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Abstract 

Background: Knowledge of the normal myocardial–myocyte orientation could theoretically allow the 

definition of relevant quantitative biomarkers in clinical routine to diagnose heart pathologies. A whole 

heart diffusion tensor template representative of the global myofiber organization over species is 

therefore crucial for comparisons across populations.  In this study, we developed a template-based and 

tractography framework to resolve the global myofiber arrangement of large mammalian hearts. To 

demonstrate the potential application of the proposed method, a novel description of sub-regions in the 

intraventricular septum is presented. 

Methods: Three explanted sheep (ovine) hearts (size ~12×8×6 cm3 , heart weight ~ 150 g ) were perfused 

with contrast agent and fixative and imaged in a 9.4T magnet. A group-wise registration of high-

resolution anatomical and diffusion-weighted images were performed to generated anatomical and 

diffusion tensor templates. Diffusion tensor metrics (eigenvalues, eigenvectors, fractional anisotropy 

…) were computed to provide a quantitative and spatially-resolved analysis of cardiac microstructure. 

Then tractography was performed using deterministic and probabilistic algorithms and used for different 

purposes: i) Visualization of myofiber architecture, ii) Segmentation of sub-area depicting the same fiber 

organization, iii) Seeding and Tract Editing. Finally, dissection was performed to confirm the existence 

of macroscopic structures identified in the diffusion tensor template. 

Results: The template creation takes advantage of high-resolution anatomical and diffusion-weighted 

images obtained at an isotropic resolution of 150 µm and 600 µm respectively, covering ventricles and 

atria and providing information on the normal myocardial architecture. The diffusion metric 

distributions from the template were found close to the one of the individual samples validating the 

registration procedure. Small new sub-regions exhibiting spatially sharp variations in fiber orientation 

close to the junctions of the septum and ventricles were identified. Each substructure was defined and 

represented using streamlines. The existence of a bundle of fibers in the posterior junction was validated 

by anatomical dissection. A complex structural organization of the anterior junction in comparison to 

the posterior junction was evidenced by the high-resolution acquisition.  

Conclusions: A new framework combining cardiac template generation and tractography was applied 

on the whole sheep heart. The framework can be used for anatomical investigation, characterization of 

microstructure and visualization of myofiber orientation across samples. Finally, a novel description of 

the ventricular junction in large mammalian hearts was proposed. 
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Background: 

Mapping cardiac microstructure is essential to understand both the mechanical and electrical 

heart functions [1, 2]. Although an active field of research, linking the organization of the cardiac 

microstructure to cardiovascular disease remains challenging. In particular, the mechanisms implicated 

in triggering and maintaining heart failure [3, 4] or arrhythmias such as persistent AF [5] and ventricular 

fibrillation [6] are largely unknown. 

Several cardiovascular imaging techniques such as micro-computed tomography (μCT) [7, 8] 

and phase-contrast CT [9-12] combined with structure tensor image (STI) analysis have demonstrated 

their ability to map the cardiac fiber organization with a spatial resolution close to 10 µm isotropic [13]. 

They can provide information on myocardial–myocyte (myofiber) orientation and the 

myolaminar/sheetlet structure orientation. However, in vivo translation of phase-contrast X-ray imaging 

is limited by radiation exposure. Alternatively, destructive techniques like histology can now be 

performed in three-dimension at 1 µm isotropic in-plane resolution [14] and allow the assessment of 

cell-type distribution.  

Cardiovascular diffusion tensor imaging (DTI) is a non-destructive method, allowing 

measurement of myocardial microstructure  both ex vivo [15, 16] and in vivo on humans [17] or animals 

models [18]. The clinical application of cardiac DTI was recently highlighted by several studies 

demonstrating how the variation of the microstructure between systole and diastole can be a marker of 

dilated cardiomyopathy [19] and hypertrophic cardiomyopathy [20]. Other in vivo studies [21, 22] have 

also demonstrated that changes in diffusion tensor metrics, such as Fractional Anisotropy (FA), and 

Apparent Diffusion Coefficient (ADC) agree with late gadolinium enhancement (LGE) imaging and can 

depict areas with myocardial infarction and tissue remodeling. Despite growing progress in the field of 

MRI pulse sequences [23-26], hardware [27] and reconstruction methods [28], clinical in vivo DTI MRI 

remains limited in spatial resolution and signal to noise ratio (SNR) by clinical field strength, and scan 

times [29]. In vivo cardiovascular DTI must also take into account combined respiratory and cardiac 

motions, and compensated for them with a dedicated acquisition scheme [23]. In contrast, ex vivo 
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cardiovascular  DTI acquisition at ultra-high field on a static cardiac sample simplifies the acquisition 

scheme and allows for enhanced SNR, spatial and/or angular resolution. It therefore offers a better image 

quality compared to clinical acquisition providing an excellent research tool for anatomical investigation 

or validation of in vivo techniques. 

Among all the ex-vivo studies using DTI, there is a large amount of evidence depicting the 

typical organization of the left ventricle (LV) myocardium characterized by the helix angle variation 

through the transmural wall [28-31]. Only a few studied describe sheetlets arrangement and fiber 

organization in both the LV and RV [30, 31]. However, in our knowledge, there is a lack of a recent and 

high-resolution description of the microstructure organization of the junctions between the free wall of 

the left and right ventricles and the intraventricular septum (IVS) in large mammalian models. A few 

decades ago, Kuribayashi and Robert [32] demonstrated the existence of abnormality of the myocardium 

at the junction associated with hypertrophic cardiomyopathy. By macroscopic inspection of tissue 

sections, the authors classified the histological characteristics of these junctions according to 

"myocardial disarray". Therefore, knowledge of normal fibers organization could be valuable for the 

identification of myocardial disarray and risk stratification [32].  

The gold-standard method in image processing for creating a baseline map sharing spatial 

information with a group of subjects/samples (for instance a structural map describing the anatomy or 

the fiber organization and an associated parcellation) is named atlas or template. Such a framework 

normalizes the individual data to a common coordinate space and promotes the comparison between 

subjects of qualitative and quantitative information with one or multiple imaging modality sharing (or 

not) the same level of resolution. Spatial normalization is widely used in neuroimaging studies for 

structural and functional studies [33-35]. In cardiac microstructure studies, ex vivo DTI atlas has been 

initially proposed in 2006 on canine heart (0.3 × 0.3 × 0.9 mm3) [36] and was applied later in human 

(2× 2× 2 mm3) [37, 38], pig [39], murine (0.043 ×  0.043 × 0.043 mm3) [40]. However, except for the 

murine study, these atlases have been created with low or anisotropic spatial resolution diffusion 

weighted (DW) images, and suffer from important voxel averaging of diffusion parameters.  

 

In this work, we develop a template-based and tractography framework allowing us to resolve 

cardiac microstructural fiber anatomy of sheep hearts. An atlas is created with 3 ex vivo female sheep 

hearts fixed with high robustness sample preparation and acquisition protocol [16]. The template 

creation takes advantage of anatomical and diffusion-weighted images acquired at 9.4 T at an isotropic 

resolution of 150 µm, 600 µm respectively providing an accurate region-based analysis of myofiber 

architecture. We also emphasize the use of tractography to depict the global myofiber organization. To 

demonstrate the potential application of the proposed atlas and tractography visualization, we provide a 
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novel description of sub-regions in the IVS and LV in which fibers present either an abrupt change in 

orientation or a notable deviation from the circular arrangement of the fibers depicted by the helix angle 

rule. The study focuses on: i) the presence of a singularity/fascicle of fibers at the junction of the 

posterior wall while noticing that the fiber arrangement mostly continues between both RV and LV wall 

and the septum. ii) the complex organization of the anterior junction where a division of the septal wall 

into the two bundles of fibers going through the aorta and pulmonary artery is visible iii)  a 

singularity/fascicle close to the anterior junction going to the papillary muscle. 

 

Methods: 

 

Sample Preparation 

 

The hearts of 4 female sheep (ovine) were explanted via sternal thoracotomy under general anesthesia, 

This protocol was approved by the Animal Research Ethics Committee in accordance with the European 

rules for animal experimentation. Three hearts were dedicated to MR experiments and one heart was 

dissected for macroscopic visualization.  As described previously [16], the three hearts (~12×8×6 cm3 , 

heart weight=150±10 g) were perfusion-fixed in 10% formaldehyde containing 2 mL of gadoterate 

meglumine, a gadolinium-based contrast agent to enhance the contrast between the myolaminae and 

cleavage planes and increase the signal-to-noise ratio. To attenuates susceptibility artifacts at the border 

of the cardiac chamber, the heart were removed from the solution and the cavity were filled with 

Fomblin, a perfuoropolyether with no 1H detectable signal when scanned using MRI. Lastly, whole 

hearts were immersed in Fomblin and sealed in a plastic container. 

 

Ex vivo anatomical and DWI acquisition. 

 

All MRI acquisitions have also been described previously in [16]. A summary is as follows: the 

experiments were performed at 9.4T (Bruker BioSpin MRI system, Ettlingen Germany) with an open 

bore access of 30 cm and a 200-mm inner diameter gradient (300 mT/m).  

 

 A 3D FLASH sequence was applied to get anatomical images of the whole heart volume, at an 

isotropic resolution of 150 μm. The total acquisition time for each heart was 30 h 50 min. The 

resulting volume is referred to as the anatomical image.  The parameters were : TE = 9  ms, TR 

= 30  ms, matrix size = 731 × 665 × 532, FOV = 110 × 100 × 80 mm, fip angle = 30°. An 

accelerator factor in phase direction of 1.91 was used.  The total acquisition time for each heart 

was 30 h 50 min. 
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 Diffusion-weighted (DW) images were acquired using a 3D diffusion-weighted spin-echo 

sequence at an isotropic resolution of 600 μm with 6 diffusion encoded directions, a single b-

value of 1000 s/mm2 and one b0 image. The parameters were :  TE = 22 ms, TR = 500 ms, FOV 

= 100 × 80 × 110  mm, matrix = 166 × 133 × 183. An accelerator factor in phase direction of 

1.8 was used. The total acquisition time for each heart was 16 h 55 min.  

 

Each dataset was reconstructed with Paravision 6.0 software (Bruker, Ettlingen, Germany) 
 

Anatomical and DW images processing for template generation 
 

The steps performed to generate the anatomical and the diffusion tensor template are detailed below and 

summarized in Fig. 1. Unless otherwise mentioned, all registration steps and template generation were 

performed with ANTs library with the default parameters [41]. Estimation of diffusion tensor and 

derived tensor maps were performed using the MRtrix3 software [42, 43]. All the processing were fully 

automatic without any input from the user with the exception of long axis alignement and ROIs and 

seeds definition. The corresponding transformations, ROIs and seed have been shared for reproducibility 

purpose (see data avaibility section).  

 

 Figure 1: Registration steps and template generation for anatomical, FA and diffusion tensor. 
The diagram drawing (A and B) summarizes the main registration steps performed to compute the 
anatomical template and diffusion tensor template from the 3 ex vivo samples. A) DW images were first 
registered on anatomical images. Then anatomical and FA images were manually aligned using ITK-
snap. Template generation was performed using the symmetric normalization transformation model 
(SyN) using anatomical and FA images. B) Individual diffusion tensors were then warped into the 

template's space and an average diffusion tensor was created.  
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A) Anatomical and FA template generation 

 

1. Conversion from Bruker to Nifti format. Anatomical and DW images 2dseq files were converted 

in Nifti format with the dicomifier library (https://dicomifier.readthedocs.io/). 

2. DW images pre-processing.  Each of the DW images series was up-sampled by a factor of 2 

using trilinear interpolation to reach a voxel size of 0.3×0.3×0.3 mm3. A denoising was 

performed using the MP-PCA method [44]. Finally, a B1 inhomogeneity field correction was 

applied with ITK-N4 [45]. 

3. Diffusion tensor imaging estimation. Diffusion tensor calculations were performed prior any 

registration to avoid difficult transformation of the diffusion encoding matrix. Diffusion tensor 

maps (eigenvalues: λ1, λ2, λ3, ADC, FA , and color-coded FA (cFA) also known as Red-Green-

Blue colormap) were obtained with MRtrix3. The first diffusion tensor eigenvector v1 

corresponds to myofiber's main orientation [46, 47]. The second v2 and third v3 eigenvectors 

were associated with sheetlet in-plane and normal directions, respectively.  

4. Estimation of the cardiac mask. A binary mask was created and applied on both anatomical and 

DW images to segment myocardial tissue from regions with hypersintense signal corresponding 

to residual formaldehyde. Low and high cutoff thresholds were applied on the FA, trace, and 

DW images to define the binary mask as described previously in [16]. 

5. Co-registration of DW images on anatomical images. Anatomical and DW images were not 

always acquired during the same session because of the long scan time and scanner availability. 

Therefore, alignment of each DW image on its respective anatomical images was needed and 

performed using Affine Registration using ANTs. A B1 homogeneity using ITK-N4 was also 

performed on anatomical images before the co-registration. Finally, FA maps were mapped to 

the space of the anatomical image as shown in Fig. 1A.   

6. Rigid Alignment of the anatomical and FA images. Images of each sample (Anatomical and 

FA) were registered manually with ITK-snap [48] to align the long axis of the LV to the Z-axis 

of each volume and hence, obtain a similar alignment among hearts. 

7. Template generation. The template generation [33], from coarse resolution to the final 

resolution, was performed iteratively with 4 levels of resolution (1 mm, 0.6 mm, 0.3 mm, 

0.15 mm). Anatomical and FA images were used jointly using the following modality weights 

1 × 0.5 respectively.  

 

 At each level, the templates generated from the previous level were resampled to the current 

resolution and used as input to guide the current template creation using the standard script 

‘antsMultivariateTemplateConstruction2.sh’ with the symmetric normalization 

transformation model (SyN) [49].  
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 For the first level (1 mm), the initialization sequence of template creation was similar to the 

one published in [50]. 

 

The same iterative strategy was performed to generate additional templates using only rigid 

transformation and affine transformation for comparison (Fig. 2-3). After this step, the set of forward 

(or inverse) transformations for moving from individual subject's space (also known as native space) to 

template space (or the inverse) were obtained.  

 

B) Diffusion tensor template generation 

 

1. Mapping of individual diffusion tensor images to the template space. Individual diffusion tensor 

images were warped in the template space. This process includes both registration of the voxel 

at the new location and reorientation of the tensor via the ‘antsRegistration’ and 

‘ReorientTensorImage’ command of ANTs. Preservation of eigenvector orientations related to 

the reorientation of the sample from the native space to the template space was carefully checked 

during all processing steps. 

2. Diffusion tensor template generation and computation of derived maps. The transformed 

diffusion tensors were averaged via the AverageTensorImages’ of ANTs to create the diffusion 

tensor template. Diffusion tensor maps were computed as described in the previous section A.3. 

 

Tractography processing 

 

Tractography was used for different purposes: i) Visualization of fibers organization, ii) Segmentation 

of sub-area depicting the same fiber organization, iii) Seeding and Tract Editing. All the tractography 

steps described in this section were performed with MRtrix3 [42]. For each application, different 

algorithms were tested: 

 The deterministic tracking algorithm FACT [51] where streamline trajectory is determined by 

the principal eigenvector of the diffusion tensor.  

 Tensor_Det [52], a deterministic approach with intra-voxel interpolation denoted here as DET. 

 Tensor_Prob [53],  a probabilistic algorithm with intra-voxel interpolation denoted here as 

PROB. 

 

Unless specified, we defined the tractography parameters as an FA-stopping threshold of 0.1, a 

maximum angle between steps of 60 degrees, a step size of 0.05 mm, a maximum length of 40 mm, a 

minimum length value of 1 mm. 
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Streamlines generated by FACT can be computed in the native space using the primary eigenvector of 

the individual diffusion tensors or in the template space using the primary eigenvector of the average 

diffusion tensor. The average diffusion tensor is depicting an averaged myofiber organization across 

samples. Streamlines generated by DET and PROB needed to be computed in the native space and 

warped in the template space to ease the comparison. Seeding ROI and tract filtering region of 

exclusion/inclusion were manually drawn in the template space and warped to the native space. 

 

Tractography was performed on the posterior singularity with the three mentioned algorithms with 

varying parameters: max. length: 10 mm, 20 mm, 40 mm, 60 mm, angle:  15°, 30°, 45°, 60°, FA-stopping 

threshold  0.1, 0.15, 0.2, 0.25, step size 0.01 mm, 0.05 mm, 0.1 mm, 0.2 mm.  

 

In the anterior and posterior junction, four cylindrical seeding regions (R1, R2, R3, R4) were manually 

drawn at the LV/RV junction in the apex, mid-ventricular and base area. Based on the location of the 

region of interest (ROI) three pathways were arbitrarily defined to study the fiber organization at the 

junction: pathway A (from ROI R1 to R2) was the pathway inside the free wall of the RV. Pathway B 

(from ROI R1 to R2 to R3) described a pathway from the RV to the beginning of the free wall of the 

LV while pathway C (from ROI R1 to R2 to R4) described a pathway from the RV to the IVS. For each 

pathway, streamlines were computed and filtered by identifying tracts that pass through all the 

corresponding ROIs. For each tracking algorithm tested, the resulting number of streamlines were 

counted.  

 

Dissection study and macroscopic anatomy visualization. 

 

The heart dedicated to macroscopic examination was dissected as follows.  

 The LV, RV and then the IVS were transected from base to apex to remove the anterior part of 

the heart and isolate the posterior wall of the heart. 

 Transverse (short-axis) cuts of the sample were performed progressively from base-ventricular 

level to mid-ventricular level. 

 A coronal cut (long axis) was performed on line ranging from the RV cavities to the LV posterior 

wall going through the suspected region. 

 

Photos were taken with a Canon PowerShot SX710 HS and a Samsung Galaxy SM-G960F with the 

surgical light of the operating room. Rigid registration was manually performed using ITK-snap to align 

photography on anatomical images.  

 

Results: 
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Figure 2 shows sagittal, coronal and transverse views of the anatomical and FA templates with different 

transformation models used during the template creation. The template includes not only the ventricles 

but also the basal parts of the heart, including the valve, atria, the aorta or the pulmonary artery. 

Misregistration areas were more visible with rigid or affine transformations than with the SyN 

transformation model. Several differences are evident through visual inspection: (i) a sharper definition 

of the myocardial wall (Fig. 2, Fig. 3A-F); (ii) an enhanced definition of the division of the His bundle 

in left and right bundles (Fig. 3B); (iii) a more accurate delineation of the leaflets of the tricuspid valve 

(Fig. 3B, 3E, 3F). Consistently misregistered areas using the SyN transformation model were noticeable 

in the basal part (Fig. 2) and for most of the small or large vessels (Fig. 3E) going through the 

myocardium or around (like the coronary sinus) due to the variability of the vessel locations.  
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Figure 2: Impact of the transformation model during the registration on anatomical and FA 
template. Sagittal coronal and transverse view of anatomical (left) and FA (right) template using Rigid 

(top row), Affine (middle Row), SyN (bottom row). Mis-registration areas using Rigid or Affine 

transform are visible in the basal part of the sample, at the apex or on the papillary muscle. 
 

 
     
Figure 3: Impact of the transformation model during the registration on the anatomical template 

in five different regions of the anatomical template. Zoom-view in the interventricular septum (A), 
near the division of the His bundle in left and right bundles (B), in the RV wall (C), in the posterior 
papillary muscle of the LV (D) and on the anterior leaflet of the tricuspid valve (TV) (E and F) using 
Rigid (top row), Affine (middle Row), SyN (bottom row) transformation model, The misregistration 
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areas visible using Rigid and Affine transformation are less pronounced using Syn for the large or small 
structures like the conduction system (yellow arrow) or the leaflets of the valve (orange arrows).  
 

Supplementary Fig. 1A shows the diffusion metric distributions for the three individual diffusion tensors 

and the averaged diffusion tensor. All the voxels of the left ventricle are included. The mean FA is at 

0.28 ± 0.08, 0.25 ± 0.07, 0.27 ± 0.9 and 0.25 ± 0.06 for sample #1, #2, #3 and averaged diffusion tensor 

respectively. The mean ADC values for sample #1, #2, #3 and averaged tensor were 8.76 ± 1.32, 9.32 ± 

1.21, 9.37 ± 1.53 and 8.76 ± 1.32 (x10−4) mm2/s respectively. The mean first eigenvalues (λ1) computed 

values for sample #1, #2, #3 and averaged tensor were = 11.43 ± 1.28, 11.88 ± 1.2, 12.1  ± 1.45 and 

11.38 ± 0.97 (×10−4) mm2/s.  

 

cFA maps overlaid on anatomical data are provided in five Supplementary movies 2A-E (for each 

sample #1, #2, #3, on the average diffusion tensor images, and all together, respectively). All datasets 

were warped in a template space to ease the comparison. In the short-axis view, the blue color indicates 

that fiber orientation in the papillary muscle or in the IVS is parallel to the long axis on the heart. On 

the other hand, green and red colors indicate the orientation of the fibers in the short axis plane in 

Anterior-Posterior (AP) or Left-Right (LR) orientation respectively. While a smooth gradient of color 

from green to red (or vice versa) indicates a normal arrangement of the cardiac myofibers, the existence 

of small sub-regions in the LV indicates either a rapid change in orientation or apparent boundaries. 

Especially: fiber arrangements in Inferior-Superior (IS) orientation are visible: i) from the basal area to 

the mid-ventricular level close to the papillary muscle, ii) at the intersection of the LV and RV from the 

basal area to mid-ventricular level, iii) in the basal area of the IVS, divided into two bundles of fibers 

that go on the one hand to the pulmonary artery and on the other hand to the aorta.  
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Figure 4: Visualization of the posterior LV/RV junction in the basal area using anatomical, FA 
and diffusion tensor templates in sagittal, coronal and transverse view. (A) Large view of the 

anatomical template (B) zoom-view of the anatomical template on the posterior LV/RV junction in the 

basal area from the white boxes in (A). Myocardium with different grey levels and epicardial fat are 
visible. (C) zoom-view of the FA template. Lower fractional anisotropy value is noticeable. (D) zoom-
view of the cFA maps overlaid on anatomical data. Smooth transition of fiber orientation is visible 
(gradient of green to purple) in the endocardial part of the LV while fiber orientation changes abruptly 
between adjacent voxels in the IVS and in the middle of the LV/RV junction (yellow arrow) depicting 

a triangular shape in the coronal view. (E) zoom-view of the tractography with the color-coding of the 

cFA maps (D). Note the presence of a channel or fascicles of streamlines going from the RV to the IVS 
(in green).  
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To further investigate the existence of abrupt changes in orientation, we first focused our analysis on the 

posterior wall. Fig. 4A-C displays coronal, sagittal and transverse views of the anatomical and FA 

templates at the junction of the RV, LV and IVS in the basal area. Fiber orientation can be visually 

identified on the anatomical template images due to 150 µm resolution and the T2* contrast. A brighter 

image intensity is noticeable in the layer of the IVS close to the RV and at the junction of the ventricles. 

The FA derived from the diffusion tensor template is relatively homogeneous except for two regions 

with lower values. They are i) a line dividing the IVS into two areas and ii) a triangle located at the 

junction. Fig. 4D displays the cFA maps and Fig. 4E displays the streamlines with the anatomical image 

as background. Smooth transitions of fiber orientation are visible (color gradient of green to purple) in 

the endocardial part of the LV while fiber orientation changes abruptly between adjacent voxels in the 

IVS and in the middle of the LV/RV junction (blue) depicting a triangular shape in the coronal view. 

The triangular shape will be denoted as the posterior singularity in the rest of the article. Note the 

presence of a channel or fascicles of fibers going from the RV to the IVS (in green). 

 

 
Figure 5: Streamlines of the posterior singularity with different tracking techniques on template 

and individual diffusion tensors. For each representation, the anatomical template is inserted for 
reference. Top)  Streamlines were computed using a masking region of interest and the FACT algorithm 
on the primary eigenvector of the average tensor in template space and displayed in coronal (A) and 
sagittal view (B). Down) A different tracking technique is shown. Few seeds were manually defined, 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.05.463112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463112
http://creativecommons.org/licenses/by-nc-nd/4.0/


then streamlines were generated for sample #1 (C), #2 (D), #3 (E) using the Tensor_Det algorithm on 
each individual tensor in native space and warped into template space without ROI restriction.  
 

 

Fig. 5A and 5B display a coronal and sagittal view of the heart respectively. To give an overview of the 

size of the fiber arrangement, a masking region of interest was semi-automatically defined to display 

the posterior singularity independently of the surrounding structures. As a consequence, streamlines 

leaving the ROI were cut in the representation. It represents a volume of 1135 mm3 and a surface of 845 

mm2. Different tracking techniques and representations are shown for each individual diffusion tensor 

in Fig. 5C-E. Here, few seeds are manually defined, then fiber tractography streamlines are computed 

without any ROI restriction. The resulting fiber arrangement of each individual sample presents a base-

apex orientation and is progressively continuing within the RV and LV. Supplementary Fig. 3 shows 

the tractograms obtained with different tuning parameters and the three tracking algorithms (FACT, 

DET, PROB). Streamline termination was defined either by the cutoff parameter or forced by the max 

length parameter. A maximum angle defined between 15 and 60° resulted in plausible streamlines. All 

representations confirm the apex-base orientation of the posterior singularity while the parameters 

influence the potential connectivity with the surrounding structure. 

 

 
Figure 6: Macroscopic structural organization of the posterior junction. A) Anatomical Transversal 
image of sheep heart #2 of the posterior junction closed to the base-ventricular level. B) Photography of 

the dissected heart #4. Corresponding view using anatomical images from sample #2 after rigid 

registration. C) Overlay of A) over B). D) Another transversal view of the posterior junction. A coronal 
cut was performed on a line (yellow line) ranging from the RV cavities to the LV posterior wall going 
through the suspected region. E to I) Visualization of the structural organization is presented by slightly 
rotating the sample while the surgical light highlights the macroscopic structural organization. J) 
Tractography in short axis view taken from sample #2 in a selected slice in the basal area K) 
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Tractography in a long-axis view corresponding to the plane drawn by the yellow line. L) Another 
picture was taken in a long-axis view. Original photo are available to the reviewers.   
 

Anatomical images of the IVS and the picture of the dissected sample are shown in transversal 

orientation in Fig. 6A and Fig. 6B, respectively. An overlay of both images is shown in Fig. 6C after 

rigid registration and shows an acceptable agreement by visual inspection. The coronal cut in the 

posterior area is indicated by a yellow line ranging from the RV cavities to the LV in Fig. 6D. A section 

of the dissected sample is presented using five pictures for which the sample has been slightly rotated 

(Fig. 6E-I). Images reveal macroscopic features depicting the fiber orientation changes and support the 

evidence of edges. As a comparison, streamlines are displayed in short axis and long axis orientation in 

Fig. 6J and 6K respectively. The fiber orientation display between Fig. 6K and Fig. 6G or 6L shows 

similar fiber orientation.  

 

 
 
Figure 7: Tractography of the anterior junction. A) and B) zoom-view of the cFA maps of sample 

#1 in the anterior junction in the basal area in transversal and sagittal orientation, respectively. Three 
regions of interest are identified: a fascicle of streamlines coming from the IVS splits into two branches 
going on one side to the wall of the pulmonary artery (purple arrow) and, on the other side to the wall 
of the aorta (yellow arrow). The third fascicle of streamlines, located in the LV, goes from the aorta to 
the papillary muscles (pink arrow). C & D) 3D rendered image of the anatomical template with the 
superimposed mesh of the PA (white) and the AO (grey) Note that the volume was flipped and this 

orientation was kept for all following representations. E,F,G,H) For each region, seeds were manually 

defined, then streamlines were computed using the template diffusion tensor without ROI restriction.  
 

Fig. 7A-B displays the cFA maps of the anterior junction close to the base in axial and sagittal views. 

The white dash line indicates the plane of the sagittal view. A smooth transition of fiber orientation is 

visible in the LV and the endocardium part of the IVS (with a gradient of green to purple). In the 

epicardium part of the IVS, we observed a division of the fibers inside the IVS into the two bundles of 

fibers going through the aorta (yellow arrow) and the pulmonary artery (purple arrow). The third fascicle 

of fibers (in pink) located close to the endocardium in the LV was also noticeable with an orientation 
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differing from the surrounding structures. For each mentioned area, streamlines were computed using 

seeds on the averaged diffusion tensor with the FACT algorithm. To facilitate the rendering, the sample 

is flipped and the wall of the pulmonary artery and the aorta is manually segmented and plotted as a 

surface mesh in Fig. 7C-H. Tractography shows a continuity between the IVS and the wall of the 

pulmonary artery (in green Fig. 7F, I), a continuity between the IVS and the wall of the aorta (in green 

Fig. 7G, I) and the existence of fibers that split into two branches: one going to the papillary muscle, the 

other surrounding the top part of the LV (in red Fig. 7H,I). Some streamlines going from PA to the LV 

and from AO to the RV (yellow arrows) are also found close to the epicardium of the ventricles.  

 

 
Figure 8: Tractography of the junction obtained with a seeding performed in the mid-ventricular 

area.  Left windows: four cylindrical ROIs: R1 (red), R2 (yellow), R3 (light yellow), R4 (white) were 
manually defined at the LV/RV junction in the basal area for the anterior (top) and posterior (down) 

junction. Three arbitrary pathways: A (from ROI R1 to R2) B (from ROI R1 to R2 to R3) C (from ROI 
R1 to R2 to R4) were also defined as input for computing the streamlines. ROIs and pathways were 
overlaid on anatomical template images. The other windows correspond to resulting streamlines in 3D 
view for each pathway.  Anterior (Top) Streamlines split into two output tracts. The fascicle of 

streamlines going to the IVS leaves the image plane and goes to the wall of the pulmonary artery as 
described in Figure 6.  Pathway (B) and (C) were found connecting. Posterior (Down) Streamlines split 

into two output tracks located in the IVS, in the free wall (A) but do not cross the posterior singularity. 
Pathways (B) and (C) were found connecting. 
 

To illustrate the added value of the seed-based tractography and analyze the global myofiber 

architecture, three arbitrary pathways of fibers are defined in the anterior and posterior junctions in the 

mid-ventricular area. The resulting streamlines for sample #1 are proposed in Fig. 8 in 3D rendering 

views. In the posterior wall (down), the connection of fibers originating from the RV into the LV free 

wall and the IVS is detectable (note that the unidirectional direction is arbitrary) (pathway A). Existing 

pathways (B) and (C) were found connecting. In the anterior wall (top), streamlines split into two output 

tracks but the fascicle of fibers in the IVS leaves the image plane and goes to the wall of the pulmonary 

artery as described in Fig. 7. Existing pathways (B) and (C) are found but with a predominant direction 

toward the free wall. The corresponding results in the basal area are shown in Supplementary Fig. 4. In 

the posterior wall (down), streamlines split into multiple output tracks located either in the IVS, in the 
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junction or the free wall (pathway A). Existing pathways (B) and (C) are found connecting. On the 

contrary, in the anterior wall (top), the connection of fiber originating from the RV into the LV free wall 

is limited to output tracks located on the epicardium surface of the sample and the pathway (C) is not 

found.  

 

 
 

Table 1: Global myofiber architecture of the junction using seed-based tractography. Influence of 
the tracking algorithms. Streamlines count as a percentage for the 3 samples in apex, mid-ventricular, 
base areas for the 3 different tracking algorithms. The ratio is defined as the number of resulting 
streamlines over the total number of requested streamlines.  
 

 

Table 1 summarizes the streamline frequency percentages for the 3 samples in apex, mid-ventricular, 

base areas for the three tracking algorithms. The ratios are all equal to 100 % for pathway A and close 

to 100% for pathway B except for the posterior basal area (69.2%, 2.1%, 62.3% using the DET algorithm 

for samples #1,#2,#3 respectively) and the anterior apex area (100%, 32.1%, 2.6% using the DET 

algorithm for sample #1,#2,#3 respectively). For pathway C, the ratios are close to 0% in the anterior 

junction (red square) and range 0% from 100% in the posterior junction (green square). The DET and 

PROB algorithms gave approximately the same ratio, the use of the FACT algorithm tends to decrease 

the ratio by a factor of 2 or more. Variability over samples is noticeable for pathway B in the posterior 

mid area and the anterior apex area and for pathway C in the posterior basal and apex area. The 

corresponding ratio are 100%, 2.4%, 100% and 13.6% 0% 97.1% for sample #1, #2, #3. 

 

Discussion:       

 

Using anatomical and DW images, we proposed a new framework combining atlas creation and 

tractography to characterize the cardiac microstructure of ex-vivo sheep hearts. We first built a 150 µm 

isotropic anatomical template and a 300 µm isotropic voxel size FA template. Assessment of the 

accuracy of inter-subject spatial normalization was done qualitatively by visual inspection. Although 

misregistration of vessels was visible in different areas of the myocardium, the proposed pyramidal 

approach to template creation resulted in excellent anatomical consistency. This result must be balanced 
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by the low number of datasets which may reduce the inter-subject variability. For comparison, the first 

atlas of the human heart was built with 10 hearts [37] and recently an atlas of pig heart was built with 8 

hearts [39]. The main novelties of the proposed template were to cover both ventricles, the atria, and a 

fraction of the arteries at an unprecedented spatial resolution of 600 µm isotropic for the DTI acquisition. 

The diffusion metric distributions were found close to the individual sample (Supplementary Fig. 1) and 

agree with prior studies on other species [36, 40] ensuring that the proposed DTI template creation 

framework preserves the quantitative DTI metrics.  

 

As shown in Fig. 4, spatial variation of the FA was observed in individual and averaged diffusion 

tensors. This could indicate i) intra-voxel variability with an abrupt change of fiber orientation within 

the voxel leading to reduced anisotropy (in the mid-wall of the septum) ii) the presence of inter-subject 

anatomy variability (close the edge of the posterior singularity in the averaged diffusion tensor) iii) the 

potential existence of registration errors at the voxel scale. A combination of all three scenarios is also 

likely probable.   

 

The study emphasizes the use of tractography to depict the cardiac fiber organization. This approach is 

commonly used in neurosciences to study brain connectivity [54-56]. Except for the studies mentioned 

by Sosnovik et al  [57], its use in cardiac diffusion remains marginal and focuses mostly on whole heart 

tractography for visualization purposes. It is important to highlight that there is an order of magnitude 

between the size of cardiomyocytes (around 120 µm × 40 μm in diameter [58])  and both the minimum 

length of the computed streamline (1 mm) and also the voxel size of the reconstructed image (300 × 300 

× 300 µm3). In this work, the streamlines were used to give an insight of the myofiber architecture, 

Figures 5-7 show how this 3D representation depicts both the local variation of the fiber orientation but 

also the continuity of the fiber in the surrounding area. The continuity is dependent on the DW analysis 

methods, the tracking algorithms and the input parameters [59]. In this study, comparison of diffusion-

weighting techniques was not possible due to the unique b-value and the acquisition of 6 diffusion 

directions. We compared only the use of three different tracking algorithms. The angle parameter of 60° 

was found to be a maximum to maintain the physical behavior of the fiber (an angle of 90° or more 

results in undulating streamlines). The cut-off parameter was set to 0.1 to maximize connectivity as 

shown in Supplementary Fig. 3. The max length parameter was easier to set either depending on the 

expected size of the object or the desired rendering. Pitfalls of tractography techniques are numerous 

[60] and have been raised in many studies even with state-of-the-art algorithms [54, 61]. Nevertheless, 

investigation of the spatial continuity was found difficult using only a visual assessment of the 

eigenvectors on 2D slices or with a Multiplanar reformation or reconstruction (MPR) viewer. 

 

In our work, the first limitation is the low angular resolution of the DW dataset. A larger number of 

diffusion directions is recommended for a better estimation of the diffusion tensor [62]. Recent ex vivo 
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cardiac studies reported a number of gradient directions from 7 [63], 30 [64], 32 [65] to 61 [63]. 

Nevertheless, as demonstrated in [63], the trade-off between signal-to-noise ratio and angular resolution 

are not the only parameters to take into account. The heterogeneity of diffusion directions is better 

depicted using a high spatial resolution and without voxel anisotropy limiting the voxel averaging of the 

DTI metrics. By focusing on the spatial resolution and SNR, the proposed approach excludes the 

acquisition of high angular sampling of the Q-space in regard to the long scan time and prevents from 

applying more advanced diffusion characterization models like q-ball imaging (QBI) or diffusion 

spectrum magnetic resonance imaging (DSI).  

 

The second limitation is the tensor model that constrains the fiber orientation to one unique direction 

per voxel. DSI tractography could provide a more realistic representation of the myofiber architecture 

[57]. The democratization of undersampled acquisition [28] in pre-clinical settings could also be a 

potential solution to increase the angular resolution while limiting the scan time.  

  

To demonstrate the added value of the tractography, the structural organization of the anterior and 

posterior junction was characterized. The study focuses on one fiber-bundle in the posterior junction 

and three fiber-bundles in the anterior junction. Tractography in a selected ROI was useful to visualize 

the spatial coverage of the region independently of the surrounding environment (Fig. 5A). Tractography 

with a specific region seeding (eg. the user manually delineates only a small ROI in the fiber bundle) was 

useful to display the fiber organization without apriori knowledge of the global myofiber arrangement   

(Fig. 5C-E, Fig. 7E-H). In the last part of the study (Fig. 8 and Supplementary Fig. 4), generated 

streamlines were constrained by a user rule and must traverse all specified ROIs to be included in the 

final tractogram. The ROI was defined on both sides of the junction at three different levels of the 

ventricle (apex, mid, base). Note that the tested rule did allow crossing pathways between levels and 

represent a fraction of the structural organization. We then analyzed qualitatively and quantitatively the 

number of generated streamlines that respect a user rule. A ratio of 100% indicating that all requested 

streamlines have been generated by the tracking algorithms. Therefore the resulting value is not only 

dependent on the tracking parameters but also on the request number of streamlines. In all cases, the 

ratios were found inferior for pathway C for all areas but remained close to 100 % in the posterior 

junction for the base and mid-ventricular level while values were close to 0 % in the anterior junction 

indicating the absence of connectivity.  

 

Finally, the spatial resolution of 0.6 mm isotropic, and the acceptable inter-variability over subject, 

enabled the identification of fibers in the IVS and LV that present either a rapid change in orientation or 

some deviation or a notable deviation from the circular arrangement of the fiber depicted by the helix 

angle rule. At first glance, we noticed a more complex structural organization of the anterior junction in 

comparison to the posterior junction. The global myofiber organization was found closely linked to the 
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surrounding structure including the pulmonary and the aorta. The “Y” pattern, depicted in Fig. 7B, is 

also associated with the location of the anterior-septal perforator arteries recently mentioned in [66]. 

Finally, visual inspection and streamline connectivity of the anterior junction suggest that most fibers 

end in the anterior wall while a strong connectivity fiber is visible in the posterior wall. Indeed, a 

smoother transition of fiber orientation was noticed in the posterior wall (gradient of green to purple in 

Fig. 4) in the endocardial part of the LV while fiber orientation changes abruptly between adjacent 

voxels in the IVS in agreement with [67] and the middle of the LV/RV junction (blue in Fig. 4) depicting 

a triangular shape in the coronal view. We found no reference and possible comparison in the literature 

regarding the global myofiber organization in this region. The macroscopic size (1 cm3 volume ) of this 

substructure suggests that experimental observation of the myofiber orientation could be seen by eye 

without magnification. We proceeded to a dissection of the heart of another animal that confirmed the 

presence of this substructure.  

 

Mechanical and functional aspects are not discussed in the paper but the individual DW images, 

diffusion tensors, averaged diffusion tensors of the junction are already available in the Zenodo platform 

and delivered with bash script for computing the diffusion tensor maps and the streamlines. The 

conversion of the eigenvectors to CSV format for mesh generation and integration into EP/mechanical 

models is also possible (see Data availability section). 

 

Conclusion: 

 

Demonstrating that the myocardial–myocyte orientation or myolaminar/sheetlet structure changes are 

correlated with a pathology could theoretically allow the definition of relevant quantitative markers in 

clinical routine to diagnose heart pathologies. A whole heart diffusion tensor template representative of 

the global myofiber organization over species is therefore crucial for comparisons across populations. 

In this paper, we proposed a new framework combining template creation and tractography to 

characterize the cardiac microstructure of three ex vivo sheep hearts and demonstrate the potential 

application by providing a novel description of the ventricular junction. 

 

List of abbreviations: 

 

MRI Magnetic resonance imaging 

DTI Diffusion tensor imaging 

FLASH Fast low angle shot 

FA Fractional anisotropy 

DWI Diffusion Weighted imaging 

SNR Signal-to-noise ratio 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.05.463112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463112
http://creativecommons.org/licenses/by-nc-nd/4.0/


ADC Apparent Diffusion Coefficient 

cFA color coded FA 

ROI Region of interest 

LV Left ventricle 

RV Right ventricle 

IVS intraventricular septum 

PA pulmonary artery 

AO aorta 

TV tricuspid valve 

HA Helix angle 
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