Abstract
Approximately 70% of Alzheimer’s disease (AD) patients have co-morbid vascular contributions to cognitive impairment and dementia (VCID); this highly prevalent overlap of dementia subtypes is known as mixed dementia (MxD). AD is more prevalent in women, while VCID is slightly more prevalent in men. Sex differences in risk factors may contribute to sex differences in dementia subtypes. Unlike metabolically healthy women, diabetic women are more likely to develop VCID than diabetic men. Prediabetes is 3x more prevalent than diabetes and is linked to earlier onset of dementia in women, but not men. How prediabetes influences underlying pathology and cognitive outcomes across different dementia subtypes is unknown. To fill this gap in knowledge, we investigated the impact of diet-induced prediabetes and biological sex on cognitive function and neuropathology in mouse models of AD and MxD. Male and female 3xTg-AD mice received a sham (AD model) or unilateral common carotid artery occlusion surgery to induce chronic cerebral hypoperfusion (MxD model). Mice were fed a control or high fat (HF; 60% fat) diet for 3 months prior to behavior assessment. In both sexes, HF diet elicited a prediabetic phenotype (impaired glucose tolerance) and weight gain. In females, but not males, metabolic consequences of a HF diet were more severe in AD or MxD mice compared to WT. In both sexes, HF-fed AD or MxD mice displayed deficits in spatial memory in the Morris water maze (MWM). In females, but not males, HF-fed AD and MxD mice also displayed impaired spatial learning in the MWM. In females, but not males, AD or MxD caused deficits in activities of daily living, regardless of diet. Astrogliosis was more severe in AD and MxD females compared to males. Further, HF diet caused greater accumulation of amyloid beta in MxD females compared to MxD males. In females, but not males, more severe glucose intolerance (prediabetes) was correlated with increased hippocampal microgliosis. In conclusion, high fat diet had a wider array of metabolic, cognitive, and neuropathological consequences in AD and MxD females compared to males. These findings shed light on potential underlying mechanisms by which prediabetes may lead to earlier dementia onset in women.
Highlights
Created a mouse model of mixed dementia (MxD) with both AD + VCID pathology.
HF diet caused greater metabolic impairment in AD and MxD females, compared to males.
AD and MxD females showed a wider array of cognitive deficits, compared to males.
Astrogliosis and Aβ pathology were more severe in AD/MxD females, compared to males.
Metabolic impairment was more consistently associated with reductions in cognitive function in females.
More severe glucose intolerance was associated with worse microgliosis in females only.
Competing Interest Statement
The authors have declared no competing interest.