Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of enhancers

View ORCID ProfileBernardo P. de Almeida, Franziska Reiter, Michaela Pagani, View ORCID ProfileAlexander Stark
doi: https://doi.org/10.1101/2021.10.05.463203
Bernardo P. de Almeida
1Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
2Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bernardo P. de Almeida
Franziska Reiter
1Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
2Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michaela Pagani
1Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexander Stark
1Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
3Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alexander Stark
  • For correspondence: stark@starklab.org
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading
  • https://github.com/bernardo-de-almeida/DeepSTARR

  • https://doi.org/10.5281/zenodo.5502060

Back to top
PreviousNext
Posted October 07, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of enhancers
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of enhancers
Bernardo P. de Almeida, Franziska Reiter, Michaela Pagani, Alexander Stark
bioRxiv 2021.10.05.463203; doi: https://doi.org/10.1101/2021.10.05.463203
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of enhancers
Bernardo P. de Almeida, Franziska Reiter, Michaela Pagani, Alexander Stark
bioRxiv 2021.10.05.463203; doi: https://doi.org/10.1101/2021.10.05.463203

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4241)
  • Biochemistry (9173)
  • Bioengineering (6806)
  • Bioinformatics (24064)
  • Biophysics (12155)
  • Cancer Biology (9565)
  • Cell Biology (13825)
  • Clinical Trials (138)
  • Developmental Biology (7658)
  • Ecology (11737)
  • Epidemiology (2066)
  • Evolutionary Biology (15543)
  • Genetics (10672)
  • Genomics (14360)
  • Immunology (9512)
  • Microbiology (22903)
  • Molecular Biology (9129)
  • Neuroscience (49115)
  • Paleontology (357)
  • Pathology (1487)
  • Pharmacology and Toxicology (2583)
  • Physiology (3851)
  • Plant Biology (8351)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2301)
  • Systems Biology (6205)
  • Zoology (1302)