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Abstract  
Background and Aims: Single-cell transcriptomics offer unprecedented resolution of tissue function at the 
cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present 
single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending 
colon from 3 humans. 
Methods: 12,590 single epithelial cells from three independently processed organ donors were evaluated for 
organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses 
focused on intrinsic cell properties and capacity for response to extrinsic signals along the gut axis across 
different humans.  
Results: Cells were assigned to 25 epithelial lineage clusters. Human intestinal stem cells (ISCs) are not 
specifically marked by many murine ISC markers. Lysozyme expression is not unique to human Paneth cells 
(PCs), and PCs lack expression of expected niche-factors. BEST4+ cells express NPY and show maturational 
differences between SI and colon. Tuft cells possess a broad ability to interact with the innate and adaptive 
immune systems through previously unreported receptors. Some classes of mucins, hormones, cell-junction, 
and nutrient absorption genes show unappreciated regional expression differences across lineages. 
Differential expression of receptors and drug targets across lineages reveals biological variation and potential 
for variegated responses. 
Conclusions: Our study identifies novel lineage marker genes; covers regional differences; shows important 
differences between mouse and human gut epithelium; and reveals insight into how the epithelium responds to 
the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium 
resolves likely functional differences across anatomical regions along the gastrointestinal tract and advances 
our understanding of human intestinal physiology. 
  
Keywords: scRNAseq; Cell Atlas; Intestinal Stem Cell; Paneth cell; BEST4 

Introduction 
Colloquially called the ‘gut’, the small intestine (SI) and colon are distinct organs with overlapping and 

unique roles in maintaining health. A monolayer of epithelium lines the gut lumen, comprised of stem and 
differentiated cells that renew the epithelium each week1. Broad health conditions develop at the intestinal 
epithelium, caused by pathological mucosal immunity2, dysregulation of carefully orchestrated cell-cell 
signaling, or disrupted synergy between stem cell-driven self-renewal and production of differentiated lineages. 
This complexity is little understood at the cellular level.  

The generalized function of the gut epithelium is maintaining barrier function, absorbing nutrients, and 
regulating water. Cellular roles include ion balance, hormone production, mucus production, and signaling 
through the luminal-epithelial-immune axis. While physiological functions differ across the gut length, how 
lineages differ along the SI-colon axis is poorly understood. Whether adult gut epithelial lineages adopt 
regional fates and functions is a central question of human gut physiology and disease.  

Single-cell RNA sequencing (scRNAseq) approaches have provided unprecedented transcriptomic 
resolution of cells and revealed unappreciated cellular heterogeneity. Studies in mouse intestines3-5 led to 
human scRNAseq studies analyzing fetal gut development6-8 and adult colonic9-12, ileal13-15, and duodenal16 
epithelium. To date, one study compares adult human ileum and regionally-unspecified colon13, and one recent 
report compiles samples from across the gut yet has limited epithelial analysis17. Several human gut regions 
have sparse scRNAseq analysis available, with no studies analyzing regional differences within SI or colon. 
Addressing these gaps requires technically and logistically challenging approaches.  

Here we comprehensively survey adult human gut epithelium using transplant-grade organs. 
scRNAseq libraries were prepared from epithelial cells from duodenum, jejunum, ileum, and ascending- (AC), 
transverse- (TC), and descending- (DC) colon from three donors. This robust cellular library avoids intra-donor 
batch effects and allows for observations between individual patients. Using this dataset, we probe 
understudied human lineages including Paneth cells (PCs), SI BEST4+ cells, and Follicle Associated 
Epithelium (FAE). We define comprehensive transcriptional signatures for lineages across the entire gut, 
highlight differences between human and mouse markers, and generate regional atlases of functional gene 
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families across the proximal-to-distal axis. We further probe how lineages might be affected by extrinsic 
signaling by mapping receptor families and analyzing primary gene targets of approved drugs. 

Methods 
Donor Selection  

Human donor intestines were received from HonorBridge (Durham, NC) with acceptance criteria: age ≤65 
years, brain-dead only, HIV(-), hepatitis(-), syphilis(-), tuberculosis(-), COVID-19(-), and no bowel surgery, 
severe abdominal injury, cancer, or chemotherapy. Pancreas donors were excluded to avoid duodenum loss. 
UNC IRB determined this study does not constitute human subjects research. 

Tissue processing 

Intestines were transported on ice in University of Wisconsin Solution. Tissue dissection began within eight 
hours of cross-clamping. Fat/connective tissue were trimmed and intestinal regions separated: duodenum 
(most-proximal 20 cm); jejunum/ileum splitting remaining SI; colon split into thirds for AC/TC/DC. Two 3x3 cm 
mucosectomies were isolated from the center of each region for dissociation.  

Mucosectomies were incubated in 10 mM NAC in dPBS at room temperature for 30 min to remove mucus, 
then washed in ice-cold Chelating Buffer18 + 100 µmol/L Y-27632. Tissues were incubated in Chelating Buffer 
with 2 mmol/L EDTA and 0.5mmol/L DTT, then shaken to remove crypts. High-yield colon shakes were pooled, 
with SI shakes pooled to approximate 1:1 villus to crypt tissue by cell mass. Crypts and villi were dissociated to 
single cells using 4 mg/mL Protease VIII in dPBS + Y-27632 on ice for ~45min with trituration via a P1000 
micropipette every 10 min. Cells was checked under a light microscope then filtered. 

Sample preparation 

Single cells were washed with dPBS + Y-27632, resuspended in Advanced DMEM/F12 + 1% Bovine Serum 
Albumin + Y-27632, then stained with AnnexinV-APC (1:100) and one TotalSeq Anti-Human Hashtag Antibody 
(1:100) per region to track all six regions with a single library preparation19. Cells were washed and 
resuspended in AdvDMEM + 1% BSA +Y-27632 for sorting on a Sony Cell Sorter SH800Z to enrich for live 
single epithelial cells. 25,000 cells were collected for each region, then regions were combined pre-
sequencing. Library prep was performed with the Chromium Next GEM Single Cell 3’ GEM, Library & Gel Bead 
Kit v3.1 (PN-100012). Sequencing was performed on an Illumina NextSeq 500. 

Data preparation and Hashtag Calling 

Harmony (v0.0.5) was used to integrate the top 40 principal components from each dataset for clustering and 
visualization20. Leiden clustering was initialized with a kNN graph (k=10 neighbors) and a Leiden resolution of 
0.9221 to resolve most expected physiological lineages. UMAPs were initialized with PAGA of identified Leiden 
clusters21,22, then non-epithelial EPCAM-negative lineages were eliminated. Regional hashtag deconvolution 
followed published methods: raw hashtag read counts were normalized using centered log ratio transformation 
followed by k-medoid clustering of hashtag read counts, with k=6 medoids for donor 1 and k=7 medoids for 
donors 2 and 319. Hashtag noise distributions were determined by removing the highest-expressing cluster, 
then fitting a negative binomial distribution to the remaining cells. Cells were considered positive for a hashtag 
with counts above the distribution’s 99th percentile (p<0.01) threshold. Cells positive for multiple hashtags were 
excluded as likely doublets. 

Results 
Sample processing 

We define SI and colon as ‘organs’ and duodenum, jejunum, ileum, AC, TC, and DC as ‘regions’. 
Intestinal tracts were obtained from three organ donors (Fig. 1A,S1) with no history of cancer or intestinal 
disease, and healthy mucosa was verified by a pathologist (Fig. S2). Tissue was resected from each donor 
(Fig. 1A, Fig. S2) then epithelium was dissociated to single cells using cold protease to preserve RNA integrity. 
Each region’s cells were stained with Cell Hashtag antibody-oligo conjugates8,19 to multiplex regions for library 
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preparation and sequencing, avoiding intra-donor batch effects and reducing cost (Fig. S4). FACS excluded 
dead cells and doublets (Fig. S3) prior to sequencing. After filtering for quality, transcriptional readouts for 
12,590 total cells (4,330, 4,465, and 3,795 cells/donor) were obtained (Fig S1,S5). 

Donor sequencing datasets were individually processed then combined, with principal components 
integrated with Harmony20 to minimize donor-specific differences prior to dimensional reduction and Leiden 
clustering21. Most lineages formed distinct SI/colon-specific clusters, suggesting functional differences by 
location. No organ-specific clustering occurred for enteroendocrine cells (EECs) and secretory progenitors 
(Fig. S6). One cluster expressed PC and goblet cell (GC) markers, so sub-clustering resolved these lineages 
(Fig. S6). Our final dataset identifies all lineages by organ along with rare FAE (Fig. 1B). The integrated 
dataset shows overlapping cell distributions from each donor and region within all major lineages, 
demonstrating that post-sequencing hashtag deconvolution preserves transcriptomic features across samples 
and batches (Fig. 1C-E). 

To define significant marker genes across the gut, we calculated differentially expressed genes (DEGs) 
in each lineage versus all other cells from each organ. We identified DEGs consistently enriched across all 
three donors and the combined dataset. Through this rigorous statistical evaluation, we developed a unique 
signature for all major lineages across the human SI and colon epithelium, a previously unavailable resource 
(Fig. 1F,G, Table S1,S2).  

Proliferative Cells 
We found human Intestinal Stem Cells (ISCs) differentially expressed classical markers LGR5, ASCL2, 

SLC12A2, and RGMB (Fig. 2A,B)23-25. Though enriched, SMOC226 was not a DEG in SI ISCs, as PCs express 
higher levels (see PCs). While in situ hybridization showed OLFM4 marks human SI and colonic ISCs27, our 
data indicate significantly higher levels of OLFM4 in SI ISCs, with colonic OLFM4 higher in transit amplifying 
(TA) cells and early absorptive colonocytes (ACCs) (Fig. 2A,B). This concurs with mouse, where Olfm4 
transcripts marked SI but not colon ISCs24. Notably, RARRES2 was enriched in colon ISCs, with low 
expression in SI ISCs (Fig. 2B). We found no gut-related literature on this retinoid response gene, providing an 
intriguing target for future studies.  

We constructed a comprehensive human ISC signature. SI ISCs had 68 DEGs compared to other 
clusters across SI regions for all three donors, whereas colon ISCs displayed 109 DEGs (Table S1, Fig. S7). 
To define a human ISC transcriptional signature spanning SI and colon, we identified 46 DEGs enriched in 
ISCs from both organs (Table S2). This signature includes classical ISC markers along with 30 ribosomal 
genes. While ribosomal genes are less abundant in murine ISC signatures26,28,29, this is consistent with 
literature describing ribosomal control of transcriptional dynamics in other stem cells30-32. To identify ISC DEGs 
conserved between human and mouse, we compared our 68-gene SI ISC signature with a mouse signature 
with 344 human homologs26. Surprisingly, only 11 genes overlapped between the human and mouse 
signatures (Fig. 2C), although it is unclear whether this reflects species differences or the higher resolution and 
stringency of our computational approach. Conserved genes included classical markers: LGR5, OLFM4, 
ASCL2, RGMB, SLC12A2, and MYC; genes with known ISC function: RNF43, ZBTB38, VDR, and CDK6; and 
one gene not described in ISC literature: TRIM24, a gene involved in p53 degradation. These SI, colon, and 
full-gut ISC signatures underline key similarities and differences in proximal-distal human ISCs. 

TA cells are classically defined by high proliferation and location above ISCs in the intestinal 
crypt9,33.Leiden clustering separated SI TA cells undergoing S/G2 cell-cycle phases (TA) and M-phase (TA2) 
(File S1,S2). We evaluated DEGs between SI TA, TA2, and colon TA cells to define shared TA markers (Fig. 
2D). DEGs were involved in cell cycle as well as in mitochondrial biogenesis and rRNA processing, consistent 
with increased mitochondrial load and translation levels seen as stem cells differentiate in various systems30,34-

36. Several organ-specific markers of differentiated lineages (Fig. S8) were unexpectedly enriched in their 
respective SI or colon ISC and TA populations (Fig. 2E), hinting that ISCs are already transcriptionally primed 
for organ-specificity, instead of existing in a naïve, pan-intestinal state. This is consistent with rodent studies 
showing adult SI ISCs produce daughter cells specific to their originating organ when engrafted into alternative 
SI or colon sites37,38. Studies defining region/organ-specific chromatin or active transcriptomic differences in 
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ISCs were not found; thus, these genes may prove useful for studying differentiation and chromatin dynamics 
in early fate-determination. 

 Trajectory analyses computationally investigate lineage transitions, with intestinal analyses primarily 
using mouse data39-42. We used Partition-based Graph Abstraction (PAGA), which estimates connectivity 
between clusters, to infer connections between proliferative crypt-based lineages and differentiated 
populations22. Absorptive enterocytes (AEs) and ACCs arise nearly exclusively from ISCs and TA cells15. The 
secretory progenitor population arises from ISCs and TA cells and gives rise to PCs, GCs, and EECs (Fig. 
2F,G). Interestingly, tuft cells appear to derive from secretory progenitors in colon but not SI, consistent with 
murine findings39. Conversely, SI BEST4+ cells apparently arise from secretory progenitors while colon BEST4+ 
cells connect to TA cells, agreeing with absorptive and secretory functions ascribed to this novel lineage12,16.  

 Predicted regional cell cycle phase distributions43 were analyzed in ISCs, TA cells, and secretory 
progenitors (Fig. 2H-J). ISCs showed expected high G1 and S phase representation across regions13,44, while 
highly-proliferative TA cells largely existed in S and G2/M. TC showed a significantly lower proportion of TA 
cells in G2/M than jejunum, with similar regional differences in rodents45,46, but biological implications are 
unknown. Secretory progenitors had notably different distributions, with S phase proportions increasing 
proximally-to-distally and higher G1 proportion than TA cells (Fig. S1). Since secretory progenitors differentiate 
into specialized lineages, elongated G1 may allow for additional reception of differentiation factors, as stem 
cells are most receptive to such cues during G147. 

Paneth Cells 
Murine PCs play important niche-supporting and antimicrobial roles48, yet little scRNAseq analysis 

covers human PCs. Our dataset includes 49 PCs representing all SI regions across three donors, 10-times 
more than analyzed in recent literature16. PCs were defined using DEFA5, DEFA6, ITLN2, and PLA2G2A (Fig. 
3A). Surprisingly, Lysozyme (LYZ), an important murine PC marker, was expressed higher in SI BEST4+ cells 
and FAE, with measurable tuft cell expression, making LYZ an imprecise human PC marker (Fig. 3B). This is 
consistent with LYZ expression in organoids derived from a fetal human stage too young to form PCs6. Since 
PCs cluster alongside GCs and share LYZ expression with BEST4+ cells, classical PC markers were plotted to 
confirm PC identify (Fig. 3C). Importantly, our data indicate the cells described as PCs in a recent scRNAseq 
publication13 are BEST4+ cells, with high LYZ, SPIB, BEST4, and CA7. Similarly, the reported colonic ‘Paneth-
Like Cells’ in the study are likely BEST4+ cells unrelated to PCs other than LYZ expression. The rarity of PCs 
(<1% of our dataset and others16) and divergence of PC and BEST4 markers highlights the precise lineage 
attribution needed when defining human PCs. 

We next probed whether human PCs express ISC niche factors. Murine PCs express Wnt3, Wnt11, 
Tgfa, Egf, Dll1, Rspo1, and Dll440,48-50, but one report shows human PCs express no WNT3/1116. Our data 
confirm this and demonstrate no measurable EGF or RSPO1 and minimal TGFA. While human PCs express 
DLL1 and DLL4, both are higher in secretory progenitors (Fig. 3D). We found no members of any major 
intestinal growth factor family broadly enriched in PCs (Fig. S9), suggesting human PCs are not major niche-
supporting cells. This notion is consistent with non-epithelial sources of WNTs and growth factors in the human 
niche6,51-53, and echoes mouse biology, where PCs are sufficient to support ISCs48 yet unnecessary for niche 
maintenance48,54-56. 

Unexpectedly, SMOC2, a murine ISC marker,26 was expressed highest in PCs, with other mouse ISC-
restricted markers (LGR5, ASCL2, RGMB) higher in human PCs than mouse PCs5 (Fig. 3E). ISC-PC doublet 
artifacts could explain this, however lack of ISC markers (e.g., OLFM4) does not support this hypothesis. 
LGR5, SMOC2, and ASCL2 are involved in WNT reception23,57-59, suggesting human PCs may receive WNT 
signals instead of providing WNT signals as in mice48. PC-unique expression of FZD9 supports a WNT-
receptive PC role60 (Fig. S9), with its expected ligand WNT261 absent in our database yet induced in intestinal 
inflammation and cancer62-64. Mature PCs can dedifferentiate following injury in mice65-67, and Ascl2 is required 
for dedifferentiation in mouse crypts68. Thus, expression of these ISC genes may render human PCs more 
responsive to dedifferentiation cues; however, this needs functional validation.  
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A murine subset of colonic GCs termed Paneth-Like Cells or Deep-Crypt Secretory Cells are defined by 
MUC2, C-KIT, REG4, CD24, EGF, and FZD569,70. We found only two cells positive for both REG4 and KIT 
across the 1,252 colon GCs and secretory progenitors (Fig. S9D). Colonic tuft cells expressed higher KIT and 
CD24 but no REG4. Based on murine-defined markers, we conclude there is no human equivalent to this 
population. Since human PCs likely perform little niche-supporting activity, namely not producing EGF, human 
cells with murine PC-like functions may be unnecessary. 

Despite striking differences between mouse and human PCs, both supply antimicrobial gene products. 
Six of the 10 highest-expressed SI antimicrobial peptides are PC-enriched (Fig. 3F). As antimicrobial genes 
comprise half of human PC DEGs (Table S1), they likely function primarily to protect the ISC-niche from 
bacterial invasion and regulate microbiota composition71.  

Follicle-Associated Epithelium 
Rare FAE cells, important for epithelial-immune crosstalk, reside in small puncta throughout the 

intestines72. FAE includes microfold (M)-cells, which transport luminal antigens to immune cells residing within 
their microfolds73. M-cells have almost exclusively been explored in mice74-76 or using directed differentiation in 
vitro77, with only one study reporting scRNAseq data from healthy human intestinal M-cells17. Our dataset 
includes a cluster of 19 cells from Donor 2 enriched for M-cell markers78-80 and immune cross-talk genes (Fig. 
S10). Strikingly, several murine M-cell-specific markers were either widely expressed (MARCKSL1, ANXA5, 
CXCL16)79,81 or absent (CCL36, SCG5, TNFRSF9, CCL9, CCL6, PGLYRP1)73,79,82, suggesting species 
functional differences. With the caveat of including 19 cells from one donor, we defined 145 DEGs (Table 
S1,S2), finding many FAE-unique genes (Fig. S10). Pathway enrichment analysis implicates these DEGs in 
immune cell interactions, verifying expected M-cell function (File S3). Differences in chemokines between 
mouse and human M-cells, with CCL20 the only major shared chemokine, call for enriching for FAE using 
newly described methods72 to probe how human M-cells interact with immune cells.  

BEST4+ cells 
Recent human single-cell studies describe a novel intestinal lineage, absent in mice, expressing high 

BEST4, SPIB, and CA712, with CFTR in SI16,17 and OTOP2 in colon. Several papers describe colonic BEST4+ 
cells11,12, so we analyze SI BEST4+ cells. With BEST4+ cell functions largely unknown, DEGs were used to 
predict physiological roles (Fig. 3G). DEG analysis revealed secreted peptides including GUCA2A and 
GUCA2B12, which can act as pro-hormones effecting a satiety response83-85. A previous report showed these 
genes in SI and colon BEST4+ cells16, yet we find both expressed higher in SI than colon BEST4+ cells (Fig. 
3H), indicating a role in satiety signaling in the SI. 

We identified two unreported secreted peptides, NPY and BMP3, specifically in SI BEST4+ cells. NPY 
expression was unexpected in intestinal epithelium86, and gut BMP3 is largely studied for antitumor roles87,88. 
Diffusion pseudotime, a computational method to define single-cell differentiation trajectories89, indicated that 
NPY, GUCA2A, and GUCA2B expression increased with BEST4+ cell maturation, while BMP3 expression 
appeared independent of maturation (Fig. 3I). Interestingly, receptors for all four genes are enriched in EECs, 
suggesting cross-talk between these lineages (Fig. 3H).  

Since NPY is proposed to affect gastrointestinal (GI) motility90 and energy homeostasis91, we probed if 
NPY correlated with genes induced following meals. Looking across SI regions for each individual donor, we 
found a strong positive correlation between SI BEST4+ cell NPY and AE expression of SI (R=0.82) and APOA4 
(R=0.86), which are induced in mice by dietary sugar92 and fat93 (Fig. 3J). We found further positive 
correlations with AE genes involved in dietary metabolism (Table S3), and negligible correlation with 
housekeeping genes ACTB (R=-0.22) or GAPDH (R=-0.08). Thus, NPY expression in SI BEST4+ cells may be 
induced by luminal contents. Further DEGs from SI BEST4+ cells included adrenergic and cholinergic 
neurotransmitter receptors involved in intestinal motility94, ADRA2A and CHRM3 (Table S1), supporting that SI 
BEST4+ cells may regulate intestinal motility following meals. 

 BEST4+ cells likely absorb dietary heavy metals. Metallothionein expression has been implicated in 
colonic BEST4+ cells12, yet we find seven members of this family, known to bind heavy metals and protect 
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against toxicity95-97, specifically enriched in SI BEST4+ cells (Fig 3K). Unique expression of STEAP2, a 
metalloreductase for copper and iron98, supports a role for SI BEST4+ cells in maintaining SI homeostasis for 
many metal ions97-99. SI BEST4+ cells express endocytosis effector genes DNM1 and DNM2 (Fig. 3K), 
supporting an absorptive role for these cells. Our data indicate BEST4+ cells perform diverse roles within the 
intestinal epithelium, laying the groundwork for functional studies. 

Tuft Cells 
Tuft cells are chemosensory epithelial cells which regulate type-2 immune reactions in the intestinal 

epithelium through pathogenic metabolite detection and classical taste signal transduction pathways100-102. 
Together, these initiate tuft cell IL-25 release103-105. SI and colon tuft cells share many classical markers16,106 
(Fig. 4A, Table S1,S2). DCLK1, a key murine marker105, was not observed. Interestingly, SUCNR1, a G-protein 
coupled receptor mediating SI IL-25 release107, was negligible in colon, suggesting SI and colon tuft cells 
differentially detect and respond to luminal succinate-producing pathogens (Fig. 4B,C). Instead, colonic tuft 
cells likely respond to umami-chemosensory cues, such as microbe-derived free amino acids, as they express 
heterodimeric umami taste receptor subunits TAS1R1 and TAS1R3 (Fig. 4B,C)108. We further analyzed 
downstream taste signal transduction genes, finding SI and colon tuft cells enriched in critical pathway 
components (GNB1, GNG13, ITPR2, TRPM5)100,101, with SI-specific GNAT3, a G-protein alpha subunit, which 
likely activates PDE4D to decrease intracellular cAMP/cGMP109 (Fig. 4B). This suggests human SI tuft cells 
have varied responses to succinate-producing microbes (e.g., N. brasiliensis), whereas colonic tuft cells may 
respond more broadly to other microbial taxa.  

Beyond triggering type-2 immunity, tuft cell DEGs allow broad interaction with the adaptive and innate 
immune systems. Tuft cells express DEGs involving ubiquitin-mediated proteasome degradation, including 
SCF complex components (SKP1, CUL3, FBXO32, RBX1) which initiate processing of exogenous antigens for 
presentation110,111, as well as genes for the MHC1 antigen presentation complex (Fig. 4D). This suggests tuft 
cells may interact with the adaptive immune system following luminal stimuli. Human tuft cells also uniquely 
express previously unappreciated Toll-Like Receptors –TLR9 , TLR5, and TLR4 – which bind bacterial and 
viral DNA, bacterial flagellin, and lipopolysaccharide (LPS), respectively112-114 (Fig. 4D). Expression of the LPS 
coreceptor CD14 across tuft cells (Fig. 4D) supports a novel role in bacterial-related immune responses112.  

Tuft cells exhibit possible auto-regulatory mechanisms for these pathogen-response pathways. Tuft 
cells express heterodimeric IL-25-specific receptor components IL17RA and IL17RB (Fig. 4D) which may 
create a positive feedback loop to amplify IL-25 signaling, as in keratinocytes115. Tuft cells may also 
autoregulate their LPS response through SIGIRR, which negatively regulates TLR4-LPS signaling116-118. These 
implicate tuft cells as dynamic sentinels linking luminal contents to the immune system. 

Consistent with a role regulating gut pathogens, tuft cells produce LYZ, PRSS3, and DEFB1 
antimicrobial peptides in the SI (Fig. 3F) and six of the top ten antimicrobial peptides in the colon, without PCs 
present (Fig. 4E). Finally, human and murine tuft cells both produce neuro- and immunomodulatory 
compounds. We find genes necessary for acetylcholine synthesis (CHAT, SLC18A3/VACHT), communication 
with neurons (NCAM1)119, and enzymes involved in eicosanoid production, namely cysteinyl leukotrienes 
(ALOX5 and ALOX5AP) and Prostaglandin D2 (PTGS1 and HPGDS), which broadly regulate inflammation120 
(Fig. 4F). Altogether, these genetic analyses indicate tuft cells regulate luminal microbes, communicate with 
the nervous system, and effect systemic immune responses.  

Goblet Cells 
GCs produce membrane-bound and secreted mucin glycoproteins that lubricate the gut, act in 

signaling, support commensal bacteria, and form the protective mucus barrier103,121-123. DEGs include classical 
markers CLCA1, MUC2, and TFF3, with colon GCs expressing higher mucins (MUC5B, MUC4, MUC1) and 
the antiprotease WFDC212 (Fig. 5A). Pathway enrichment analysis of DEGs confirms GCs principally act in 
mucus secretion, with 15 of 20 top enriched pathways involved in mucus production, including glycosylation, 
Golgi/ER vesicle transport, and unfolded protein response (File S3)124-127. Thus, we mapped regional GC mucin 
expression (Fig. 5B), finding secreted MUC2 and transmembrane MUC13 expressed across all regions and 
colon-enriched MUC1, MUC4, and MUC5B. While GCs are the major mucus-secreting intestinal lineage, AE 
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and ACC express transmembrane mucins that form a glycocalyx to protect against pathogenic bacteria128,129. 
Regional mucin expression across these lineages showed high MUC13, MUC17, and MUC3A in AEs and 
several enriched in ACCs (Fig. S11), informing studies regarding mucus composition and function across GCs, 
AEs, and ACCs.  

GCs are commonly considered fairly homogenous, yet recent work in mouse colon reported 
transcriptional signatures of early GCs, crypt-resident (crGC), and inter-crypt goblet cells (icGC), with icGCs 
producing more permeable mucus than crGCs130. Human colonic secretory progenitors and GCs subclustered 
into similar groups marked by genes implicated in mouse GC heterogeneity: early GCs (STMN1, HMGB2, 
MKI67), crGCs (PDIA3, AGR2,PDIA5), and icGCs (MXD1, RAB27A, FER1L6) (Fig. 5C,F). Some canonical GC 
markers of mucus secretion (MUC2, ZG16) were expressed highest in icGCs, consistent with icGCs 
constitutively secreting mucus131. Diffusion pseudotime confirmed increasing maturity across these sup-
populations (Fig. 5D-E). Notably, crGCs expressed higher MUC5B while icGCs expressed higher MUC2, 
MUC13, MUC1, and MUC4 (Fig. S11C), consistent with distinct mucus production in human icGCs shown via 
lectin staining130. Similar sub-clusters were observed in the SI, although mucin differences were less obvious 
(Fig. S11D-F). This demonstrates human GCs are more heterogeneous than appreciated, necessitating 
studies to determine functional differences.  

Enteroendocrine Cells 
EECs secrete hormones to communicate between the intestine and the body. EEC hormone 

expression profiles are well characterized at the single-cell level in mice, since EEC reporter models enable 
enrichment of this rare lineage (<1% of intestinal epithelium)132,133. However, transcriptomic differences exist 
between mouse and human EECs132,134. An approach in human organoids with an EEC reporter gene yielded 
sufficient EECs for detailed scRNAseq analysis, though it is unclear how these cells may differ from primary 
human EECs132. While several human scRNAseq studies show EEC data11-13,16,17, our 154 EECs (Fig. 5G) 
represent the largest dataset of primary human EECs to our knowledge. 

 
First, regional expression of hormones and other signaling machinery in EECs was surveyed. We found 

SCT, CHGA, TPH1, and DDC span regions with a SI bias and GCG and PYY span regions with a colonic bias 
(Fig. 5H). GAST and GIP express in proximal SI, while TAC1, CCK, GHRL, MLN, SST, and NTS express from 
duodenum through AC/TC, and INSL5 is colon-specific. Rare NPY expression was detected in jejunum and 
AC. These results expand on an early study using immunohistochemistry in regional biopsies to find CCK, 
GAST, GIP, NTS, MLN, and SCT segregated to SI regions135. Our data confirm the SI bias but show low 
colonic expression of CCK, NTS, MLN, and SCT, demonstrating the higher sensitivity in scRNAseq. NTS and 
CCK were also absent in a study analyzing region-unspecified colon13, showing the importance of analyzing all 
colon regions. Fatty-acid receptors FFAR1 and FFAR2 were enriched in SI EECs and FFAR4 expression was 
colon-specific (Fig. 5I). The amino acid transporter SLC38A2 was well-expressed, with lower expression of 
other amino acid transporters. EECs also express several hormone receptors, indicating crosstalk amongst 
EECs. An additional form of gut-brain crosstalk was recently discovered in mice, with EECs found to form 
synapses with the vagus nerve136-138. DEGs from SI and colon EECs (Fig S1,S12A) are consistent with a 
human equivalent of these mouse EECs, termed neuropods137, with 33.7% of genes in the GOCC_Presynapse 
list expressed highest in EECs (Fig. S12B). Altogether, these patterns support roles for EECs in crosstalk 
within the gut and between the gut and brain, further illuminating their functional importance.   
 

EECs are classified into subtypes based on hormone expression139,140. A regional breakdown of 
individual EECs was constructed to visualize EEC subtypes across the gut (Fig. 5J). Enterochromaffin cells 
(TPH1, DDC, CHGA) appear in each region with fewer in colon, and ileum unexpectedly lacks L cells (GCG, 
PYY). Multiple EECs express 8-10 hormones, expanding on studies identifying poly-hormonal EECs141,142. 
Despite low numbers, GAST and GIP largely segregate from duodenal L cells yet overlap in jejunum. We note 
rare NPY expression in MLN+ and GHRL+ EECs in jejunum and AC. Future studies combining our primary 
EECs with additional datasets from various regions would improve our understanding of human EECs. 
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Absorptive Enterocytes and Colonocytes 
AEs and ACCs perform nearly all intestinal absorption143. These lineages formed multiple Leiden 

clusters, with three AE clusters and two ACC clusters consistent with increasing maturity, reflecting other 
reports11,16, and one cluster (AE2) separate from other AEs, largely from Donor 3 ileum (Fig. 1C,6B). A 
common DEG signature was defined by grouping all AEs and comparing their DEGs with all ACC DEGs. 
Surprisingly, only five DEGs were shared between organs (Fig. 6A), indicating stark organ differences. 
Interestingly, the novel AE2 population expressed mature AE markers (Fig. 6B), while uniquely expressing 
genes for bile acid uptake and processing144-146 (Fig. 6C). It is unclear why ileal AEs of Donor 3 clustered 
separately from other donors. Possible donor-specific factors contributing to this novel cluster include unique 
demographics (lowest BMI, African American, Type II diabetic) or differences in luminal contents between 
donors possibly inducing unique gene expression patterns, as described for certain genes92,93. These donor-
specific differences in transcriptomic signatures highlight the need for data from wide, diverse populations. 

Macro- and micro-nutrient handling was mapped across all AEs and ACCs (Fig. 6D). Nearly all fatty 
acid, glucose, and cholesterol transporters enriched in SI, consistent with recent work13, but regional data 
revealed an undescribed trend of increasing expression from duodenum through ileum for most genes (Fig. 
6D). Two notable exceptions were FABP1 and FABP5, both with higher colon expression. FABP1 is expected 
in the proximal SI147 and FABP5 is not implicated in healthy ACCs to our knowledge, suggesting a possible role 
for colonic fatty acid uptake. Digestive enzymes exhibited ileal enrichment except for the duodenum-specific 
serine protease TMPRSS15/Enteropeptidase148. More regional variability was seen for amino acid 
transporters, with different genes peaking from duodenum through colon. The neutral amino acid transporter 
SLC38A1 expressed in colon, in contrast to a study using colon biopsies149. Ion transporters showed the most 
regional differences, with SLC25A3 and SLC4A4 spanning all regions, colon-enriched SLC26A2, and SI-
enriched SLC9A3R1. Finally, SCNN1 sodium transporter subunits were largely enriched in colon, consistent 
with its need for regulated water uptake. This regional map of nutrient handling genes expands upon previous 
organ-level analyses, emphasizing the importance of the ileum in digestion. 

Intestinal barrier function, largely conferred by cell-junction proteins, is essential for regulated 
absorption and physical antimicrobial defense150. The 20 highest-expressed cell junction genes were regionally 
evaluated (Fig. 6E). Several junction genes expressed equally across AEs and ACCs, while others exhibited 
regional enrichment. Claudins (CLDN) are the primary determinants of tight junction barrier function and 
intestinal epithelial integrity150,151. CLDN1 and CLDN15 were SI-enriched and CLDN3, CLDN4, and CLDN7 
were highest in TC. Notably, no junction genes expressed highest in DC. This is intriguing, as ulcerative colitis 
often originates in the distal large intestine, raising the possibility that higher junction protein expression in AC 
and TC might protect against certain inflammatory conditions152-154. While our data cannot show pathological 
implications, the possibility that this differential expression pattern may protect against colitis in AC and TC is 
intriguing. 

Aquaporins (AQPs) are the major transcellular transporters of water and small solutes in the 
intestine155. Our data confirms a previous report showing elevated AQP3, AQP7, and AQP11 in ileum relative 
to colon and AQP8 elevated in colon (Fig. 6F)13, yet we find AQP1 widely expressed. Aquaglyceroporins 
(AQP3, AQP7, AQP10) increase from duodenum to ileum, coincident with increasing lipid metabolism genes 
(Fig. 6D). Viewing AQP across lineages (Fig. 6G) shows enriched aquaglyceroporins in mature AEs, defining a 
likely role for AQP-mediated glycerol transfer in AE triglyceride processing. We note unappreciated specificity 
of AQP1 expression in ISCs and TA cells across organs and uniquely restricted AQP8 expression in late ACCs 
in the AC. Diffusion pseudotime demonstrates that AQP8 is expressed in the most mature late ACCs, likely on 
the surface epithelium (Fig. 6H). Distinct expression of AQP1 and AQP8 at the crypt base and surface, 
respectively, suggests specific physiological roles that should be functionally interrogated. 

Receptors/Drugs 
We finish by examining how extrinsic signals may affect the intestinal epithelium. Two approaches were 

designed to show how associations with receptors, drug targets, and lineage states can be revealed. First, 
expression plots were compiled of major receptor families across lineages, separated into high-, intermediate-, 
and low-expressing genes for easier visualization (File S5, Table S4). The five highest-expressing genes from 
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each family were then grouped to visualize expression across lineages (Fig. 7A). Several patterns appear from 
these 60 receptors: 20 receptors are highest in tuft cells, 11 in EECs, 10 in AE/ACC, 9 in FAE; receptors bias 
towards villi (12) vs crypts (3); receptors bias toward SI (4) vs colon (0); and many uniquely express in certain 
lineages (12 in tuft, 3 in EECs, etc.), showing potential ways regions and lineages might be targeted by 
exogenous signals.  

To test the novelty of these observations, we probed receptors with unique expression in tuft cells and 
searched for literature connecting these genes to tuft cells in mice or humans. We found direct connections to 
intestinal tuft cells for only five of the 12 (TRPM5, ITPR2, HTR3E, IL13RA1, IL17RB), with no connection to 
intestinal tuft cells found for the remaining seven (GABRA4, ADGRG6/GPR126, SIGIRR, ITGB5, KIT, PTPRJ, 
TLR9). These seven newly-defined lineage-specific receptors arose from just the five highest-expressed 
receptors from each family, and our full dataset includes 669 total receptors (Fig. 7B, File S5). This receptor 
expression atlas across lineages, organs, regions, and donors provides a powerful foundation to explore how 
extrinsic signals from local epithelial microenvironments, dietary and microbial influences, and pharmaceuticals 
affect intestinal epithelial lineages. 

We explored how medicines might directly affect the intestinal epithelium. While many drugs have GI-
related side effects, few are intended to target the intestinal epithelium itself156-159, and side effects such as 
diarrhea are often unexplained at the cell-lineage level160. We searched for primary targets of all FDA-approved 
drugs and found 498 approved drugs had 232 primary gene targets expressed in our gut epithelial dataset 
(Fig. 7C, Table S5). As most of these drugs are prescribed for non-GI diseases, primary targets within the 
intestinal epithelium are likely often overlooked and may contribute to unexpected GI side effects.  

While many drugs are metabolized by the liver, oral drugs can be altered by metabolism within the gut 
epithelium157-159. We show expression of genes for Phase I and Phase II drug metabolism proteins by lineage 
with highest expression in the intestinal epithelium (Fig. 7C) and quantified gene expression by lineage and by 
region (Table S6). CES2, which metabolizes the cancer drug irinotecan into its biologically active form SN-
38161, is found to be the highest-expressed Phase I metabolism gene in the SI, with AE enrichment. 
Interestingly, UGT1A1, the Phase II gene which inactivates SN-38162, has low gut epithelial expression (Table 
S6). This suggests irinotecan might remain active in the gut, supporting the idea that orally administered 
irinotecan might be effective against intestinal cancers163-165. Our easily-searchable dataset provides 
expression values for genes important for further studies probing intestinal metabolism of endobiotics, 
environmental toxicants, and pharmaceuticals. 

As an example of a disease-focused approach, we searched for primary targets of drugs prescribed for 
inflammatory bowel disease (IBD). Most are anti-inflammatory or immunomodulatory, so primary targets are 
often not expressed in the intestinal epithelium. Our database shows nine primary gene targets of eight IBD 
drugs with epithelial expression (Fig. 7D). As many of these drugs are intended to affect immune cells, we 
mapped epithelial expression of their primary target genes to see which lineages might be inadvertently 
affected (Fig. 7E). We find high FKBP1A, a tacrolimus (Prograf®) target, in the little-understood BEST4+ cells, 
making this important to follow as their functions become better understood. Mycophenolate mofetil (CellCept®) 
targets IMPDH2 and IMPDH1 expressed in proliferative crypt populations and EECs, respectively. The 
methotrexate target DHFR is highest in TA and progenitor cells, while the tofacitinib (Embrel®) target JAK1 has 
broader expression. These drugs can be orally administered and have side effects including diarrhea, nausea, 
vomiting, or appetite loss166-168. Interrogating this small subset of drugs in our database highlights a spectrum 
of potential unintended epithelial effects on renewal by ISC or TA cells, EEC hormonal influences on appetite 
and gut motility, and unknown effects from other lineages.  

Personalized precision medicine is an emerging field motivating new technologies169. We used our 
drug-target atlas to evaluate regional variability of tacrolimus, mycophenolate mofetil, and tofacitinib target 
genes, FKBP1A, IMPDH2, and JAK1, across individual donors as an approach to inform potential patient-
dependent effects (Fig. 7F). We find higher colonic expression of all three targets, suggesting that patients may 
experience effects of drugs targeting these genes in their lower GI tract. Comparing multiple donors may hint at 
susceptibility to drug side-effects, with Donors 2 and 3 generally expressing target genes higher than Donor 1. 
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While our donor number is insufficient for statistically significant conclusions, it provides a framework to 
generate observations to inform larger studies. We hope our lineage-, regional-, and donor-specific data on 
primary drug targets will be used across gastroenterology and pharmacology to better understand how drugs 
may affect the intestinal epithelium.  

Discussion 
We use transplant organ tissue to characterize intestinal epithelial cells from duodenum through DC for 

three adult human donors, allowing us to define comprehensive lineage markers and map regional 
functionality. Our experimental design has many strengths not found in other studies. DNA-oligo hashtag 
antibodies allowed for all six regions from each donor to be sequenced together to save cost and avoid intra-
donor batch effects, then separated computationally to analyze regional differences. This allowed for 
comparing gene expression between multiple regions within SI or colon. The regional differences found 
highlight the importance of regional selection when studying the gut, yet many colonic scRNAseq studies do 
not specify sample region or mention if pooled samples are from consistent regions. We analyzed cells from 
donors with no known intestinal diseases or cancer, avoiding effects on non-inflamed adjacent tissues in 
patients with inflammatory disease9.  

Our experimental design allowed us to study many specific phenomena. Analyzing cells across six 
regions allowed us to compile comprehensive transcriptional signatures of genes significantly enriched in each 
lineage versus other lineages in all six regions and across donors. We map mucins, hormones, transporters, 
and barrier function genes across all six regions. We analyze PCs, showing drastic differences in growth factor 
expression from mouse literature and highlighting the insufficiency of LYZ for marking human PCs. We also 
analyze rare FAE cells, showing mouse/human differences and defining DEGs. We use PAGA to infer the 
differentiation trajectory for each lineage and suggest organ-specific maturation for tuft and BEST4+ cells. We 
propose novel tuft cell interactions with pathogens and the immune system. Finally, we map receptor 
expression and primary drug targets across lineages and highlight the ease of using this database to find 
previously undescribed gene expression. We hope our database serves as a resource to understand how 
drugs affect the intestinal epithelium and as guidance for future precision medicine approaches.  

 SI and colon from three male donors varying in age, race, and BMI were used in our study. Optimally, 
future studies will add regional data from diverse donors to build upon this foundation. While multiplexing six 
regions in one library prep allowed us to make a wide-ranging atlas, this approach results in limited numbers of 
each lineage analyzed per region. Our trajectory analysis suggests which lineages mature through secretory 
progenitors, yet future studies including more progenitors may provide more sensitive and high-resolution 
analyses.  

In this study, we provide a comprehensive cell-level transcriptomic view of the SI and colon epithelium 
with regional resolution across multiple humans. Our analyses independently confirm and advance prior 
studies, define important differences between mouse and human lineages, and highlight how lineages change 
along the proximal-distal axis. We include easy-to-search tables for DEGs, receptors, and drug targets that can 
be interrogated by most investigators and trainees. Overall, our database provides a foundation for 
understanding individual contributions of diverse epithelial cells across the length of the human intestine and 
colon to maintaining physiologic function. 

Figure Legends 
Figure 1: Sample Processing. A) Schematic for isolating cells from six intestinal regions for three donors and 
using hashtag antibodies to sequence regions side-by-side. B) UMAP of analyzed cells in 25 lineage clusters. 
C-E) UMAP of all cells by donor (C) or region (D,E). F-G) Heatmaps showing unique markers for major 
lineages in SI (F) and colon (G). 

Figure 2: Proliferative crypt populations. A) Heatmap of DEGs in ISCs vs. other lineages (top; red: classical 
markers), SI vs. colon ISCs (middle), colon vs. SI ISCs (bottom). B) UMAP of LGR5, OLFM4, and RARRES2 
expression. C) Venn Diagram showing overlap between murine and human ISC signatures. D) Heatmap of 
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DEGs in TA cells vs. other lineages (top), SI vs. colon TA cells (middle), colon vs. SI TA cells (bottom). E) 
Dotplot showing DEGs from SI or colon-specific lineages within organ-delineated ISCs and TA cells. F,G) 
Partition-based graph abstraction (PAGA) showing connectivity between major lineages in SI (F) and colon (G) 
to infer maturation trajectory. Line thickness represents connectivity strength. H-J) Regional cell cycle phase 
distribution in ISCs (H), TA cells (I), and secretory progenitors (J).  

Figure 3: Paneth and BEST4+ cells. A) Heatmap of DEGs in PCs vs. other lineages (red: classical markers). 
B) Dotplot showing Lysozyme across FAE, BEST4, Paneth, and tuft cells. C) Dotplot showing PC, goblet, and 
BEST4 markers. D) Dotplot showing growth factors implicated in murine PCs across SI lineages. E) Heatmap 
showing PC and ISC markers across both lineages. F) Dotplot showing 10 highest-expressed antimicrobial 
peptides across SI lineages. G) Heatmap of DEGs in BEST4+ cells vs other lineages (top; red: classical 
markers), SI vs. colon BEST4+ cells (middle), colon vs. SI BEST4+ cells (bottom). H) Dotplot showing secreted 
genes and their receptors across lineages. I) UMAPs of BEST4+ cells showing predicted diffusion pseudotime 
and expression of secreted peptides. J) Expression of NPY, SI, and APOA1 across regions by donor. K) 
Dotplot showing genes involved in metal-binding and endocytosis across lineages. 

Figure 4: Tuft Cells. A) Heatmap of DEGs in tuft cells vs. other lineages (top; red: classical markers), SI vs. 
colon tuft cells (middle), colon vs. SI tuft cells (bottom). B) Dotplot showing tuft cell enrichment of genes 
specific to taste signal transduction. C) Organ-specific signal transduction in SI vs. colon tuft cells. D) Dotplot 
showing tuft cell-enriched genes enabling interactions with innate and adaptive immune system. E) Dotplot 
showing 10 highest-expressed antimicrobial peptides across colon lineages. F) Dotplot showing tuft cell-
specific genes for producing acetylcholine, eicosanoids, and prostaglandins.  

Figure 5: Goblet and Enteroendocrine Cells. A) Heatmap of DEGs in GCs vs. other lineages (top; red: 
classical markers), SI vs. colon GCs (middle), colon vs. SI GCs (bottom). B) Dotplot showing 9 highest-
expressed mucins across GCs by region (blue: gel-forming mucins). C) Leiden sub-clustering of colon GCs. D) 
Diffusion pseudotime of colon GCs. E) UMAP of MUC2 expression in colon GCs. F) Dotplot showing mouse-
implicated markers in human colon GC subclusters. G) Heatmap of DEGs in EECs vs. other lineages (top, red: 
classical markers), SI vs. colon EECs (middle), colon vs. SI EECs (bottom). H) Dotplot of EEC regional 
hormone gene expression. I) Dotplot of EEC expression of select receptors by region. J) Heatmap showing 
hormone expression in each EEC.  

Figure 6: Absorptive cells. A) Heatmap of DEGs in absorptive cells vs. other lineages (top) AEs vs. ACCs 
(middle), ACCs vs. SI AEs (bottom). B) UMAPs showing AE2 Leiden cluster (top) and cells by region (bottom). 
C) Dotplot of classical Mature AE markers and top 10 DEGs for AE2 cluster. D) Dotplots showing regional 
expression of genes involved in digestion and absorption in all AEs and ACCs. E) Dotplots showing 20 highest-
expressed cell junction genes in AEs and ACCs by region. F) Dotplots showing regional aquaporin expression 
in AEs and ACCs. G) Aquaporin expression across lineages. H) UMAPs of late ACCs showing predicted 
diffusion pseudotime (left) and AQP8 expression (right).  

Figure 7: Extrinsic receptors and drug targets. A) Dotplot showing five highest-expressing members of 
major receptor families by lineage. B) Pie chart showing receptor genes expressed in the intestinal epithelium 
by lineage with highest expression. C) Pie chart showing primary targets of all approved drugs and Phase I 
and Phase II drug metabolism genes expressed in the intestinal epithelium by lineage with highest expression. 
D-E) Primary targets of drugs used to treat IBD by expression across lineages. Note scaling changes. F) 
Dotplot showing expression of three targets of IBD drugs across regions split by donor. 

Supplemental Figures and Files 
Figure S1: Patient characteristics and cell counts. A) Donor information. B) Cells collected per donor 
region. C) Small intestinal lineages collected per donor. D) Colonic lineages collected per donor. E) Small 
intestinal lineages per donor region. F) Colonic lineages per donor region. 

Figure S2: Tissue histology. Hemotoxylin and eosin stained tissues from each region for all three donors. All 
scale bars = 200 µm 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.05.460818doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.460818
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3: FACS strategy. FACS strategy for gating out cell fragments, likely doublets, and dead cells. ‘APC-
A’ channel is detecting AnnexinV-APC. 

Figure S4: Hashtag deconvolution.  A) Per donor hashtag noise distributions. Blue dotted lines indicate 99th 
percentile values for noise. Values above this line were called positive for a specific hashtag.  B) (left) K-
medoid clustering for each donor based only on hashtag reads. Cells positive (p<0.01) for mulitple hashtags 
are removed as likely multiplets. Cells are called as negative if they do not surpass the noise threshold for all 
hashtags, (right) k-medoid clustering with final hasthag labelling for non-multiplet cells  

Figure S5: Filtering for cell quality. Total counts, N genes, and mitochondrial gene percentages shown for 
each donor before and after filtering; (top) pre-filtering and (bottom) post filtering. 

Figure S6: Determining final lineage clusters. A) Original Leiden clustering for all cells. B) Seperating EEC 
and secretory progenitors by organ. C-E) An ITLN1-high cluster, all from SI, contains cells expressing PC 
markers (DEFA5, DEFA6, ITLN2, LYZ) along with cells expressing GC marker MUC2. (C) cluster defined by 
ITLN1 and dotplot showing expression of markes; (D) UMAP expression of PC and GC markers across all 
cells; (E) UMAP expression of PC and GC markers within the ITLN1-high cluster. F) Subclustering to define 
Paneth and goblet cells. G) Final lineage clusters used for the rest of the analyses in our study. 

Figure S7: DEG dotplots for each lineage. Dotplots showing expression of top DEGs (max: 20) for each 
lineage, as sorted by expression fold-change above the cluster with the next highest expression. DEGs 
included are genes significantly enriched in both the SI and colon (if applicable). 

Figure S8: Organ-specific lineage markers. Relating to Fig. 2E, UMAPs showing expression of DEGs from 
mature lineages found to be higher enriched in SI or colon. 

Figure S9: Additional Paneth cell data. A) Dotplot showing members of major intestinal growth factor 
families with expression in PCs across SI lineages. B) Dotplot showing expression of all Frizzled family 
receptors across SI lineages. C) Heatmap of GC markers (top), mouse-defined Paneth-Like Cell markers 
(middle), and PC markers (bottom) plotted across colon GCs, secretroy progenitors, and tuft cells. Cells in 
each lineage are sorted by increasing REG4 expression (top row of middle third) to more easily visualize 
potenital overlap of marker expression. 

Figure S10: Follicle Associated Epithelium. A) Dotplot showing expression of consrved M-cell markers and 
other genes known to interact with the immune system across lineages. Bottom third shows genes implicated 
in mouse M-cells that are not specific to human FAE. B) Dotplot showing expression of top 20 FAE DEGs 
across lineages. 

Figure S11: Additional mucin and goblet cell data. A) Dotplot showing expression of top nine expressing 
mucins across GCs and proliferative and absorptive lineages of the SI and colon. B) Dotplot showing 
expression of top 9 expressed mucins in all AE and ACC lineages by intestinal region. C) Dotplot showing 
expression of mucins in colonic intercrypt goblet cells (icGC), crypt-resident goblet cells (crGCs), and early 
goblet cells. D) (Left) Leiden subclustering of SI goblet cells, with subclusters named according to genes with 
high expression. (Middle) UMAP of SI goblet cells marked by diffusion pseudotime. (Right) UMAP of SI goblet 
cells marked by MUC2 expression. E) Dotplot showing expression of mucins in SI GC subpopulations. F) 
Dotplot showing expression of mouse-implicated markers in human SI GC subclusters. 

Figure S12: Additional EEC Data. A) Dotplot showing expression of DEGs found for SI or colon EECs that 
are present in the GOCC_Presynapse gene list. B) Pie chart showing all genes within the GOCC_Presynapse 
gene list marked by lineage in which they have highest expression (SI and colon lineages are combined when 
applicable). 

File S1: REACTOME pathway enrichment analysis for TA vs TA2 

File S2: REACTOME pathway enrichment analysis for TA2 vs TA 

File S3: REACTOME pathway enrichment analysis for FAE DEGs 
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