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In fluorescence microscopy, the amount of information that can
be collected from the sample is limited, often due to constraints
imposed by photobleaching and phototoxicity. Here, we report
an event-driven acquisition (EDA) framework, which combines
real-time, neural network-based recognition of events of interest
with automated control of the imaging parameters in an instant
structured illumination microscope (iSIM). On-the-fly prioritiza-
tion of imaging rate or experiment duration is achieved by switch-
ing between a slow imaging rate to detect the onset of biological
events of interest and a fast imaging rate to enable high informa-
tion content during their progression. In this way, EDA allows the
data capture of mitochondrial and bacterial divisions at imaging
rates that match their dynamic timescales, while extending the
accessible imaging duration, and thereby increases the density of
relevant information in the acquired data.
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Live-cell fluorescence microscopy is an indispensable tool
for studying the dynamics of biological systems. Individual
molecules can be labelled with fluorescent tags to allow high-
lighting of specific molecular species. Yet, these approaches
come with important limitations: as fluorophores go through
multiple excitation and emission cycles, they risk photobleach-
ing and producing reactive oxygen species, which interact with
cellular components, causing phototoxicity. These constraints
set a finite photon budget, limiting the information that can be
gathered from the sample, and confining the accessible imag-
ing parameter space. Practically, this is manifested by a trade-
off between spatial resolution and imaging rate, duration and
the signal-to-noise ratio (SNR), such that improving one pa-
rameter comes at a cost to the others (1, 2). In response, smart
and adaptive microscopies have been developed to navigate the
parameter space more efficiently and improve imaging perfor-
mance in changing biological samples. Adaptive light sheet
microscopy has been used to compensate for changes in the
optical properties of a developing organism, and optimize sig-
nal resolution on-the-fly (3). Other approaches have controlled
where or how light is delivered to the sample in response to the
local signal, to illuminate where the labelled structures reside
and reduce the overall light dose (4), while improving the dy-
namic range (5) or imaging speed (6, 7).

While the spatial resolution and SNR are largely imposed by
the method of choice (8), increasing the imaging repetition
rate causes sample health and photon budget to degrade faster,
thus reducing the imaging duration. Given these dependen-
cies, high frame rates and long-term fluorescence imaging are
mutually incompatible, and microscopy users are obliged to
compromise to capture events of interest under conditions that
preserve sample health. Biological processes, however, are not
bound by such technical limitations and take place across a
range of temporal scales with varying dynamics. This is exem-
plified by rare but rapid events such as mitochondrial division,
or events with a low duty cycle such as the final stages of con-
striction within the bacterial cell cycle. Capturing such events
is challenging, as the optimal frame rate may change during a
single acquisition depending on the state of the sample and the
information about events of interest contained within. Slow
frame rates can better probe for events of interest over longer
times while preserving sample health; while faster imaging
better captures the short-lived dynamic intermediates, enriched
in the event-specific information content. However, current
imaging methods acquire data at a fixed frame rate regardless
of sample information content and hence risk missing events of
interest either because of short imaging duration or insufficient
temporal resolution. Despite advances in adaptive microscopy
to optimize image quality and reduce photobleaching, there is
currently no approach to adapt the acquisition parameters to
the presence of events of interest.

We propose an event-driven acquisition (EDA) framework
which links the distinct spatio-temporal signatures of biolog-
ical events to the choice of microscope imaging parameters —
as demonstrated here, by adapting the acquisition frame rate.
In response to events of interest detected in real time by a
neural network, EDA prioritizes the imaging speed or dura-
tion on-the-fly. This allows us to capture the dynamic be-
haviour of events of interest and collect more images with a
higher information content, while extending the imaging dura-
tion and preserving sample health by slowing down the acqui-
sition during a lack thereof. The framework therefore spends
the sample’s photon budget more efficiently and increases the
information that we are able to gather from the sample before
reaching the photobleaching or phototoxicity threshold. As
proof of principle, we integrate EDA into the controller for a
large field-of-view (FOV) instant structured illumination mi-
croscope (iSIM) (9, 10) and apply it to capture super-resolved
time-lapse movies enriched in mitochondrial and bacterial di-
visions.

The EDA framework integrates a feedback loop between the
sample and microscope controls, the implementation of which
requires: 1) sensing via imaging to collect information from
the sample, 2) computation to detect events of interest and 3)
actuation to adapt the imaging speed (Fig. 1a). For our setup,
the acquisition is performed using MicroManager, which saves
captured frames to a network attached storage unit. As new
frames are added, the computation step is triggered on an ex-
ternal server, which generates spatial probability maps for a
specific event of interest and sends back the maximal value,
corresponding to the information content found in the corre-

Mahecic etal. | bioRxiv | October4,2021 | 1-12


https://doi.org/10.1101/2021.10.04.463102
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.04.463102; this version posted October 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

a Sensing

Computation

L1
Pre Activity = Constriction  Pre Division  Post Division
— .
Actuation
Tslow Tfast
o
b A (o] \
7]
150 - 4

g
g _ EDA .7
(S =2 =
=, 2. 100 - Thresholds! =

2 g
9 (e} o
2 ® 9

- (@)}
g S 50 £
X > | ©
£ ;9% -
=) & _eage
- T — T T O

0 50 100

Time

Time [s]

Fig. 1. a Feedback control loop between the sample and the acquisition parameters composed of three main parts: 1) sensing by image capture to gather
information from the sample 2) computation using a neural network to detect events of interest to generate a probability map and 3) adaptation of the
acquisition parameters in response to the sample. b Schematic representation of the trade-off between the imaging speed and light exposure over the
duration of an imaging experiment. The total amount of photon budget available (shaded areas) stays the same for all techniques. ¢ Example of event
probability (computation, black) as a function of time obtained during an EDA-guided iSIM imaging experiment, and the adaptive imaging speed (actuation,
red). Frames of events of interest that triggered the change of the imaging speed and the corresponding probability maps are represented on the top

(5.2 pum X 5.2 um).

sponding image. Depending on this decision parameter, the
microscope controls then generate the acquisition sequence for
the next frame(s): a fast imaging speed is triggered if the event
probability exceeds a set threshold, or once in the fast mode,
the microscope switches back to the slow imaging speed if
the readout goes below a second threshold, set slightly lower
(Fig. 1b,c).

We applied EDA to measure mitochondrial constriction and
division. Such events are challenging to capture, because they
are infrequent and can occur at any location within the mito-
chondrial network distributed throughout the cell. Once initi-
ated, constriction can proceed to division within tens of sec-
onds (11). To detect events of interest, we trained a neural
network with a U-net architecture (12) to recognise mitochon-
drial constrictions in the presence of dynamin related protein
1 (DRPI1). Although DRP1 accumulation is required for most
fissions (13), it also collects at non-dividing sites through its
curvature-sensing properties. Thus, its presence alone is not
predictive of a future division, making a simple thresholding-
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based adaptive control ineffective. The network produces a
probability map, marking potential constriction sites across the
imaging FOV. The maximum value in this map represents the
most pronounced constriction site, and hence most informa-
tive, which is then used as a deciding factor in the actuation
step (Sup. Note 2).

Using the detection network, we performed EDA with
the iSIM on Cos-7 cells expressing mitochondrion-targeted
TagRFP and DRPI1-Emerald. The network recognised sev-
eral instances containing events of interest during imaging pe-
riods of up to 10 minutes (Fig. 2a). To compare the perfor-
mance of EDA to traditional imaging acquisitions using fixed
parameters, we also collected data at a fixed imaging speed
of either 0.2 frames/sec or 4 frames/sec, representing slow
and fast imaging speeds respectively. EDA showed consid-
erably less photobleaching decay, with an average decrease in
the exponential bleaching decay constant of 3.4-fold (Fig. 2b,
c). While the bleaching decay is still on average 10 times
higher compared to fixed slow imaging alone, it was possible
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Fig. 2. a Representation of the different imaging speeds in an event-driven acquisition (Scale bar: 1 um). Times of the individual frames are represented
approximately on the timeline. b, d Decay constants obtained from fitting the mean signal in the mitochondria over time with an exponential decay. (See
also Sup. Figure 1) ¢, e Cumulative light dose, defined as the summed laser power multiplied by the exposure time over frames, over the duration of an
EDA or fixed frame rate experiment. EDA sometimes achieves a higher total light dose due to the recovery effects during slow imaging speed phases (See
Sup. Figure 1). f, g Minimal constriction width measured when following a constriction event over time. h, i Information density, calculated as the amount of
data generated per movie and weighed by the information throughput of each frame, measured for EDA and traditional imaging approaches using fixed low
or high imaging speeds. (Mitochondria: slow: N = 360 frames in n = 3 independent experiments; fast: N = 765, n = 2; EDA: N = 1516, n = 4; C. crescentus:

slow: N =228, n = 2; fast: N =296, n = 3; EDA: N = 182, n = 5).

to reach comparable 10-minute imaging durations for many
of the EDA experiments. Importantly, during events of inter-
est (Fig. 2c), we were also able to better capture the dynamic
intermediates of membrane remodelling, reflected in the mea-
sured constriction diameters, which had significantly smaller
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values with EDA (Fig. 2f). This reflects the ability of EDA
to better resolve the most constricted states preceding divi-
sion and prioritize gathering data with the highest informa-
tion content for our event of interest. Furthermore, considering
the lower average photobleaching, we find that EDA uses the
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sample’s photon budget more efficiently by collecting more
images with a higher information content while reducing the
sample light exposure. Finally, to assess the differences in in-
formation throughput, we quantified the information content
of the recorded images based on the output of the event de-
tection network (Sup. Note 2). These results demonstrate that
EDA produced data with significantly higher information con-
tent, compared to fixed slow or fast imaging alone (Fig. 2h).

To showcase the generalizability of EDA, we extended its ap-
plication to the final stages of bacterial division by imaging
Caulobacter crescentus cells expressing a cytoplasmic mScar-
letl, and FtsZ-sfGFP to mark the division site (Sup. Note 1).
We found that our event detection network developed for mito-
chondrial constrictions could also recognise the final stage of
bacterial division (Sup. Note 2), likely due to morphological
similarities in constriction shape and the presence of a func-
tionally similar molecular marker. We collected data on cells
at a fixed slow imaging speed of 6.7 frames/hour, fast imag-
ing speed of 20 frames/hour, or using EDA to switch between
the two (Fig. 2a). The bleaching decay was improved over
the fixed fast imaging by a factor of 1.7, with double the use-
ful imaging duration (Fig. 2d, e). Constrictions could again
be measured down to significantly smaller diameters (Fig. 2g)
and the gain in information throughput was comparable to that
estimated in the mitochondrial experiments (Fig. 2i). This con-
firms that EDA improves access to the details of bacterial cell
division events that would be difficult to capture using a fixed
imaging speed, and uses the photon budget more efficiently.
We found that EDA was especially beneficial for imaging syn-
chronized bacterial populations, where it sensed the onset of
divisions and enabled high-contrast and high-frame rate imag-
ing for many divisions simultaneously (Sup. Figure 2).

Overall, our results highlight the advantages of implementing
the EDA framework for different biological systems operating
at distinct timescales. Imaging of mitochondrial divisions ben-
efits from long imaging durations to allow for such rare events
to develop, and fast imaging speed once constrictions form to
capture the structural intermediates of membrane remodelling.
For Caulobacter crescentus, EDA allows us to follow the en-
tire cell-cycle and image the final states of division at high
temporal resolution. In both systems, as shown from the mea-
sured constriction diameters, EDA data gathered from individ-
ual cells contained smaller constriction sizes, difficult to cap-
ture by traditional imaging approaches due to their transience.
Beyond that, the benefit is two-fold, since EDA also generates
data with higher information density, and hence lighter and
more useful datasets. The modular nature of our implementa-
tion of the framework will aid adaptation of EDA to different
imaging methods and biological systems.

While our implementation adapts the imaging speed in a dig-
ital manner, EDA could evoke more complex responses such
as multi-level or analog actuation, as well as controlling other
acquisition parameters such as the excitation power or expo-
sure time. Potential pitfalls include the need to decouple ex-
perimental variability from real biological changes. As pho-
totoxicity is thought to vary non-linearly with the delivered
light dose (14), individual acquisitions using EDA will dif-
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fer in imaging conditions based on the information content of
the sample, which should be kept in mind when comparing
datasets. Furthermore, the benefits of applying EDA depends
on the specific dynamics of the observed events — the greatest
advantages are expected if it’s possible to choose a large dif-
ference in imaging speeds. Brief, dynamic and rare events that
can be predicted early are therefore best suited for observation
using EDA.

Our work builds on the developing field of ‘smart’ or ‘self-
driving’ microscopes (15), designed to adapt the acquisition
procedure on-the-fly to either preserve the sample from unnec-
essary illumination (4, 5, 7), generate faster (6, 16) or better
quality data (3, 17). However, while these methods focus on
adapting the imaging parameters for optimized image quality,
EDA is unique in that it integrates the information about the
biological state of the sample into the acquisition procedure.
Nevertheless, the EDA framework is generalizable to other mi-
croscopes capable of on-the-fly image processing, and was de-
veloped particularly for applications with changing dynamics.
Moreover, machine learning has proven useful for many image
analysis tasks, allowing the detection of increasingly complex
sample features. As event recognition networks become in-
creasingly accessible, EDA can enhance the information con-
tent of gathered data by repurposing such networks at the ac-
quisition step. With this, we expect that EDA will boost bio-
logical discovery by delivering light-weight, information-rich
datasets of events that are otherwise challenging to record.

Methods
Sample preparation.

Cos-7. African green monkey kidney (Cos-7) cells were pre-
pared as described in (11).

Dual transfections using cox8-TagRFP and Emerald-Drpl
were conducted using Lipofectamine 2000 (Life Technolo-
gies). Transfections were performed in Opti-MEM using 150
ng of plasmid and 1.5 pl of Lipofectamine 2000 per 100 pl
Opti-MEM. Imaging was performed at 37°C in pre-warmed
Leibovitz medium on a 25 mm, #1.5 glass coverslip (Menzel).

Caulobacter crescentus.Liquid C. crescentus cultures were
grown overnight at 30 °C with 3 mL of 2xPYE medium un-
der mechanical agitation (200 rpm). Liquid cultures were
re-inoculated into fresh 2XxPYE medium to grow cells until
log-phase (ODggp=0.2-0.4). For antibiotic usage, 5 ug/mL
kanamycin and 1 pg/mL gentamicin were added in liquid cul-
tures. To induce the expression of FtsZ-sfGFP and mScar-
letl under the P,y and P,,, promoter respectively, 0.5 mM of
vanillate and 0.02% xylose were added to the culture 2 hours
before imaging or synchronization (18).

C. crescentus cell cultures were spotted onto 2xPYE agarose
pad for imaging. To make the agarose pad, a gasket
(Invitrogen™, Secure-Seal™ Spacer, $24736) was placed on
a rectangular glass slide, and filled with 1.5% 2xPYE agarose
(Invitrogen™, UltraPure™ Agarose, 16500100) containing
0.5 mM of vanillate and 0.02% of xylose without adding any
antibiotics. Another glass slide was placed on the top of sili-
cone gasket, and the sandwich-like pad was put into fridge for
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agarose solidification. After 20 min, the top cover slide was
removed, 1-2 pl drops of cell suspension was placed on the
pad. After full absorption of the droplet, the pad was sealed
with a plasma-cleaned #1.5 round coverslip of a diameter of
25 mm. Notably, for imaging the synchronized cells, 1XPYE
agarose pad was used to let cells grow slower.

iSIM imaging. Imaging was performed on a custom built
instant structured illumination microscope (iSIM) that
is described in detail in (10). Emerald/sfGFP and
TagRFP/mScarletl fluorescence was excited using 488 and 561
nm lasers respectively. A system of microlens and pinhole ar-
rays together with a galvo actuated mirror allows for instant
super-resolution imaging on the camera chip (Photometrics
Prime95B sCMOS). The implementation of a mfFIFI setup al-
lows for homogeneous excitation over the full field of view
(10).

SIM imaging and training data. Training data was acquired
at the fast SIM using a SLM and LCD for generating and con-
trolling the illumination pattern (19). The training data con-
sisted of constriction events published previously (11).

Event detection. Detection of potential division events was
performed using an implementation of the U-net (12). The
network was trained on 29600 dual-color images of mitochon-
dria and Drpl, and frames marking the respective locations
of divisions (ground truth) (Sup. Note 2). This data set was
recorded on a fast dual-color SIM setup at Janelia Farm (19)
and published previously (11). The ground truth was com-
puted from the intensity in the Drpl channel, multiplied by
the negative product of principal curvatures of the mitochon-
drial signal (Sup. Note 2). This information was then curated
manually to increase accuracy for real constriction events by
visually removing false positives or ensuring consistent detec-
tion of active constriction sites. With this, the network reaches
an accuracy of 87% when tested on data that was not used for
training. The output of inference is a two dimensional map of
division probabilities in the range O to 255. Training was per-
formed using the tensorflow/keras module in python 3.9 (20).

Event-driven acquisition for adaptive temporal sam-
pling. The different parts of the EDA framework were imple-
mented in separated modules that allowed for continuous and
independent testing of the components.

Data handling. The EDA framework is distributed over Micro-
Manager (21) for general microscope handling, and Matlab
(MathWorks) for the control of the timing of the microscope
components and Python for network inference. Furthermore,
the Python module was used on a machine in the network due
to hardware restrictions on the local computer used for micro-
scope control. A network attached storage (NAS) was used to
allow for communication of the different components of the
system over the local 10 Gbit network. Recorded frames were
stored as single .tif files to the NAS by Micro-Manager. A
server implemented using the watchdog module (Python) on
the remote machine detected new files for inference. After
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calculation of the decision parameter, the value was saved to a
binary file that was used by Matlab to calculate the values for
the next sequence of imaging.

Event Server. When a new file for each channel respectively
was detected on the NAS, the event server implemented in
python running on a remote machine first performed data
preparation on the recorded frames. The frames were re-
sized by a factor of 0.7 to match the pixel size of the train-
ing data. Both frames were smoothed using a Gaussian of
1.5 px with an additional background subtraction in the Drpl
channel (Gaussian of 7.5 px). The frames were tiled into
overlapping 128x128 px sized tiles to match the size of the
training data. The individual tiles of the structure (mitochon-
dria/Caulobacter) channel were again normalized individually.
Inference was performed on pairs of structure/foci tiles and
the output was stitched together. The maximum value from
the stitched frame was recorded as the highest probability in
the frame for a division event and saved to the binary file on
the NAS.

Hardware control. The timing of the microscope hardware is
performed using a PCI 6733 analog output device (National
Instruments). The device is used in background mode re-
questing data when the existing sequence is ending. For mi-
tochondria imaging, either a sequence containing one frame
over five seconds is provided in the slow mode, or a sequence
containing five frames in one second. For bacterial imaging,
sequences with one frame over 3/9 or 2/12 minutes is pro-
vided for slow/fast and normal or synchronized colonies re-
spectively. The parameters are chosen depending on which
value was read from the binary file on the NAS that contains
the latest event information written by the event server. In ad-
dition to a threshold, a hysteresis band is implemented here
by defining an upper and a lower threshold. Fast acquisition
starts at surpassing the upper threshold and is only stopped
when the event probability falls below the lower threshold. For
Caulobacter imaging, the number of fast frames was further
set to a minimum of three.

Due to the fast imaging rates in the mitochondria imaging, the
new sequence is calculated before the event server has calcu-
lated the probability map for the last frames, leading to a delay
in the reaction of the EDA framework. This is overcome for
the Caulobacter imaging by delaying the calculation of the
new sequences by 10 seconds allowing for mode switching on
the newest data available.

Data Analysis.

Photobleaching Decay. The different photobleaching kinetics
of the modes were characterized by the intensity contrast of
the samples. The channel of the structural feature (mitochon-
dria and caulobacter outline) was segmented using a otsu-
thresholding method after a median and Gaussian filter were
applied (kernel size of 5 px each). The intensity contrast was
then calculated as the mean intensity in the segmented region
divided by the mean intensity in the rest of the image. The
decay constant was then obtained by fitting an exponential de-
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cay function (y = aexp(~%*) +¢) to the intensity contrast over
time data and extracting the b term.

Cumulative Light Dose. The total amount of light exposure
over time was calculated from the number of previously
recorded frames. Traces were truncated after a minimal in-
tensity contrast was reached (1.1 for mitochondria and 1.02
for Caulobacter).

Constriction Width. The time resolution of the slow and EDA
modes was evaluated by calculating the minimal width of con-
striction measured during the experiment. The measurement
was performed similar to the method described in (11). Pa-
rameters are the ones used for the mitochondria analysis with
Caulobacter values in brackets. The deconvolution of the im-
ages was performed using the Richardson Lucy algorithm as
implemented by the flowdec python package (22). Events of
interest were defined by a minimum value of the neural net-
work output of 80 (90 for C. crescentus). A number of subse-
quent frames at the same position were analyzed until a maxi-
mal observation time of 20 seconds (1 hour for C. crescentus)
was reached. Segmentation, skeletonization and spline fitting
the resulting points lead to a backbone of the mitochondrion
in a frame of 20 by 20 pixels around the position of the de-
tected event. 100 perpendicular lines were calculated around
the closest point of the backbone to the event position. The
intensity profile along those lines was fitted using a gaussian
profile. The full width at half maximum (FWHM) of the gaus-
sian profile with the smallest o was recorded as the measured
width for the frame. The minimal width measured for an event
was calculated as the minimal FWHM over the observation
time times the pixel size of the iSIM setup.

Code availability. All code used in this project is available at
https://github.com/LEB-EPFL/EDA
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Supplementary Information

Supplementary Note 1: Strains and plasmids

Caulobacter crescentus. The strains and plasmids used for this study are summarized in table 1 below. The wild-type strain
(CB15N) was electroporated with the P,y;::ftsZ-sfGFP plasmid and the PMT335-mScarletl plasmid sequentially to yield the
dual-color strain. Notably, the DNA sequence of sftGFP and mScarletl used for this study was optimized for respective protein
expression in C. crescentus. The two plasmids have been deposited at Addgene with the ID 174505 (P,y;::ftsZ-sfGFP) and 174506

(PMT335-mScarletl).

Resources | Description | Source
Strains
CB15N NA1000, synchronizable derivative of wild-type CB15 (Lambert et al, 2018)

CBISN Pyyy::ftsZ-sfGFP
Poan::mScarletl

CB15N electroporated by the Pyy;::ftsZ-sfGFP and
PMT335-mScarletl plasmids sequentially

This study

Plasmids

Py:GFPC-2

Integrated plasmid for protein expression in C. crescentus under
xylose induction, kanamycin resistant

(Lambert et al, 2018)

Pry::ftsZ-sfGFP

Plasmid harboring ftsZ-sfGFP gene which replaces the GFP in the
P.y::GFPC-2 plasmid

This study

pMT335

High-copy number plasmid for protein expression in C. crescentus
under vanillate induction, gentamicin resistant

(Thanbichler et al, 2007)

PMT335-mScarletl

PMT335 plasmid harboring the mScarletl gene for its cytoplasmic
expression

This study

Table 1. Strains and plasmids used for this study
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Supplementary Note 2: U-Net for the detection of divisions

The U-Net used for event detection in this project was trained with images of both Drp1 and the mitochondria outline. The Ground
truth was calculated as discussed above. Frames are 10.4 ym x 10.4 pm .

" - . . . . . .
A ) . -
V v A ';,p'r)‘ ), - N J
Ground
Truth

The resulting network also gives reliable predictions of division precursor states upon inference on data from the instant SIM used
for the implementation of EDA.
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Network

Scale bars: 1 um
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Supplementary Figure 1: Bleaching behavior during EDA imaging
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Supplementary Figure 1. Bleaching behavior of a mitochondria sample during EDA imaging. The different modes of imaging
can clearly be seen in the bleaching curve represented by the signal-to-noise ratio calculated from the intensity inside the mitochondria
compared to the signal outside of the mitochondria. For some parts with low frame rate, even a slight recovery of signal can be observed.

Mahecic et al.

Event-driven acquisition for content-enriched microscopy

bioRxiv | 9


https://doi.org/10.1101/2021.10.04.463102
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.04.463102; this version posted October 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Supplementary Figure 2: EDA for synchronized bacterial imaging
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Supplementary Figure 2. EDA imaging of synchronized bacteria populations. The strain used in this study can be synchronized to
obtain a population of cells that are all at the beginning of their cell cycle. This leads to a time lag before the next divisions take place. As
they are synchronized, many bacteria in the sample will then divide at the same time. We used EDA to sense the onset of divisions in the
sample and adjust the imaging parameters in a way to optimally image during the divisions for high SNR and temporal resolution. a slow:
9 min, fast 3 min, thresholds 80, 100. b and ¢ slow: 12min, fast 2 min, thresholds 90, 120. Scale bar: 1 pm
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Supplementary Figure 3: Additional frames by event driven increase in fps

Slow
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Supplementary Figure 3. EDA delivers additional frames during events of interest Top row: mitochondrial division as recorded with
the slow fixed imaging rate. Thanks to EDA, additional frames are captured showing more detail of the dynamic of the event. Both the
final constriction state and the fade of the Drp1 peak can be observed with higher temporal information. Scale bars: 1 um
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Supplementary Figure 4: Automatic event cropping mechanism

Supplementary Figure 4. Highest intensity events as detected by EDA. Mitochondria/C. crescentus label in white, neural network
output in red. Events that triggered EDA where followed over time and the frame with the maximal neural network value was extracted as

highlight. Some frames appear twice, if the neural network intensity was high enough to trigger EDA multiple times. Scale bar: 1 um
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