; Wacongne et al., 2012; Winkler,

2007). The source of auditory MMN has been localized in the secondary auditory

cortex, superior temporal gyrus and PFC (Deouell, 2007; Dürschmid et al., 2016;

Shalgi and Deouell, 2007). 

The  primate  brain  does  not  stop  at  encoding  repetitions,  however.  Multiple

paradigms indicate that non-human primates can infer sequence regularities at a

more temporally extended and abstract level,  for instance the extraction of the

same pattern  from sequences  comprised  from different  stimuli  (e.g.  AAB and

CCD)  (Wang et  al.,  2015).  Processing  such higher-order  sequential  structures

necessarily abstracts away from the specific stimulus identities and may therefore

engage higher-order associational cortical areas, in particular the PFC.

We have previously  studied  these two levels  of  sequence processing using  a

hierarchical  “local-global”  sequence  paradigm  where  auditory  stimuli  are

presented in short sequences. During an entire block, all  sequences follow the
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same pattern, either 4 repeats of  the same stimulus (e.g AAAA), or 3 repeats

followed by a deviant (e.g. AAAB). Following the repeated presentation of one of

these global sequence patterns, the ability to detect global violations is probed by

presenting sequences that deviate from the pattern (AAAB or AAAA, respectively;

global  deviants).  In  contrast  to  the  MMN, mismatch responses to  such  global

deviants  are  delayed,  require  consciousness,  and  predominantly  arise  from

higher-order cortical areas of humans and macaques  (Bekinschtein et al., 2009;

Chao  et  al.,  2018;  El  Karoui  et  al.,  2015;  Uhrig  et  al.,  2014),  including  the

ventrolateral  prefrontal  cortex  (vlPFC).  Intracranial  recordings  of  global  field

potentials indicate that PFC sends feedback signals to upstream cortical  areas

after the violation of global sequence expectations (Chao et al., 2018). 

From the observation of such mismatch signals, it was indirectly inferred that the

PFC and associated high-level areas comprise an internal model of the ongoing

sequences. Here, we tested this idea directly by recording from PFC neuronal

ensembles  during  a  visual  version  of  the  “local-global”  test.  We  asked  two

questions. First, do PFC neurons encode all aspects of the sequences in the local-

global  paradigm,  therefore  holding  a  complete  internal  model  of  the  ongoing

sensory  stream  and  its  occasional  violations?  Second,  are  these  neural

representations abstract, independent of the specific stimulus identities used to

convey the sequence pattern, as predicted by earlier work (Wang et al., 2015)?

We tested these hypotheses by recording from chronic multielectrode arrays in

macaque  vlPFC  during  a  local-global  paradigm  with  visual  stimuli.  Using

multivariate  decoders,  we  show that  prefrontal  neuronal  populations  encoded,

within distinct neural subspaces, all  aspects of  the visual  sequences, including

image  identity,  serial  position  of  stimuli,  global  context  and  local  and  global
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structure violations. Global sequence context and its mismatches could be traced

to  the  same  population  subspace,  indicating  an  integrative  level  of  predictive

processing in the PFC. Furthermore, local mismatch responses could not be fully

explained by stimulus-specific adaptation (SSA), but reflected genuine deviance

detection. These neuronal representations generalized between sequences with

different  image  identities,  suggesting  that  prefrontal  ensembles  comprise  an

abstract internal model of visual sequence patterns.

Results 

vlPFC spiking activity during the visual local-global paradigm

We recorded spiking activity with multielectrode Utah arrays, chronically implanted

in the vlPFC of two macaque monkeys (Fig. 1A), during exposure to the local-

global paradigm (Bekinschtein et al., 2009) with visual stimuli (Fig. 1B-D). In order

to eliminate confounding activity related to decision making and motor responding,

the task did not require overt behavioral report, but mere sequence observation.

For completion of a trial, the monkeys received a liquid reward at 100 ms after

offset of a sequence. On each trial, a sequence of 4 images (300 ms stimulus

duration;  300 ms inter-stimulus  interval)  was presented on a screen while  the

monkeys maintained the  gaze  within  the  image  region  (Fig.  1B).  A  sequence

consisted either of 4 repeats of the same stimulus (xxxx sequence, from hereon

abbreviated as xx) or of 3 repeats and one local deviant in the last position (xxxY

sequence,  abbreviated  as  xY;  Fig.  1C).  These  sequences  were  embedded  in

blocks  of  200  trials  where  one  sequence  type  (xx  or  xY)  was  the  frequent

sequence (global standard). The animals were habituated to the global standard

sequence during the first 50 trials of each block. Of the remaining 150 test trials,
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80% were global standards and 20% were global deviants, which differed only in

the last position compared to the standard. We will use a notation that indicates

trials according to their local structure and global context: e.g. a rare xY trial (in an

xx block) will be denoted as xY|xx. The first two letters indicate the current trial

and the last two letters the global context in which it occurred (Table 1).

In each recording session, a specific pair of images (A and B) was chosen,

out of five possible pairs (Fig. 1C,D), and 4 blocks were run with this picture pair,

in random order (two xx blocks, aa and bb; and two xY blocks, aB and bA). This

allowed  us  to  test  whether  neural  representations  of  sequence  structure

generalized across  stimulus  identities  within  and  across  sessions.  Indeed,  the

design enabled us to distinguish effects of first-order (local) versus higher-order

(global)  sequence  regularity,  which  require  representing  the  whole  sequence

pattern (Methods). 

The recorded multi-unit activity (MUA), i.e. the sum of recorded spikes from each

electrode, was robust over several days in both animals, with overall more active

sites in  monkey A.  First,  for  consistency with  prior  research with  global  brain-

imaging signals  (Basirat et al., 2014; Bekinschtein et al., 2009; El Karoui et al.,

2015;  Uhrig  et  al.,  2014),  we assessed the  univariate  responses to  local  and

global violations. Within individual recording sites, we first examined the MUA in

response  to  “pure”  local  deviance  (frequent  xY  vs.  frequent  xx  trials)  and

compared them to the effects of “pure global” deviance (rare xx vs. frequent xx).

The rank sum statistics provided a measure of the size of the effects of local and

global  deviance  for  each  channel  (Fig.  2A).  After  controlling  for  multiple

comparisons, about half of the channels revealed a significant response to local
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deviance, and ~ 3 % or 0.8 % to global deviance, in monkey A or H, respectively

(Fig. 2B).

The inspection of the peri-stimulus time histogram (PSTH) from individual

channels  provided  insight  into  the  variety  of  neural  response  types  (Fig.  2C).

Many sites responded strongly to local violations (Fig. 2C left), with a very large

firing response to the last image Y in xxxY trials that exceeded the response to

any  of  the  previous  images.  At  some  but  not  all  sites,  this  response  was

modulated by context, and was reduced for predicted local deviants (xY|xY; Fig.

2C, bottom left). Finally, several sites showed distinct firing as a function of global

context (xx or xY blocks), already during the first three stimuli of a sequence, and

a change in firing when a “pure global deviant” occurred (Fig. 2C, top right).

VLPFC ensembles form a rich representation of visual sequences

Given  the  diversity  of  response  types  and  signs  of  mixed  selectivity,  we

hypothesized  that  visual  sequences  could  be  better  represented  as  neuronal

population  vectors  rather  than  within  individually  specialized  neurons,  as

suggested by others for PFC (Baeg et al., 2003; Ebitz and Hayden, 2021; Mante

et al., 2013; Parthasarathy et al., 2017; Rigotti et al., 2013) We used regression

analyses to  test  whether  vlPFC represented all  the  variables  that  defined  the

visual sequences in the local-global paradigm, namely (i) stimulus identity (1 of 2

possible  images in  each session),  (ii)  serial  position of  the image within  each

sequence (from 1 to 4) (iii) global context (xx or xY block), (iv) local deviance, and

(v)  global deviance. For this analysis, we used only the data from the test trials

that followed the first 50 habituation trials in each block, to ensure that the current

global context could be learned (see also Fig. 4 G,H).  We applied multivariate
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linear regression for all variables but serial position, for which we used multinomial

logistic  regression  (Methods).  This  approach  allowed  us  to  determine  which

population  vectors,  if  any,  carried  maximum information  about  each sequence

variable. These vectors were then used to reduce the dimensionality of the MUA

and obtain trajectories of the neural population within each neural subspace (Fig.

3). Using the subspace trajectories for classification allowed us to decode each of

the sequence variables. Such decoding, relative to chance level, was quantified

using the area under the receiver operating characteristic curve AUROC (see Fig.

S1 for Methods).

The results showed that all variables could be decoded at above-chance

levels (Fig. 3). First, the decoding performance for stimulus identity (image A vs. B

within  each  recording  session)  was  close  to  1  for  every  item in  a  sequence,

including the last sequence item when it changed on xY trials (Fig. 3A,F). Thus,

vlPFC populations robustly encoded the visual stimuli throughout the entire trial. 

Second, using a separate decoder for serial position within a sequence, we  could

predict ordinal position from neuronal population activity, particularly for the first

and last items, but also at above-chance levels for ordinal positions 2 and 3 (Fig.

3B,F,  predictions  are  indicated  by  horizontal  bars).  Note  that,  because  the

sequences used a fixed timing, ordinal decoding could be due to numerical codes,

temporal codes or both (see Kapoor et al., 2018; Nieder, 2012). However, elapsed

time alone could not explain all of the findings, such as the fact that the code for

“1st item” was partially reactivated for the last image of xY trials (the first image

with this identity); or that the code for “4th item” was reactivated at ordinal positions

1, 2 or 3 on trials when the monkey broke fixation and the visual sequence was

aborted,  suggesting  that  it  actually  responded  to  “last  item”  (Fig.  S2).  These
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findings indicate that those neural codes were partially locked to the phase of the

task, and not solely to item number or timing. 

Third, to test whether vlPFC neurons contained a model of the upcoming

sequence structure,  we decoded the  global  context  (xx  or  xY block)  from the

neuronal population activity prior to the last stimulus of a sequence. We indeed

identified  a  population  subspace  whose  activity  allowed  us  to  infer  the  global

context even before the sequence started (Fig. 3C,H). Thus, vlPFC populations

represented  the  sequence  that  recurred  in  a  given  block  prior  to  sequence

presentation, and not just prior to or after the local deviant. Below, we will look in

more detail at the properties of this neural subspace and how it builds up during

the habituation period.

Fourth, we assessed the presence of responses to violations of either local

or global sequence regularity. The population that was sensitive to local deviance

showed a response to both predicted and unpredicted local deviants (Fig. 3D,I

orange and yellow). Decoding local deviance was almost perfect on a single-trial

basis, with an early peak (~200 ms), indicating a very robust and fast response to

local  novelty.  Nevertheless,  the activation was stronger  upon unpredicted than

predicted local deviants, in agreement with the predictive coding framework (Fig.

S4).  Global deviance (rare versus frequent sequences in a given block) could also

be decoded with a later peak (~500 ms after last item onset). In contrast to the

unimodal  phasic  response  observed  for  local  deviants,  the  trajectories  of  the

population  encoding  global  deviance showed a  bi-phasic  response.  First,  until

around 300 ms (200 ms in monkey H) following the last stimulus onset, only trials

with a local deviant showed a positive activation (Fig. 3E,J orange and yellow),

again with a higher amplitude for unpredicted local deviants. However, in a later
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phase, after 300ms, both types of rare trials (xY|xx and xx|xY) evoked a response

into  the  same direction  (yellow and  cyan),  and  opposite  to  the  frequent  trials

(orange  and  blue).   We  separately  measured  the  global  deviance  decoding

performance  by  computing  the  AUROC for  rare  vs.  frequent  xY  (Fig.  S3  A,B

dashed) and rare vs. frequent xx trials ( Fig. S3 A,B solid). This analysis confirmed

that an early response to global deviants was only present for rare xY trials and a

later  mismatch response was present  for  both sequence types,  thus reflecting

abstract global deviance detection invariant for sequence pattern. To further probe

such abstraction, we evaluated a “cross-condition” decoder trained on xx trials and

tested  on  xY  trials  (Fig.  S3  C,D).  Generalization  across  the  two  sequence

structures only occurred late after the last item onset (~300-500 ms), indicating

that  by  that  time  the  neural  code  for  global  surprise  was  shared  by  the  two

sequences with  a  different  local  structure.  This  finding  also  suggests  that  the

neural subpopulation coding for global deviance might be largely segregated from

the  subpopulation  coding  earlier  for  local  deviance.  We  assessed  the

independence of these two neural populations by decoding global deviance from

the  subspace  that  represented  local  deviance  and  found  that  the  late  global

mismatch response was indeed not encoded in the subspace that showed a late

local mismatch response (Fig. S4). Importantly, neural deviance responses could

not be explained by the generation of eye movements, which were found to be a

behavioural read-out of local novelty detection (Fig. S5). The different time scales

of the local and global effect are consistent with previous results, showing that the

processing  of  global  sequence  violations  requires  longer  times  for  conscious

integration compared to the detection of local deviants (Bekinschtein et al., 2009;

Strauss et al., 2015; Wacongne et al., 2011). 
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Altogether,  those  findings  indicate  that  the  vlPFC  population  that  we

sampled comprised multiple, overlapping and distributed representations of all the

features of our visual sequences. 

The  representation  of  global  context  is  learned  during  habituation  and

updated by errors

We next examined how the neural activity within the subspace that represented

global context (xx or xY sequence) was updated. Predictive coding models should

predict that, following a global violation, the internal model should be destabilized

or updated, at least transiently. Thus, Figure 4 A,B shows neural activity project on

the  global  context  axis,  depending  on  both  the  context  (xx  or  xY)  and  the

preceding  trial  (global  standard  or  global  deviant),  prior  to  and  during  the

presentation of the first 3 sequence items. In both monkeys, there was sustained

activity  persisting  throughout  all  trials  and  distinguishing  xx  from  xY  context,

regardless of the previous trial (Fig. 4C,D). A trial in an xY block, for example, led

to an activation into the “xY-direction” of this subspace during the first three stimuli

in a sequence, whether following a global standard xY|xY (Fig. 4A,B orange solid)

or  a  global  deviant  xx|xY  trial  (Fig.  4A,B  orange dashed).  This  observation  is

important as it indicates that the activity was not simply due to a lingering memory

of the previous trial, but was sustained in the long term, as needed to encode the

global context of an entire session. Nevertheless, the encoding strength of global

context was reduced after the occurrence of a global deviant (Fig. 4 A,B dashed

vs.  solid).  This  effect  was  transient,  and  activity  was  quickly  restored  in  the

following trials (Fig. 4E,F). 

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.463064doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.463064
http://creativecommons.org/licenses/by-nc-nd/4.0/


We  also  examined  how  this  activity  was  built  up  during  the  first  50

habituation trials  of  a  block  (Fig.  4  G,H).  The divergence between xx  and xY

blocks was present early on, within the first 10 presentations of a given sequence,

but  it  continued  to  increase continuously  through the  habituation  period  of  50

trials. Together, these two findings show that the context was inferred at a long

time scale by this neural population, but modulated by global errors on a shorter

time scale. The first finding reflects the emergence of an expectation about the

global regularity in vlPFC, while the latter fits with a transient destabilization or

update of this model after a global mismatch. 

A shared code for global deviance and context

Current models of predictive coding hypothesize that at each level of the cortical

hierarchy separate neural populations code for predictions and prediction errors

(for a review Walsh et al., 2020). Thus, expectation and error signals might occur

in completely segregated ensembles. Alternatively, the representation of context

might happen within the same neural population, which also emits the mismatch

responses. To address this issue, we studied the overlap of deviant and context

responses in PFC. To do so, we projected the unfolding population MUA onto the

vector corresponding to maximal global deviance decoding performance (+- 100

ms  around  the  maximum  time  bin)  (Fig.  4I,J).  We  found  that  the  resulting

population trajectories also segregated as a function of the global context, i.e. xx

versus xY blocks (Fig. 4I,J). During the first three items, there was a slightly larger

activation into the direction of global deviance on xY blocks than on xx blocks.

This  was  reflected  by  a  significant  AUROC  for  context  decoding  from  these

trajectories (Fig. 4I,J bottom). It is important to note that, conversely, this effect of
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context cannot entirely explain the deviance response to rare xx trials, because

the latter elicited an additional increase in activity after the last stimulus (Fig. 4 I,J

top  cyan).  We  can  hence  conclude  that  parts  of  the  neural  code  for  global

deviance detection was shared with the representation of global context.

Representation of sequence structure generalizes across stimulus identities

The  above  results  establish  that  vlPFC  contains  partially  independent  neural

representations  of  global  context,  local  deviance,  and  global  deviance.

Furthermore, the above analyses were applied across the two pictures that were

presented in a given session (A and B), hinting at the existence of neural codes

that generalize across stimulus identities. To further test this point, we exploited

the chronic nature of recordings and tested the generalization of the population

codes across sessions with the same or different stimulus pair, always presented

on different days. We found that the same neural representations allowed us to

decode global context, local deviants, and global deviants, respectively, even for

stimulus pairs that were different from the one presented in the training session

(Fig.  5).  This  indicates  that  vlPFC  sequence  representations  were  stable  for

multiple  days  and  held  across  several  image  identities,  possibly  reflecting  an

abstract neural code. 

Rather than a difference between predicted and seen pictures, the representation

of local deviance could however reflect the indirect effect, on vlPFC, of stimulus-

specific  adaptation (SSA) occurring at  an earlier  stage such as inferotemporal

cortex (IT). Neural responses would be smaller on BBBB trials than on AAAB trials

because the response to picture B would have been adapted (Garrido et al., 2009;

May and Tiitinen, 2010). Note that SSA in IT is picture-specific (Meyer and Olson,
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2011), but if the signal from multiple picture-specific neurons in IT was integrated

in vlPFC, it would explain the observed generalization across different pictures. To

test whether the vlPFC population response to local deviants reflected genuine

deviance  detection  or  merely  SSA,  we  performed an  additional  experiment  in

monkey A, presenting new random sequences with different numbers of image

repetitions  and  changes  (Figure  6A,  letters  indicate  any  of  >900  images).

Contrasting the activation evoked by the last stimulus in XXXY sequences with the

last stimulus in WXYZ sequences allowed us to disentangle deviance and SSA, as

done with the many-standards control in the MMN literature (Ruhnau et al., 2012):

deviance  detection  predicts  a  novelty  response  to  XXXY  (where  a  prediction

develops about X), but none to the unpredictable sequence WXYZ, as the image

identity of each item changed on every trial; SSA, however predicts no difference,

as the last picture is equally novel and non-adapted in both cases. The results

supported deviance detection (see direction of activation in Fig. 6A and decoding

performance in Fig. 6B):  local deviants always led to a larger response of this

neural  subpopulation  (Fig.  6C;  Fig.  S6)  indicating  that  vlPFC indeed  encodes

deviance from a local context, regardless of picture identity. Indeed, we found that

MUA responses underlying this neural subspace were far more diverse than what

would be expected based on the adaptation hypothesis (Fig. 6D), namely a simple

decrease in response amplitude upon repetition. This strongly suggests that PFC

populations encode sequence deviance in an abstract way: as previously inferred

indirectly  through  brain-imaging  signals  (Wang  et  al.,  2015),  PFC populations

signal that “the last sequence item was different from the three preceding ones”.
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Discussion

Using  a  visual  version  of  the  local-global  paradigm,  we  demonstrated  that

neuronal ensembles in macaque prefrontal cortex encode not only the concrete

picture identity but also all other abstract aspects of visual sequences, such as the

ordinal position of each picture and/or task phase, the global sequence pattern (xx

or xY) which was repeatedly presented on a given block, and whether the current

sequence comprised local  and global  violations.  Those results  show that  PFC

neurons encode an internal model of the various aspects of a perceived visual

sequence. They concur with previous studies showing that prefrontal populations

encode rich information about image identity,  sequential  order, ordinal number,

context and task-relevant information (Donahue and Lee, 2015; Fujii and Graybiel,

2003; Kim and Shadlen, 1999; Mante et al., 2013; Miller et al., 1996; Nieder and

Merten, 2007; Rigotti  et al.,  2013; Saez et al.,  2015; Viswanathan and Nieder,

2013;  Watanabe  and  Sakagami,  2007) even  in  the  absence  of  any  task

requirement or active report (Kapoor et al., 2018; Panagiotaropoulos et al., 2012;

Wang et al., 2015). 

Overlap of global context and error representations 

Theories  of  Bayesian  predictive  processing  suggest  that  perception  is  an

inferential process performed by cortical networks at multiple stages of the cortical

hierarchy.  A central  hypothesis  of  these models is  a  functional  segregation of

prediction  and  error  representations,  namely  different  neuronal  populations

representing internal models or expectations about sensory input and their update,

respectively  (Bastos et  al.,  2012;  Friston,  2010,  2018;  Rao and Ballard,  1999;

Walsh et al.,  2020). Our results confirm the existence of local and global error
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signals in PFC, as predicted by the theory and in agreement with macroscopic

signals recorded with EcoG in the primate brain (e.g. Chao et al., 2018; Dürschmid

et al., 2019). Frontal cortical areas have also been shown to provide contextual

information  in  the  rodent  V1  (Hamm  et  al.,  2021),  possibly  through  gain

modulation of neuronal activity (Zhang et al. 2021). Howeverr, in our recordings,

contextual and violation signals were coded by activity vectors intermingled within

the  same neural  population.  Furthermore,  the prefrontal  neural  population  that

emitted abstract  pure global  responses to deviations from a learned sequence

also  represented  the  global  context.  This  convergence  of  predictive  coding

computations at the population level may be a particular feature of PFC neurons,

which  are  known  for  their  role  in  integrative  processes  and  mixed  selectivity

properties (Parthasarathy et al.,  2017; Rigotti  et al.,  2013). Interestingly, axons

from the anterior cingulate cortex, a medial frontal cortical area, projecting to V1 in

the rodent brain were not found to be modulated by deviant stimuli (Hamm et al.,

2021). This discrepancy might point to a different role of the primate PFC, where

we  found  responses  to  deviant  stimuli,  compared  to  rodent  frontal  cortex.

Alternatively,  this  could  indicate  a  functional  specialization  of  primate  frontal

cortical  areas,  with  the  vlPFC  more  likely  to  reflect  both  types  of  responses

(deviant  and context).  It  is  worth  noting  that  in  an  auditory  oddball  paradigm,

context-dependent  mismatch  responses  were  indeed  observed  in  rat  PFC

(Casado-Román  et  al.,  2020).  Since  we  performed  a  population  analysis,  it  is

unclear to what degree specific single neurons process exclusively predictions or

errors. It is also currently unclear whether such a segregation exists in other than

the  vlPFC  prefrontal  areas  or  in  different  layers  of  the  PFC.  However,  the
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detection of this overlap in our vlPFC recordings strongly suggests a convergence

of these two computations in prefrontal cortex. 

Abstract sequence processing in the vlPFC

In  the  mouse  primary  visual  cortex,  neurons  perform  deviance  detection  in

correlation with feature (i.e. orientation) selectivity (Hamm et al., 2021). Therefore,

different V1 neurons respond to deviant stimuli  depending on their tuning. The

same holds true in the auditory cortex of the rat where error responses were found

to  be  strongly  driven  by  the  spectral  characteristics  of  auditory  stimulation

(Casado-Román  et  al.,  2020).  Likewise,  in  monkey  IT,  neurons  respond  to

unexpected pictures in a stimulus-specific manner (Meyer and Olson, 2011; Meyer

et  al.,  2014) that  can  be  explained  by  adaptation  to  repeated  pictures

(Kaliukhovich  and  Vogels,  2014;  Miller  et  al.,  1991).  By  contrast,  our  findings

suggest that in the macaque vlPFC, both low- and high-level mismatch responses

and context representations are generalized across different sets of visual stimuli,

suggesting an abstract code.

Interestingly, in contrast to previous studies (Camalier et al., 2019) stimulus

identity could also be decoded in vlPFC. Those results suggest that vlPFC has

access to both concrete information as well as to abstract sequence structures.

The abstract nature of processing reflected in context and mismatch responses

could  be  a  feature  of  higher-order  associative  cortical  areas,  suggesting  a

differentiation of predictive-processing computations compared to sensory cortical

areas.  Indeed,  in  the  macaque  temporal  lobe,  prediction  errors  in  the  middle

lateral (ML) face patch reflect a higher-order tuning that may cascade from the

hierarchically  higher  anterior  medial  (AM)  face  patch  in  a  top-down  manner,
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compatible  with  a  top-down  feedback  of  prediction  errors  (Schwiedrzik  and

Freiwald,  2017).  The  current  evidence,  although  still  sparse,  supports  a

hierarchical  picture of predictive computations (Friston, 2005; Wacongne et al.,

2011),  where  abstract  predictions  arise  from associational  cortical  areas while

item- and feature-specific predictions occur in sensory cortices.

Local deviance responses fit in a predictive coding framework

We identified a neural subspace that represented local deviants (mismatches) and

which  generalized  across  days  and  image  identities.  There  is  an  ongoing

controversy about  the mechanisms of  such mismatch detection  (Auksztulewicz

and Friston, 2016; Carbajal and Malmierca, 2018; Garrido et al., 2009; May and

Tiitinen, 2010; Todorovic and Lange, 2012). Such a response could stem from two

distinct  mechanisms: a  higher-order  process of  prediction error,  with  an active

neural  response  representing  the  violation  of  a  top-down  prediction  (Casado-

Román  et  al.,  2020;  Chao  et  al.,  2018;  Hamm  et  al.,  2021;  Parras  et  al.,  2017;

Summerfield  et  al.,  2008),  or  alternatively,  a  passive  feedforward  process  of

stimulus-specific adaptation (Fishman and Steinschneider, 2012; Kaliukhovich and

Vogels, 2014; May and Tiitinen, 2010). Here, in a control experiment, we  provide

strong support of the predictive coding framework by showing how a rare local

deviant (last stimulus in XXXY trials) elicited a stronger population response than

an equally rare stimulus that was not preceded by a local regularity (WXYZ trials;

Fig. 6). In both conditions, the first three stimuli in the sequence were different

from the last  stimulus,  which makes this  result  difficult  to  explain  by stimulus-

specific  adaptation.  Further  studies  using  parametrically-controlled  stimuli  and
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neural tuning measurements could provide a full picture of the independence of

deviance responses from stimulus-specific adaptation.

Under  the  assumption  of  hierarchical  predictive  processing,  it  could  seem

surprising that local deviance effects were so strongly represented in vlPFC. In the

local-global paradigm, a response to local deviance (xY stimulus) is normal on xx

blocks. However, we also found a strong response to predicted local deviants, i.e.

when  the  xY  stimulus  occurred  repeatedly  and  became  the  expected  global

standard sequence. This suggests that bottom-up prediction error signals remain

present in the vlPFC and are not fully (or not immediately) compensated for by a

top-down prediction. In support of this idea, the neural population responses in

Figure 4I,J exhibit a transient local deviance response, followed a few hundreds of

milliseconds  later  by  a  response  to  global  deviance.  We  suggest  that  local

deviance constitutes an important and salient feature of the local-global task to

which monkeys paid attention, thus leading to its strong representation in the PFC.

Importantly, inferring the global context would not be possible without a knowledge

of local deviance. Hence, and although this may seem in contrast to theoretical

models of predictive coding, it makes sense that PFC encodes local as well as

global  error  signals.  The  fact  that  these  responses  generalize  across  images

points to the high-level nature of sequence representations in vlPFC. A previous

study,  using  fMRI,  concluded  that  monkey  PFC  must  comprise  distinct

representations for the number of items in a sequence (numerosity knowledge)

and for the fact that the last item was identical to or different from the previous

ones (sequence knowledge), regardless of the specific auditory stimuli  used to

convey those concepts (Wang et al., 2015). The present results fully confirm those

conclusions with a more direct recording method.
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Perceptual inference and consciousness

It  has  been  suggested  that  PFC participates  in  a  global  neuronal  workspace

(GNW) critical for conscious access (Dehaene and Changeux, 2011; Dehaene et

al.,  1998).  Indeed, the contents of  visual  consciousness can be decoded from

prefrontal neuronal activity and PFC signals whether a stimulus was or was not

consciously  perceived  (Kapoor  et  al.,  2018;  Levinson  et  al.,  2021;

Panagiotaropoulos et al.,  2012; van Vugt et al.,  2018). The present results are

congruent  with  the  GNW  hypothesis  since  they  indicate  that,  in  the  awake

monkey, PFC contains superimposed neural  codes for all  of  the concrete and

abstract  features  of  the  perceived  visual  sequences.  Some  of  these  features

encode expectations of the upcoming sequence, a finding which fits with prior

evidence that  PFC anticipatory signals may be critical  for  detecting perceptual

ambiguity and biasing conscious perception through ongoing fluctuations (Kapoor

et  al.,  2020;  Moutard  et  al.,  2015;  van  Vugt  et  al.,  2018) or  the  provision  of

perceptual hypotheses (Summerfield et al., 2008; Weilnhammer et al. 2021). Our

results showing decoding of context from prefrontal populations indeed suggest a

strong influence of expectation in the activity of prefrontal ensembles.  

Conclusion

We detected candidate signals of predictive processing in the macaque PFC that

were characterized by integration, abstraction and error detection. Those signals

reveal  that macaque monkeys, even in the absence of overt behavior, encode

visual  sequences at  multiple  levels,  including abstract  neural  codes for  ordinal

position  and/or  task  phase  and  sequence  pattern,  regardless  of  the  particular

images used. In this respect, the present results confirm that a representation of
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algebraic  patterns  such  as  xxxY  (“4  items,  the  last  of  which  is  different”)  is

accessible to  non-human primates  (Dehaene et  al.,  2015).  Most  importantly,  it

provides  insight  into  the  neural  code  for  sequences,  which  relies  on  a

superimposition  of  multiple  vector  subspaces,  each  representing  a  specific

dimension  of  the  perceived  sequence.  Finally,  we  showed  how  these

representations  can  be  updated  by  low-  and  high-level  deviance  detection

mechanisms.  It  remains  to  be  shown  whether  and  how  these  PFC  signals

influence  downstream  or  upstream  cortical  areas.  Future  studies,  recording

simultaneously from multiple cortical areas and using laminar recordings, will be

needed to probe how inter-areal exchanges contribute to predictive processing.
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Figure  1.  Recording  vlPFC  spiking  activity  during  the  visual  local-global  paradigm. A:
Implantation of a Utah array in the macaque vlPFC.  B: Example trials. On each trial, monkeys
fixated for 300 ms prior to sequence onset. A sequence of 4 stimuli was presented with an SOA of
600 ms. 100 ms after offset of the last stimulus, the monkeys received a liquid reward. Examples
show a single xxxY and an xxxx trial  within the context of frequent xxxY sequences.  C: Each
session consisted of 4 blocks comprising a frequent sequence (global standard, which could have
the structure xxxx or xxxY) and a rare sequence (global deviant). In a given block, the x was a
fixed image (A or B, taken from the pairs in panel D) and the Y was the other image (B or A).  A
block consisted of  200 completed trials.  The first  50 trials  served as habituation to the global
standard sequence (100% of  trials),  and then we presented a random mixture of  80% global
standards and 20% global deviants, which differed only in the identity of the last item. The identity
of A and B varied between recording sessions. D: The five pairs of visual stimuli (rows) used in the
experiments.
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Figure 2. Modulation of spiking activity by local and global sequence structure at individual
recording  sites. A: Effect  of  local  and  global  deviants  (rank  sum  statistic,  p<0.05  prior  to
correction for multiple comparisons) in task-responsive recording sites (dots) during one session in
monkey A. Sites were significantly modulated by local (orange) or global (cyan) deviance only, by
both local and global deviance (dark gray) or were not modulated by any deviance (light gray). The
dashed gray line indicates equal magnitude of  the effect  of local  and global deviance. B: The
stacked bar graphs illustrate the proportion of task-responsive sites significantly modulated by local
and / or global deviance (67 sites over 6 sessions in monkey A; 24 sites over 10 sessions in
monkey H; Mann-Whitney U test with correction for multiple comparisons). Numbers next to the
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graph correspond to the average number of sites across sessions per condition and error bars
(centred on the stacked average proportions across sessions) indicate +- SD of the proportion. C:
PSTHs of example MUA for sites plotted in  A. Spiking activity was smoothed using a gaussian
kernel with an SD of 50 ms. Colors indicate trial types, averaged over sequences with the A or B
image identity. The “pure” local effect is shown by contrasting frequent xx (blue) and frequent xY
trials (orange), the “pure” global effect by contrasting between rare vs. frequent xx trials (cyan vs.
blue) and the effect of unpredicted over predicted local deviance is shown by contrasting rare vs.
frequent xY trials (yellow vs. orange). 
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Figure  3.  Decoding  neural  population  codes  for  different  aspects  of  the  sequences.
Multivariate  linear  regression  was  used  to  estimate  the  neural  population  vectors  encoding
stimulus identity, ordinal number, global context, local deviance and global deviance. The upper
plots in all panels (and lower plot in B and G) show the neural trajectories, i.e. the MUA projected
onto the population vectors resulting from the regression (with the time window used for training
indicated in the inserts). Black traces in the bottom plots show decoder performance in terms of
AUROC, relative to chance level 0.5. Horizontal lines on top of each graph indicate the time points
for which the decoding performance was significantly above chance (p<0.05). Data from monkey A
(left) and monkey H (right).
A, F: Decoding of image identity (picture A versus picture B).  B,G: Decoding of the four ordinal
positions in the sequence; the colored curves show the predictive probability of decoders which
were trained on xx trials and generalized to xY trials. Note how the population activity in response
to the local deviant resembled the response to the first item in a sequence. C,H: Decoding of global
context,  i.e.  xY  blocks  versus  xx  blocks.  Note  how  the  decoding  is  significant  even  prior  to
sequence presentation, indicating an anticipation of the forthcoming sequence).  D,I: Decoding of
local deviance, i.e. xx versus xY sequences. E,J: Decoding of global deviance, i.e. frequent versus
rare sequences. In panels D,I,E,J only, decoding was time-locked to the last sequence item (-100
ms to 1400 ms relative to last stimulus onset).  A positive activation indicates a local  or global
deviance signal, respectively.
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Figure  4.  Neural  signals  reflecting  the  updating  of  global  sequence  knowledge.  A,B :
Population activity projected onto the axis coding for global sequence knowledge, i.e. xY blocks
(orange) versus xx blocks (blue). Dashed curves indicate a reduction in the neural separation of xY
and xx blocks after  a  rare  global  deviant. C,D: In  both  blocks,  the global  context  can still  be
decoded after a global deviant trial (after xx trials in xY blocks and after xY trials in xx blocks), i.e.
when the previous trial is suggestive of the opposite block. E,F: Activation of the global context axis
averaged over the first three stimuli in each trial, aligned to rare trials in xY blocks (orange) or xx
blocks (blue). Height of bars indicate average across trials from pooled sessions and error bars are
the 95% CI.  The asterisks denote a significant change in global context signal between the trial
before the global deviance occured (0) and the following trial (p<0.05, paired t-test).  G,H: Buildup
of sequence knowledge during habituation. The neural activity during the 50 habituation trials of
each block was projected onto the population axis that encoded global context and averaged over
the first three stimuli in each trial. The asterisk denotes a significant difference (p<0.05) between
the first and last habituation trial in a paired t-test across 14 blocks in monkey A and 20 blocks in
monkey H (i.e. two blocks of each type per session).  I,J: Trajectories of the neural population that
leads to maximal overall global deviance decoding performance (Fig. 3E,J), indicated by the gray
shaded area. The middle panel shows a zoom into the time period prior to the onset of the last
stimulus and the bottom panel is the quantification of the context-decoding performance based on
the activation of the global deviance population. Time periods of significant context decoding are
indicated by the horizontal bars on top of the AUROC plots. The horizontal dashed line shows the
chance level. Only trials following a global standard sequence were used. Curves indicate average
across all trials from all sessions and shaded areas are +-sem.  
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Figure 5. The population responses to global context, local deviance, and global deviance
generalize  to  new sessions and stimuli.  Plots  show the  generalization  of  decoding  to  new
sessions  with  either  the  same  visual  stimuli  (gray  curve)  or  difference  stimuli  (black  curve).
Generalization performance (AUROC) is shown separately for decoders trained on global context
(A,D), local deviance (B,E) and global deviance (C,F). Horizontal lines on top of each graph show
time points where the decoding performance was significantly above chance (p<0.05).  
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Figure 6. Abstract change and deviance detection by neural populations in monkey A. In a
control experiment in monkey A, 4 possible sequence chunks (see titles in A) were presented in a
uniform random manner. Letters W-Z indicate any of 948 grayscale images from the Brainscore
database (Majaj et al., 2015), changing randomly in each trial. A neural decoder for local deviance
was trained on XXXY vs. XXXX trials, indicated by the star in  A,  using leave-one-stimulus-out
cross-validation. A: Predictive  probability  of  the  decoder  for  all  sequence  types  and  stimulus
positions in a sequence (indicated by colors).  B: Decoding performance in terms of AUROC for
local deviants (XXXY vs. XXXX, black), novel stimulus, as well versus pure repeats (WXYZ vs.
XXXX, gray), or any transition versus single repeats (XY vs. XX, dashed gray). All conditions could
be decoded above chance level with p<0.01 (random permutation test). Horizontal bars indicate
significant time bins. C: Rare stimuli that violate a local pattern of repetitions (XXXY) yielded a
significantly  higher  response  of  this  population  than  rare  stimuli  without  preceding  regularity
(WXYZ), again indicated by horizontal bars on top. D: Examples of multi-units contributing to the
population axis coding for local deviance. A large negative (left) or positive (right) coefficient means
a lower, or higher firing rate for deviant stimuli, respectively. E: Population deviance response to
repeats (light gray) or alternations (black) of three example images. Lines show mean across N
number of trials (indicated by small numbers in each plot) and shaded areas show +- sem. 
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Sequence
(one trial)

Global 
context*

Local 
deviance

Global 
deviance

Terminology

xxxx (aaaa, bbbb)
xx block
xY block

standard
standard

standard
deviant

xx|xx (frequent xx)
xx|xY (rare xx)

xxxY (aaaB, bbbA)
xx block
xY block

deviant
deviant

deviant
standard

xY|xx (rare xY)
xY|xY (frequent xY)

Table  1:  Terminology  of  sequence  types  in  the  local-global  paradigm.  *The  global  context
corresponds to the structure of the frequent trials in a block. xx is short for a xxxx trial and xY is
short for a xxxY trial. Colors indicate the color code used in Figures 2-4. 
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METHODS

Data and code availability

Code and data will be made publicly available upon publication.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two  adult  rhesus  macaques  (A  and  H,  9  -  10  kg,  19  and  16  years  old,

respectively) participated in this study. Both animals were pair-housed. They had

previously  been  implanted  with  a  custom  made  skull-form-specific  titanium

headpost  and trained on a passive  visual  fixation task  with  liquid  reward in  a

primate chair. Daily water access was controlled during the experimental period.

All procedures were conducted in accordance with the European convention for

animal care (86-406) and the National Institutes of Health's Guide for the Care and

Use  of  Laboratory  Animals.  Animal  studies  were  approved  by  the  institutional

Ethical Committee (CETEA protocol #A18_028). 

METHOD DETAILS

Sequence paradigm

An adaptation of the local-global paradigm (Bekinschtein et al.,  2009) with visual

stimuli  was  used.  The  stimuli  were  10 colored images  of  objects,  matched  in

luminance (Fig. 1D). Fixed pairs of images were used in every experiment, here

denoted  as  stimulus  A and B.  The  paradigm consisted  in  the  presentation  of

binary visual sequences composed of 4 items. Each item was displayed for 300

ms, with an inter-stimulus interval (isi) of 300 ms (stimulus onset asynchrony, SOA

- 600ms). The sequence could be one of four: aaaa or bbbb, denoted as xxxx; and

aaaB or bbbA, denoted as xxxY, where the capital letter indicates a local deviant
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item. One sequence was presented per trial which were organized in blocks of 200

trials. During each block, one sequence was used as the frequent, global standard

sequence which was established during 50 habituation trials at the beginning of

the block. 80% of the remaining 150 trials were global standards and 20% were

global deviants, which differed in the last position compared to the standard. Each

of the four sequence types was used as the global standard sequence in one

block. We will denote a global context according to its global standard sequence:

xxxx block for aaaa-frequent and bbbb-frequent or xxxY block for aaaB-frequent

and bbbA-frequent. We will  furthermore denote trials according to their context:

xY|xx indicates a trial with a local deviant that occurs in a block of frequent xxxx

sequences. The four trial types are thus xx|xx, xY|xY (global standards) and xx|xY,

xY|xx (global deviants).

This  two-by-two  design  enabled us  to  study effects  of  lower-order  (local)  and

higher-order  (global)  sequence  regularity.  Consider  for  instance  a  single  xxxY

sequence:  it  ends  with  a  local  deviant,  an  image  that  violates  the  repeated

structure of the previous three images. However, assuming that monkeys quickly

detected  the  global  sequence  regularity  in  a  block,  the  same  local  deviant,

occurring within a block of similar xY global standard trials, is predictable and may

no  longer  generate  a  global  surprise  (xY|xY,  “predicted  local  deviant”).

Conversely, a rare xx trial, which does not violate the local context, may elicit a

global  surprise  when  presented  among  many  xY  sequences  (xx|xY,  hereafter

called “pure global deviant”).

Each trial started with the display of a black fixation spot (diameter of 0.3 degree)

at the center of the screen. After 300 ms of fixation by the monkey, the fixation

point disappeared and the sequence was displayed centrally with stimuli at a size
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of 8 degrees per visual angle. The animals had to maintain the gaze within a

window of 8 degrees of visual angle centered on the stimulus. A liquid reward was

given for trial completion 100 ms after offset of the last item.

For monkey H, 5 stimulus pairs were used during a total of 10 experiments and for

monkey A, 4 stimulus pairs were used during a total of 7 experiments.

Repetition versus change control experiment

We performed two sessions of an additional experiment with monkey A during

which  we  showed four  different  types  of  sequence  chunks  containing  each  4

images. The types of sequences were XXXX, XXXY, XYYZ and WXYZ, where

letters  indicate  any  of  948  grayscale  images  of  objects  from  the  Brainscore

database  (Majaj  et  al.,  2015),  randomly  changing  with  each  sequence

presentation.  Sequence  types  were  uniformly  distributed  across  a  recording

session so that there was no global context. All stimuli could occur in any position

and were presented 1 to 5 times. This experiment served to control for stimulus-

specific adaptation that could underly the deviance response to the last stimulus in

XXXY trials. As we used a broad range of stimuli, the images used as WXY are

expected to be on average as distant from Z than X is from Y in XXXY trials,

thereby  leading  to  the  same  amount  of  stimulus-specific  adaptation  for  the

population responding to Y (in XXXY) as to Z in (WXYZ). 

The timing of the stimuli were the same as in the local-global experiment and the

reward was given at 100 ms after offset of the last stimulus.

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.463064doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.463064
http://creativecommons.org/licenses/by-nc-nd/4.0/


Implantation of microelectrode arrays

The  macaques  were  tranquilized  in  their  cage  by  intramuscular  injection  of

ketamine  1000  (3  mg/kg)  and  dexmedetomidine  (0.015  mg/kg).  Once  in  the

operating  room,  they  were  placed  in  a  stereotactic  frame  and  deeply

anaesthetized  (assisted  respiration)  by  inhalation  of  oxygen  (20%)  and

sevoflurane (1.5 -2%). An intravenous catheter was installed for the administration

of  physiological  fluids  (NaCl  with  5%  glucose,  10  ml/kg/h).  A  steroidal  anti-

inflammatory  drug,  the  methylprednisolone  (solumedrol  1  mg/kg  i.m.)  or

dexamethasone (dexazone 0,5 mg/kg i.m.) is administered to prevent swelling of

the cortex. As well as, an antibiotic (cefazoline 50 mg/kg i.m.) and a morphine

derivative (buprecare 0.02 mg/kg i.m.).  All  surgical  procedures were performed

aseptically, and recordings of heart rate, respiration patterns, blood pressure and

body temperature were monitored throughout the surgery.

Macaques  were  given  a  methylprednisolone  (monkey  A,  1  mg/kg)  or

dexamethasone dose (monkey H, 0.1 mg/kg) the day before the implantation to

avoid  brain  edema.  Monkey  H  received  another  dose  of  dexamethasone  (0.5

mg/kg)  the  day  of  implantation.  The  implantation  of  the  gas  sterilized

multielectrode array began with a longitudinal incision in the skin. The skin and

underlying muscle was retracted and a craniotomy was performed over the lateral

prefrontal cortex using a surgical drill. The bone flap was removed and then a U-

shaped  opening  in  the  dura  mater  was  made  to  expose  the  cortex.

Hyperventilation after dura opening was used to reduce intracranial pressure and

avoid swelling of the cortex. The Utah microelectrode array was implanted into the
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inferior  convexity  of  the prefrontal  cortex,  1–2 mm anterior  to  the bank of  the

arcuate  sulcus  and  below  the  ventral  bank  of  the  principal  sulcus,  using  a

pneumatic inserter (Blackrock Microsystems ). The dimensions of the array was 4

× 4 mm in a 10 × 10 electrode configuration resulting in an electrode-to-electrode

distance of 400 μm. The electrode length was 1 mm. The titanium connector that

can be connected to the electrophysiological recording device was implanted on

the skull with titanium screws. Then the dura mater was sewn back together, the

bone flap was reinserted and secured by a thin titanium strip. Finally, the skin was

sutured. After the electrode array implantation, injections of antibiotics (cefazoline

50 mg/kg i.m.) were given for 10 days and buprenorphine (0,015 mg/kg i.m.) for 3-

5 days depending on the pain level.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing

The recorded  broadband signals  were  preprocessed using  Matlab.  Broadband

neural  signals  (0.1  -  30  kHz)  were  recorded  with  a  Cerebus  neural  signal

processor system (Blackrock Microsystems) and bandpass filtered offline between

0.6 - 3 kHz using a 2nd order Butterworth filter. Spikes were detected with an

amplitude threshold set  at  five times the median absolute deviation and spike

events larger than 50 times the mean absolute deviation were discarded. Further,

spike events with an inter-spike interval of less than the refractory period of 0.5 ms
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were also discarded. Spike times were aligned to the onset  of  the photodiode

signal indicating the actual time of presentation of the last item in a sequence. 

All further analyses were performed with Python. Firing rates of individual sites

were  computed  from  the  spike  times  in  non-overlapping  bins  of  25  ms  and

smoothed with a gaussian kernel corresponding to 50 ms standard deviation. For

the data shown in Figure 6 and Suppl. Figure 5, firing rates were computed with a

moving average window of 50 ms and a step size of 10 ms in order to obtain a

better temporal resolution.

Single channel analyses

To quantify the modulation of single channel spiking activity by local and global

deviance, we only considered recording sites that were significantly modulated by

the task. As a criterion for task modulation, we tested if there was a difference in

firing rate during the 300 ms fixation period prior to sequence onset and the first

300 ms after presentation of the last sequence stimulus. We used pairwise t-test

per recording site and recording session and false discovery rate (FDR; Benjamini

and Hochberg, 1995) across all sites and sessions within an animal to correct for

multiple comparisons. Sites with a corrected p-value <= 0.05 were regarded as

being modulated by the sequence task. We tested each of the task-modulated

sites  for  effects  of  local  and  global  deviance,  using  a  Mann-Whitney-U  test

(Wilcoxon, 1945) on the average firing rate during 1 sec following the onset of the

last stimulus, thus taking into account non-normal distribution of firing rates and

substantially differing sample sizes in case of global deviants. For the summary of

the  results  across  recording  sessions,  we  used  FDR across  tested  sites  and

sessions per animal. A site with a corrected p-value <= 0.05 was regarded as
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being modulated by the respective variable. For the scatter plot in Fig. 2A, FDR

was not  applied and colors indicate sites that  have an uncorrected p-value of

below 0.05,  either  for  the  global  effect  (cyan)  or  local  effect  (orange)  only  or

independently for both effects (dark gray).

Population analyses

Multivariate linear regression

We assessed how the sequences were represented on the neural population level

by computing the axes across the MUA space that carried most information about

the variables  stimulus identity,  global context,  local and global deviance, without

pre-selection of recording sites. For this, we used multivariate linear regression, as

in  the  subspace  analysis  in  Mante  et  al.  2013.  We  performed  two  separate

analyses,  one  to  study  the  representation  of  the  sequences  prior  to  the  last

stimulus, and one for the time after onset of the last stimulus, in order to measure

responses to deviants. For the time before the last stimulus onset, the variables

stimulus identity and global context were considered, whereas the trial condition

after onset of the last stimulus was defined by the variables stimulus identity, local

and global deviance. As deviance responses following the last stimulus might be

dynamic, we performed a separate regression per time bin between 0 until 1.4 sec

after onset of the last stimulus. 

The multivariate linear regression was performed separately for each recording

channel with the above-mentioned sequence variables as independent variables

and the MUA (r) of channel i (in a time bin t) as dependent variable:

r i ,t=β i , t
stimulus× stimulus+β i ,t

local×local+β i , t
global×global+ εi , t (1)
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The above equation holds for time bins t after presentation of the last stimulus. For

the analysis  of  sequence structure representation before the last  stimulus,  the

responses between 0 - 1.8 sec after sequence onset were averaged per trial and

a single regression was performed per recording channel.

r i=βi
stimulus×stimulus+β i

globalcontext×globalcontext+ε i (2)

 is a noise parameter per channel (and time bin).𝜺  r is a vector of  dimension

Ntrials, as are the independent variables stimulus, local, global and global context.

Those were dummy variables, with A = -1, B = 1 for the stimulus variable; local or

global standards = -1, local or global deviants = 1; xx block = -1 and xY block = 1.

This approach results in a coefficient  per channel, variable, (and time bin) that𝛽

indicates how much the firing of a channel was influenced by a certain variable. 

The set of the 96 coefficients across all channels for one sequence variable k (and

time point t) constitutes a 96-dimensional vector (k) (or 𝛃(k)
t) that we denote as the

population axis representing this sequence variable. Note that Mante et al. 2013

orthogonalized  these  axes  and  denoised  them  using  principal  component

analysis. We chose not to add these steps after regression in order to measure

orthogonality resulting directly from the regression and because the data did not

require further denoising.

Decoding from the population trajectories

In order to use the resulting population axes for decoding, the MUA of all channels

was projected onto the population axis of each sequence variable k, respectively.
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r j ,t
(k )

=r j ,t ⋅ β
(k ) (3)

or 

r j ,t
(k )

=r j ,t ⋅ βt
(k ) (4)

for time-varying population axes.

j is the trial index. rj is a 96-dimensional vector of the population firing rate in a

single trial j and time bin t. rj,t is a scalar and corresponds to the dimensionality-

reduced population activity in one trial  j and time bin  t in the subspace carrying

most information about a sequence variable  k.  This trial-by-trial  projection was

then used to classify trials according to each sequence variable. The sign of these

projections was dependent  on the definition of  the independent  variables (see

above).  A  positive  activation  along  the  axis  coding  of  stimulus  identity,  e.g.,

corresponded  to   stimulus  B,  whereas  a  negative  activation  corresponded  to

stimulus A. As a measure of decoding performance, we computed the area under

the ROC curve (AUROC) by varying the decision boundary for classification.

Cross-validation

The decoding performance was cross-validated both within and across sessions.

Within each session, we used 10-fold cross-validation, meaning that 90% of all

data was included for the regression and the remaining 10% for projecting test

data onto the obtained axes. This was repeated 10 times so that all trials were

used for testing. We shuffled the data prior splitting and ensured a balance of trial

conditions in the training data. The reported performance within a session is the

AUROC across all tested trials. 

For the cross-validation across sessions for the variables global context, local and

global deviance, we used the population axes from one random training fold of
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each session and projected all trials from all other sessions onto these axes. We

then  computed  the  AUROCs for  each  pair  of  training  and  test  sessions  and

reported  the  performance  separately  for  pairs  that  had  the  same  or  different

stimulus pairs.

Decoding of serial position

We used multinomial logistic regression to predict the item position in a sequence

based on the neural population responses. This was a classification with 4 target

classes (item 1-4). The 300 ms after onset of a stimulus, shifted by 100 ms, were

labelled with the item number of the most recent stimulus. The activity of each

channel  was averaged in these intervals,  resulting in 4 values per trial.  The 4

items from all trials were pooled and used to train the classifiers, using 10-fold

cross-validation. Only xx trials were used for training. For testing, the activity in

each test trial and time bin between 100 ms prior to sequence onset until 1.4 sec

after sequence offset was passed through the trained classifier. This resulted in

predictive  probabilities  for  item 1  to  4  over  time and allowed us  to  study the

dynamic  encoding  of  item position  throughout  a  trial.  We also  assessed  item

position classification on incomplete trials. The monkeys could break fixation at

any time during a trial by moving the gaze outside of the 6 degree fixation window

which aborted the presentation of the sequence. We computed the predictions for

item position 1 to 4 for trials interrupted after presentation of the first, second or

third  stimulus.  Note  that  the  fixation  break  could  have  occurred  at  any  time

between onset of one stimulus and onset of the next stimulus, meaning that the

time the monkeys perceived the last stimulus varied within one condition. 
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Cross-condition decoding of global deviance

To test for encoding of global deviance irrespective of local deviance, we trained a

separate binary classifier to predict global deviance for the time after last stimulus

onset, on xx trials only and tested on xY trials. We used logistic regression on the

pooled data from all sessions, per animal. This was done to reduce the impact of

the  block  structure  of  the  task  within  each  session,  which  could  have  been

problematic in this case, as the classifier was trained from global deviants and

standards from separate blocks (e.g. rare xx in an xY block vs. frequent xx in an

xx block). Decoding performance was again measured as AUROC for each time

bin, separately for each session. 

Decoding of deviance or change in control data

We used logistic regression to predict whether a sequence chunk was XXXY or

XXXX (deviance decoder), based on the activity after the last stimulus. We used a

time-varying decoder in time bins of 50 ms, and with a step size of 10 ms. Image

identities were balances in both conditions, i.e. we only included stimuli for training

that occured in XXXY and XXXX chunks, resulting in 757 unique images. Decoder

performance was cross-validated by leaving trials with one image out for testing.

We  hence  trained  757  different  classifiers.  Images  that  did  not  occur  in  both

conditions (191 different images) were only used once for testing but not included

in the training set.

We  additionally  trained  a  decoder  to  detect  any  change  from a  repetition  by

contrasting  the  response  to  alternations  and  repeats  in  the  second  and  third

position of sequence chunks (i.e. the second stimulus in WXYZ and XYYZ trials

vs. the second stimulus in XXXY trials as well as the third stimulus in WXYZ vs.
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the third stimulus in XYYZ trials). The same cross-validation approach was used to

test this decoder.

Assessment of learning effects during the habituation period

We measured whether the code for global context evolved over the course of the

habituation period. For this, we projected the activity of single habituation trials (0 -

1.6 seq after sequence onset) onto the population vector that separated xx from

xY blocks during the test trials within the same session. As we had used 10-fold

cross-validation to obtain those vectors, we also obtained 10 projections of the

same habituation trials. We averaged those projections across folds to obtain one

activation value for the global context trajectory per trial. To assess learning, we

tested the difference in the activation during the first trial vs. the 50th trial using a

paired t-test with N=14 blocks in monkey A and N=20 blocks in monkey H. This

was done separately for xx and xY blocks, assuming that xx blocks would show an

evolution towards a more negative activation (which was defined as the xx block

direction) and xY blocks an evolution towards a more position activation (xY block

direction). 

Random permutation test

To test the significance of decoding performance from population trajectories, we

used  a  random  permutation  test  with  cluster-based  correction  for  multiple

comparisons (Maris and Oostenveld 2007). After estimating the population axes

and projecting single trials onto these axes, we generated 100 surrogate datasets

by shuffling the trial conditions of test trials. We then computed the AUROCs for

the different sequence variables based on the trajectories with the shuffled trial
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labels. We averaged the true AUROCs across recording sessions (10 in monkey

H, 7 in monkey A) and likewise obtained 100 surrogate session-averages. The

true AUROCs per sequence variable were transformed into t-values by subtracting

the  average  over  the  permutations  and  dividing  by  their  standard  deviation,

separately  for  each time point.  Absolute t-scores that  passed a threshold of 3

standard deviations were candidates for significant clusters in time. A correction

for multiple comparisons across time was performed by comparing the sum of t-

values within each true cluster with the sum of t-values within surrogate clusters.

Those  surrogate  clusters  were  obtained  by  transforming  each  of  the  100

permutation samples into t-values by subtracting the mean of the remaining 99

samples and dividing by their standard deviation. If a true cluster had a sum of

absolute t-values larger than 95% of the largest surrogate clusters, it passed the

threshold for significance which was set to a type-1 error of 5%. For the test of

decoding performance across sessions, the same procedure was followed. First,

we averaged for each test session the performance based on the decoder trained

on  the  different  possible  training  sessions  (same  or  different  stimulus  pair).

Second,  we averaged the 10 or  7 test  sessions.  The same was done for  the

surrogate AUROCs based on shuffled trial labels.

The  same test  was  also  performed for  the  cross-condition  decoding of  global

deviance and the effect of deviance onto eye movements (see below).

Analysis of eye movements

The eye velocity  (v)  was measured from the  non-calibrated horizontal  (x)  and

vertical (y) eye position recording by computing the difference between time bins

(t).
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vt = | xt - xt-1 | + | yt - yt-1 | (5)

To test for  an effect of local or global novelty on eye movements, the median

smoothed  velocity  (20  ms  moving  average)  in  each  condition  was  computed

across trials from all sessions and tested using a random permutation test (see

above). We then controlled for eye movements in the time window during which

there was a significant  effect  of  deviants,  +-  100 ms to  be more inclusive,  by

removing deviant  trials  with  an average velocity  in  this  time period  above the

median eye velocity in the standard trials. The effect of deviance in the neural data

was visualized for all trials vs. the controlled case (Fig. S5).
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