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Abstract	
Enhancer	 sequences	 control	 gene	 expression	 and	 comprise	 binding	 sites	 (motifs)	 for	

different	 transcription	 factors	 (TFs).	 Despite	 extensive	 genetic	 and	 computational	

studies,	 the	 relationship	 between	 DNA	 sequence	 and	 regulatory	 activity	 is	 poorly	

understood	and	enhancer	de	novo	design	is	considered	impossible.	Here	we	built	a	deep	

learning	 model,	 DeepSTARR,	 to	 quantitatively	 predict	 the	 activities	 of	 thousands	 of	

developmental	and	housekeeping	enhancers	directly	from	DNA	sequence	in	Drosophila	

melanogaster	 S2	 cells.	 The	model	 learned	 relevant	 TF	motifs	 and	 higher-order	 syntax	

rules,	 including	 functionally	 non-equivalent	 instances	 of	 the	 same	 TF	 motif	 that	 are	

determined	 by	motif-flanking	 sequence	 and	 inter-motif	 distances.	We	 validated	 these	

rules	experimentally	and	demonstrated	their	conservation	in	human	by	testing	more	than	

40,000	wildtype	and	mutant	Drosophila	and	human	enhancers.	Finally,	we	designed	and	

functionally	validated	synthetic	enhancers	with	desired	activities	de	novo.	 	
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Enhancers1	are	genomic	elements	that	regulate	the	cell	type-specific	transcription	

of	target	genes,	thereby	controlling	animal	development	and	physiology2.	A	characteristic	

feature	of	enhancers	 is	 their	ability	 to	activate	 transcription	outside	 their	endogenous	

genomic	 contexts3,	which	 suggests	 that	 all	 the	necessary	 cis-regulatory	 information	 is	

contained	within	the	enhancers’	DNA	sequences.	Indeed,	enhancer	sequence	mutations	

can	drastically	alter	enhancer	function	and	are	associated	with	developmental	defects2,	

morphological	evolution4,	and	human	disease5.		

Enhancers	 typically	 contain	multiple	 sequence	motifs	 that	 are	 binding	 sites	 for	

sequence-specific	 transcription	 factors	 (TFs)6.	 Understanding	 how	 motifs	 and	 their	

arrangements	(i.e.	their	number,	order,	orientation	and	spacing	–	termed	here	collectively	

motif	syntax)	relate	to	enhancer	function	has	remained	one	of	the	most	important	open	

questions	 in	modern	 biology.	 Systematic	mutagenesis	 of	 various	 individual	 enhancers	

revealed	 a	 complex	 picture,	 whereby	 changing	 nucleotides	 or	 altering	 motif	 syntax	

affected	 the	 function	 of	 some	 enhancers	 but	 not	 others7–26.	 These	 contradictory	

observations	made	it	difficult	to	define	the	relationships	between	enhancer	sequence	and	

function18,27.	

Many	computational	approaches	have	sought	to	predict	enhancer	activities	 from	

DNA	sequences	using	local	DNA	features,	e.g.	motif	dictionaries	or	de-novo	k-mers,	and	

selected	 syntax	 rules	 in	 various	 thermodynamic	 or	 machine-learning	

frameworks16,17,26,28–39.	Despite	remarkable	success,	these	approaches	did	not	reveal	how	

the	elements	of	motif	syntax	collaborate	to	determine	enhancer	activity.	In	addition,	they	

did	 not	 consider	 the	mutual	 compatibilities	 between	 certain	 enhancer-	 and	 promoter	

types	recently	reported	for	different	transcriptional	programs40–42.	Thus,	quantitatively	

predicting	 the	 regulatory	 activity	 of	 enhancers	 and	 the	 de	 novo	 design	 of	 synthetic	

enhancers	have	remained	open	challenges	for	decades.	

Previous	 approaches	 typically	 modelled	 enhancer	 sequences	 explicitly	 via	 pre-

defined	 sets	 of	 features,	 which	 were	 informed	 by	 prior	 biological	 knowledge43.	 In	

contrast,	deep	learning,	in	particular	convolutional	neural	networks,	do	not	require	prior	

knowledge	and	can	learn	accurate	models	directly	 from	raw	data44–53.	Once	trained	on	

raw	data,	 these	models	allow	the	extraction	and	 interpretation	of	 the	 learned	rules	by	

novel	 types	 of	 tools44,45,47,48,54–60.	 For	 example,	 when	 applied	 to	 ChIP-nexus	 data	 that	

measures	TF-binding	genome-wide	at	high	resolution,	a	 convolutional	neural	network	

was	 able	 to	 learn	motifs	 and	 syntax	 rules	 for	 cooperative	TF	binding47.	 Similarly,	 this	

approach	 was	 used	 to	 model	 DNA	 accessibility45,46,52,59,	 transcriptional	 reporter	

activities51	and	predict	genetic	variant	effects53.	Nevertheless,	an	ultimate	sequence-to-
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enhancer	 activity	 model	 that	 learns	 the	 cis-regulatory	 code	 to	 quantitatively	 predict	

enhancer	activities	in	a	single	cell	type	is	still	missing.	

Here,	we	built	a	new	deep	learning	model,	DeepSTARR,	to	predict	enhancer	activity	

towards	 two	 promoters	 from	 the	 distinct	 developmental	 and	 housekeeping	

transcriptional	 programs	 in	 Drosophila	 melanogaster	 S2	 cells	 directly	 from	 the	 DNA	

sequence.	For	both	programs,	DeepSTARR	quantitatively	predicts	enhancer	activity	for	

unseen	sequences	and	reveals	different	coding	features	for	the	two	programs,	including	

specific	TF	motifs	that	we	validate	experimentally.	We	further	extract	motif	syntax	rules,	

including	favorable	and	unfavorable	sequence	contexts	and	inter-motif	distances,	which	

are	predictive	of	enhancer	activity	 in	Drosophila	and	human	enhancers,	as	we	validate	

experimentally	by	high-throughput	mutagenesis	of	thousands	of	enhancers	and	enhancer	

variants.	 These	 rules	 allowed	 the	 design	 of	 synthetic	 enhancers	 with	 desired	 activity	

levels	de	novo.	 	
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Results	

DeepSTARR	quantitatively	predicts	enhancer	activity	from	DNA	sequence	

	

Figure	1.	DeepSTARR	quantitatively	predicts	enhancer	activity	genome-wide	from	DNA	
sequence.	 A)	 Schematics	 of	 genome-wide	 UMI-STARR-seq	 using	 the	 developmental	
(Drosophila	 synthetic	 core	 promoter	 (DSCP);	 red)	 and	 housekeeping	 (RpS12;	 blue)	
promoters.	 B)	 DeepSTARR	 predicts	 enhancer	 activity	genome-wide.	 Genome	 browser	
screenshot	depicting	UMI-STARR-seq	observed	and	predicted	profiles	for	both	promoters	for	
a	 locus	 on	 held-out	 test	 chromosome	 2R.	C)	 Architecture	 of	 the	multi-task	 convolutional	
neural	 network	 DeepSTARR	 that	 was	 trained	 to	 simultaneously	 predict	 quantitative	
developmental	 and	 housekeeping	 enhancer	 activities	 (UMI-STARR-seq)	 from	249	 bp	DNA	
sequences.	D)	DeepSTARR	predicts	enhancer	activity	quantitatively.	Scatter	plots	of	predicted	
vs.	observed	developmental	(left)	and	housekeeping	(right)	enhancer	activity	signal	across	all	
DNA	 sequences	 in	 the	 test	 set	 chromosome.	 Color	 reflects	 point	 density.	 E)	 DeepSTARR	
quantitatively	 predicts	 developmental	 and	 housekeeping	 enhancer–promoter	 specificity.	
Predicted	vs.	observed	log2	fold-change	(log2FC)	between	developmental	and	housekeeping	
activity	 for	 all	 enhancer	 sequences	 in	 the	 test	 set	 chromosome.	 PCC:	 Pearson	 correlation	
coefficient.	 	
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To	 learn	 the	 cis-regulatory	 information	 encoded	 in	 enhancer	 sequences	 in	 an	

unbiased	way,	we	developed	a	new	deep	learning	model	called	DeepSTARR	that	predicts	

enhancer	 activity	 directly	 from	 DNA	 sequence.	 First,	 we	 used	 UMI-STARR-seq61,62	 to	

generate	genome-wide	high	resolution,	quantitative	activity	maps	of	developmental	and	

housekeeping	 enhancers,	 representing	 the	 two	 main	 transcriptional	 programs	 in	

Drosophila	 S2	 cells40–42	 (Fig	 1A).	 We	 identified	 11,658	 developmental	 and	 7,062	

housekeeping	enhancers	(Fig	1B,	S1A,B).	These	enhancers	are	largely	non-overlapping,	

confirming	the	specificity	of	the	different	transcriptional	programs40–42.	These	genome-

wide	enhancer	activity	maps	provide	a	high-quality	dataset	to	build	predictive	models	of	

enhancer	 activity	 and	 characterize	 the	 sequence	determinants	 of	 two	major	 enhancer	

types.	

We	built	the	multi-task	convolutional	neural	network	DeepSTARR	to	map	249	bp	

long	 DNA	 sequences	 tiled	 across	 the	 genome	 to	 both	 their	 developmental	 and	 their	

housekeeping	enhancer	activities	(Fig	1C).	We	adapted	the	Basset	convolutional	neural	

network	 architecture45	 and	 designed	 DeepSTARR	 with	 four	 convolution	 layers,	 each	

followed	by	a	max-pooling	layer,	and	two	fully	connected	layers	(Fig	1C).	The	convolution	

layers	identify	local	sequence	features	(e.g.	TF	motifs)	and	increasingly	complex	patterns	

(e.g.	 TF	 motif	 syntax),	 while	 the	 fully	 connected	 layers	 combine	 these	 features	 and	

patterns	to	predict	enhancer	activity	separately	for	each	enhancer	type.	

We	 evaluated	 the	 predictive	 performance	 of	 DeepSTARR	 on	 a	 held-out	 test	

chromosome.	The	predicted	and	observed	enhancer-activity	profiles	were	highly	similar	

for	both	developmental	(Pearson	correlation	coefficient	(PCC)=0.68)	and	housekeeping	

(PCC=0.74)	 enhancers	 (Fig	 1B,D,	 S1).	 This	 performance	 is	 close	 to	 the	 concordance	

between	experimental	replicates	(PCC=0.73	and	0.76,	respectively;	Fig	S1C),	suggesting	

that	the	model	accurately	captures	the	regulatory	information	present	in	the	sequences	

and	 the	 differences	 between	 developmental	 and	 housekeeping	 enhancers	 (Fig	 1E).	

DeepSTARR	performed	better	than	methods	based	on	known	TF	motifs	or	unbiased	k-

mer	counts39,	both	at	predicting	continuous	enhancer	activity	and	at	binary	classification	

of	enhancer	sequences	(Fig	S1D).	Thus,	DeepSTARR	learned	generalizable	features	and	

rules	 de	 novo	 directly	 from	 the	 DNA	 sequence	 that	 allow	 the	 prediction	 of	 enhancer	

activities	for	unseen	sequences.	
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DeepSTARR	reveals	important	TF	motif	types	required	for	enhancer	activity	

	

Figure	2.	DeepSTARR	reveals	important	TF	motif	types	that	we	validate	experimentally.	
A)	DeepSTARR	derived	developmental	and	housekeeping	nucleotide	contribution	scores	for	
strong	 developmental	 (left)	 and	 housekeeping	 (right)	 enhancer	 sequences,	 respectively.	
Regions	 with	 high	 scores	 resembling	 known	 TF	motifs	 are	 highlighted.	 Log2	 fold-change	
values	(log2FC;	bottom)	indicate	the	impact	on	enhancer	activity	of	mutating	all	instances	of	
each	motif	type.	B)	DeepSTARR	motifs	discovered	by	TF–Modisco	by	summarizing	recurring	
predictive	 sequence	 patterns	 from	 the	 sequences	 of	 all	 developmental	 (top)	 and	
housekeeping	 (bottom)	 enhancers	 and	 their	 associated	 nucleotide	 contribution	 scores.	C)	
Developmental	 and	 housekeeping	 TF	 motifs	 are	 specifically	 required	 for	 the	 respective	
enhancer	 types.	 Enhancer	 activity	 changes	 (log2	 FC)	 for	 developmental	 (top)	 and	
housekeeping	(bottom)	enhancers	after	mutating	all	instances	of	three	control	motifs	(grey),	
four	 predicted	 developmental	 motifs	 (AP-1,	 GATA,	 twist,	 Trl;	 red)	 and	 three	 predicted	
housekeeping	motifs	 (Dref,	 Ohler1,	 Ohler6;	 blue).	 Number	 of	 enhancers	mutated	 for	 each	
motif	 type	 are	 shown.	 The	 box	 plots	 mark	 the	 median,	 upper	 and	 lower	 quartiles	 and	
1.5× interquartile	range	(whiskers);	outliers	are	shown	individually.	D)	DeepSTARR	discovers	
important	TF	motifs	not	obvious	by	motif	enrichment.	Comparison	between	motif	enrichment	
(log2	 odds	 ratio;	 x-axis)	 and	 DeepSTARR’s	 predicted	 global	 importance	 (y-axis)	 for	 all	
representative	 TF	 motifs	 (Fig	 S2)	 in	 developmental	 (top)	 and	 housekeeping	 (bottom)	
enhancers.	Important	motifs	for	each	enhancer	type	are	highlighted.	 	
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In	order	to	understand	the	features	and	rules	learned	by	DeepSTARR,	we	quantified	

how	 each	 individual	 nucleotide	 in	 every	 sequence	 contributes	 to	 the	 predicted	

developmental	and	housekeeping	enhancer	activities47,55,63,64	(Fig	2A;	see	Methods),	and	

consolidated	recurrent	highly	scoring	sequence	patterns	into	motifs	56.	This	uncovered	

distinct	 TF	 motifs	 that	 are	 known	 to	 occur	 in	 developmental	 and	 housekeeping	

enhancers26,40,	thus	validating	the	approach	and	reinforcing	the	mutual	incompatibility	of	

the	two	transcriptional	programs	(Fig	2A,B,	S2).	

We	experimentally	tested	the	requirements	of	select	TF	motifs	for	enhancer	activity	

across	hundreds	of	enhancers	by	performing	large-scale	motif	mutagenesis	(3,415	motif-

mutations	 in	 804	 developmental	 and	 872	 housekeeping	 enhancers;	 Fig.	 2C,	 S3).	

Consistent	with	their	predicted	importance,	mutating	four	developmental	motifs	(GATA,	

AP-1,	twist,	Trl)	substantially	reduced	the	activity	of	developmental	but	not	housekeeping	

enhancers,	 with	 AP-1	 and	 GATA	 motifs	 being	 the	 most	 important,	 as	 predicted	 by	

DeepSTARR.	 In	 contrast,	 mutating	 three	 housekeeping	 motifs	 (Dref,	 Ohler1,	 Ohler6)	

affected	 only	 housekeeping	 enhancers,	 and	 mutating	 three	 control	 motifs	 (length-

matched	random	motifs	to	control	for	enhancer-sequence	perturbation)	did	not	have	any	

impact.	For	example,	GATA	motifs	were	only	important	when	present	in	developmental	

but	not	housekeeping	enhancers,	whereas	the	opposite	was	true	for	Dref	motifs	(Fig.	2C).		

Interestingly,	 the	 motifs	 learned	 by	 DeepSTARR	 were	 not	 restricted	 to	 highly	

abundant	motifs	but	included	other	motifs	such	as	SREBP,	CREB	and	ETS	motifs,	which	

were	not	or	only	weakly	enriched	in	S2	developmental	enhancers	and	could	not	have	been	

found	 by	methods	 based	 on	 over-representation	 (Fig.	 2B,D).	 Even	 for	more	 abundant	

motifs,	 motif	 enrichment	 did	 not	 always	 predict	 motif	 importance	 (Fig.	 2D),	 i.e.	 the	

DeepSTARR	score	of	the	motif	embedded	in	100	random	DNA	sequences	(see	Methods	

and	ref.	58).	This	shows	that	DeepSTARR	can	discover	motifs,	and	likely	other	sequence	

features,	that	are	relatively	rare	in	enhancers	but	still	important	for	enhancer	activity.		

	

Non-equivalent	instances	of	the	same	TF	motif	

Since	enhancers	often	contain	multiple	instances	of	the	same	motif	type,	we	next	

assessed	the	contribution	of	each	individual	instance	of	the	GATA,	AP-1,	twist,	Trl,	and	

Dref	motifs	by	DeepSTARR	(Fig	S5A)	and	by	experimental	mutagenesis	(Fig	S3A,	S5B).	

Unexpectedly,	 individual	 instances	 of	 the	 same	 motif	 were	 frequently	 predicted	 and	

experimentally	validated	to	have	distinct	contributions	to	enhancer	activities,	both	across	

different	enhancers	and	within	the	same	enhancer	(Fig	3A-C,	S5).	 	
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Figure	3.	Instances	of	the	same	TF	motif	have	non-equivalent	contributions	to	enhancer	
activity.	 A)	 Developmental	 enhancer	 with	 three	 non-equivalent	 GATA	 instances.	 Left:	
Genome	 browser	 screenshot	 showing	 tracks	 for	 DNA	 accessibility	 (from	 61)	 and	
developmental	and	housekeeping	UMI-STARR-seq	for	the	CG11255	locus.	The	designed	oligo	
covering	 the	 enhancer	 selected	 for	motif	mutagenesis	 is	 shown.	Right:	 log2	activity	of	 the	
wildtype	enhancer	compared	with	the	activity	when	all	GATA	instances	are	simultaneously	
mutated	or	each	individual	instance	at	a	time.	Bottom:	DeepSTARR	nucleotide	contribution	
scores	for	the	same	developmental	enhancer	with	the	three	GATA	instances	highlighted.	B)	
DeepSTARR	 predicts	 the	 contribution	 of	 individual	 GATA	 instances.	 Distribution	 of	
experimentally	 measured	 enhancer	 activity	 fold-change	 (log2	 FC)	 after	 mutating	 1,013	
different	GATA	instances	across	developmental	enhancers	(violin	plot),	compared	with	the	
log2	FC	predicted	by	DeepSTARR.	The	box	plots	mark	the	median,	upper	and	lower	quartiles	
and	1.5× interquartile	range	(whiskers).	C)	Different	 instances	of	 the	same	TF	motif	 in	 the	
same	enhancer	are	not	equivalent.	Left:	Distribution	of	enhancer	activity	change	(log2	FC)	
between	mutating	the	least	and	the	most	important	instance	of	each	motif	type	per	enhancer.	
Dashed	 line	 represents	 2-fold	 difference	 between	 instances	 in	 the	 same	 enhancer.	 Right:	
Proportion	of	enhancers	with	two	or	more	instances	that	have	an	instance	at	least	2-fold	more	
important	than	another	instance	(dark	grey).	Dashed	line	represents	the	average	across	the	
different	motif	 types	 (excluding	 control	motifs):	 57%	of	 enhancers.	 Number	 of	 enhancers	
mutated	 for	each	motif	 type	are	shown.	Box	plots	as	 in	 (B).	D)	DeepSTARR	predicts	motif	
instance	 contribution	 better	 than	 position	 weight	 matrix	 (PWM)	 motif	 scores.	 Bar	 plots	
showing	the	PCC	between	predicted	(by	DeepSTARR	or	PWM)	and	observed	log2	fold-change	
for	mutating	individual	instances	of	each	motif	type.	

	

The	enhancer	shown	in	Fig	3A	for	example	contains	three	GATA	instances	with	very	

different	contributions	as	predicted	and	determined	experimentally:	the	second	instance	

is	the	most	important	one,	followed	by	the	first,	and	the	third.	The	agreement	between	

predictions	and	experiments	holds	across	all	1,013	GATA	instances	tested	(PCC=0.53;	Fig	
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3B)	and	the	non-equivalency	of	motif	 instances	 is	widespread:	57%	of	enhancers	with	

multiple	instances	had	motifs	with	>2-fold	and	70%	with	>1.5-fold	differences	(Fig	3C).	

These	differences	are	not	well	captured	by	existing	position	weight	matrix	(PWM)	motif	

scores	(Fig	3D,	S6),	suggesting	that	the	importance	of	motif	instances	depend	on	complex	

sequence	features	outside	the	core	motif.	The	observation	that	different	instances	of	the	

same	motif	 type	 (with	 identical	 sequences)	 can	 have	 vastly	 different	 contributions	 to	

enhancer	activity	 is	an	 important	underappreciated	phenomenon	that	complicates	our	

understanding	of	enhancer	sequences	and	non-coding	variants	(see	Discussion).	

	

Flanking	sequence	influences	the	importance	of	TF	motifs	

	

Figure	 4.	 Contribution	 of	 TF	 motifs	 depends	 on	 the	 flanking	 sequence.	 A)	 Motif	
contribution	 correlates	with	 flanking	base-pairs.	Heatmap:	Flanking	nucleotides	of	GATAA	
(GATA;	left)	and	GAGAG	(Trl;	right)	instances	across	developmental	enhancers	sorted	by	their	
DeepSTARR	predicted	contribution.	Box	plots:	Importance	of	motif	instances	according	to	the	
different	 bases	 at	 each	 flanking	 position.	 *	 marks	 positions	 with	 significant	 differences	
between	the	four	nucleotides	(FDR-corrected	Welch	One-Way	ANOVA	test	p-value	<	0.01).	
The	 box	 plots	 mark	 the	 median,	 upper	 and	 lower	 quartiles	 and	 1.5× interquartile	 range	
(whiskers).	Top:	 logos	of	 the	top	90th	percentile	motif	 instances.	B)	Length	and	 identity	of	
flanks	differ	between	motif	types.	Comparison	of	optimal	motif	logos	(top	90th	percentile	motif	
instances)	as	predicted	by	DeepSTARR	or	measured	experimentally	by	motif	mutation,	with	
the	PWM	logos	existing	in	Drosophila	TF	databases.	Note	that	DeepSTARR	and	mutagenesis	
motif	instances	were	selected	to	all	contain	the	same	core	sequence	and	therefore	only	differ	
in	 their	 flanking	 sequence.	 C)	 GATA	 flanking	 nucleotides	 are	 sufficient	 to	 switch	 motif	
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contribution	in	47	developmental	enhancers	that	contain	one	strong	(purple)	and	one	weak	
(green)	GATA	instance	(≥	2-fold	difference	between	instances	as	assessed	by	mutagenesis).	
Enhancer	activity	change	(log2	FC)	when	2	bp	flanks	of	strong	instances	were	replaced	by	the	
flanks	of	weak	instances	(purple)	and	vice	versa	(green).	**	p-value	<	0.01,	*	<	0.05	(Wilcoxon	
signed	rank	test).	Box	plots	as	in	(A).	D)	Example	of	a	developmental	enhancer	with	one	weak	
(TGGATAATG;	 green)	 and	 one	 strong	 (AAGATAAAG;	 purple)	 GATA	 instance.	 DeepSTARR	
nucleotide	contribution	scores	and	UMI-STARR-seq	measured	enhancer	activity	(log2;	on	the	
right)	are	shown	for	the	wildtype	sequence	(top)	and	for	the	sequences	where	the	2	bp	flanks	
of	the	strong	instance	were	replaced	by	the	ones	of	the	weak	instance	(middle)	and	vice	versa	
(bottom).	

	

To	explore	the	syntax	features	that	affect	the	 importance	of	a	motif	 instance,	we	

examined	 the	 motif	 flanking	 nucleotides,	 which	 can	 contribute	 to	 enhancer	

activity12,13,18,29,65–69.	 For	 each	 motif	 type,	 we	 sorted	 all	 instances	 by	 their	 predicted	

importance	 to	 determine	 the	 optimal	 flank	 length	 and	 sequence	 (Fig	 4A,B,	 S7A).	 For	

example,	 important	GATAA	 sequences	had	a	G	 at	position	+1,	whereas	non-important	

ones	had	a	T	at	position	+1	and	a	G	at	position	-1	(Fig	4A).	In	contrast,	up	to	5	bp	flanking	

up-	and	down-stream	affected	the	importance	of	Trl	instances,	with	flanking	GA-repeats	

correlating	with	increased	importance	(Fig	4A).	The	flanks	of	high	and	low	importance	

motif	instances	predicted	by	DeepSTARR	were	largely	concordant	with	those	identified	

by	motif	mutagenesis	(Fig	4B,	S7A)	and	refine	known	PWM	models	for	the	predicted	TFs	

(Fig	4B).	

To	experimentally	validate	the	functional	contribution	of	motif	flanking	sequence	

predicted	by	DeepSTARR,	we	swapped	the	flanking	nucleotides	of	strong	and	weak	GATA	

instances	 (≥	 2-fold	 difference	 as	 assessed	 by	mutagenesis)	 in	 47	 enhancers	 (Fig	 4C).	

Indeed,	 replacing	 the	 2	 bp	 flanks	 of	 strong	 instances	 by	 the	 flanks	 of	weak	 instances	

reduced	enhancer	activity,	whereas	replacing	the	flanks	of	weak	instances	by	the	flanks	

of	strong	ones	increased	enhancer	activity	(Fig	4C,	S7B).	DeepSTARR	recapitulated	the	

observed	effects,	i.e.	the	addition	of	weak	flanks	converted	a	strong	GATA	instance	to	a	

weak	one	 as	 indicated	by	 the	decreased	 contribution	 at	 the	nucleotide	 level,	 and	 vice	

versa	for	a	weak	instance	that	was	converted	to	a	strong	one	(Fig	4D).	Swapping	5	bp	

flanks	 yielded	 consistent	 results	 with	 slightly	 stronger	 effects	 (Fig	 S7B).	 In	 addition,	

swapping	 the	 flanks	 was	 sufficient	 to	 switch	 motif	 contributions,	 as	 determined	 by	

subsequent	motif	mutagenesis	 (Fig.	 S7B).	 Thus,	 as	 DeepSTARR	 is	 not	 biased	 by	 prior	

knowledge	about	TF	motifs	but	is	trained	on	DNA	sequence	alone,	it	can	not	only	identify	

important	motif	types	but	also	refine	the	optimal	flanking	sequence.	Experimentally,	we	

confirm	 that	 the	 flanking	 sequence	 can	 be	 sufficient	 to	 switch	motif	 contribution	 and	

should	be	considered	when	assessing	motif	importance	or	the	impact	of	motif-disrupting	

mutations.	
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In	silico	analysis	reveals	distinct	modes	of	motif	cooperativity	

	

Figure	5.	In	silico	analysis	reveals	distinct	modes	of	motif	cooperativity.	A)	Schematic	of	
in	silico	characterization	of	TF	motif	distance	preferences.	MotifA	was	embedded	in	the	center	
of	60	synthetic	random	DNA	sequences	and	MotifB	at	a	range	of	distances	from	MotifA,	both	
up-	and	downstream.	Both	the	average	developmental	and	housekeeping	enhancer	activity	is	
predicted	 by	 DeepSTARR.	 The	 cooperativity	 (residuals)	 between	MotifA	 and	MotifB	 as	 a	
function	of	distance	is	quantified	as	the	activity	of	MotifA+B	divided	by	the	sum	of	the	marginal	
effects	of	MotifA	and	MotifB	(MotifA	+	MotifB	–	backbone	(b))	(see	Methods).	B)	DeepSTARR	
predicts	 distinct	modes	 of	motif	 cooperativity.	 Show	 for	 example	motif	 pairs:	 ETS/SREBP	
(mode	1),	GATA/GATA	(2),	AP-1/GATA	(3)	and	Dref/Dref	(4).	Top:	Cooperativity	between	
two	motif	instances	at	different	distances.	Points	showing	the	median	interaction	across	all	
60	backbones	for	each	motif	pair	distance	(both	up-	and	downstream	distances	are	combined)	
together	 with	 smooth	 lines;	 dashed	 line	 at	 1	 represents	 no	 synergy.	 Middle:	 Association	
between	enhancer	activity	and	the	distance	at	which	the	motif	pair	is	found.	Coefficient	(y-
axis)	and	p-value	from	a	multiple	linear	regression	including,	as	independent	variables,	the	
number	of	instances	for	the	different	developmental	or	housekeeping	TF	motif	types.	Bottom:	
Motifs	are	often	at	suboptimal	distances	 in	developmental	enhancers.	Odds	ratio	(log2)	by	
which	 the	 two	motifs	 are	 found	within	 a	 specified	 distance	 from	each	 other	 in	 enhancers	
compared	with	negative	genomic	regions.	Color	 legend	 is	 shown.	*	FDR-corrected	Fisher's	
Exact	test	p-value	<	0.05.	C)	Cooperativity	between	three	motif	types	(and	GGGCT	as	control)	
with	a	 central	GATA	motif	 in	developmental	 enhancers	 at	different	distances	 to	 the	GATA	
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motif.	 Points	 showing	 the	median	 interaction	 across	 all	 60	 backbones	 for	 each	motif	 pair	
distance	 (both	 up-	 and	 downstream	distances	 are	 combined)	 together	with	 smooth	 lines;	
dashed	line	at	1	represents	no	synergy.	D)	Motif	mutagenesis	validates	that	GATA	instances	
distal	to	a	second	GATA	instance	are	more	important.	Left:	expected	mutational	impact	when	
mutating	GATA	instances	depending	on	the	distance	to	other	GATA	motifs.	Right:	enhancer	
activity	changes	(log2	FC)	after	mutating	GATA	instances	at	suboptimal	close	(<	25	bp)	or	
optimal	longer	(>	50	bp)	distance	to	a	second	instance.	Number	of	instances	are	shown.	**	p-
value	 <	 0.01	 (Wilcoxon	 rank-sum	 test).	 The	 box	 plots	mark	 the	median,	 upper	 and	 lower	
quartiles	and	1.5× interquartile	range	(whiskers).	E)	Motif	mutagenesis	validates	that	AP-1	
instances	closer	to	a	second	GATA	instance	are	more	important.	Same	as	in	(D).	*	p-value	<	
0.05	(Wilcoxon	rank-sum	test).	

	

The	 distance	 between	 TF	 motifs	 is	 thought	 to	 be	 important	 for	 TF	

cooperativity6,13,18,47,70–73.	To	determine	how	the	distance	between	motifs	contributes	to	

enhancer	activity,	we	 interrogated	DeepSTARR	to	uncover	potential	preferences	 in	TF	

motif	 distance	 in	 enhancer	 sequences.	We	 analyzed	 in	 silico	 	 how	predicted	 enhancer	

activity	is	affected	by	the	relative	distance	between	two	motif	instances	(MotifA/MotifB),	

following	a	strategy	adapted	from47	(Fig	5A,	S8A):	we	embedded	MotifA	in	the	center	of	

synthetic	random	DNA	sequences	and	MotifB	at	a	range	of	distances	from	MotifA,	both	up-	

and	 downstream.	We	 then	 predicted	 the	 activity	 of	 the	 different	 synthetic	 sequences	

using	DeepSTARR	and	calculated	a	cooperativity	score	for	each	motif	pair,	where	a	value	

higher	than	1	means	positive	synergy	(Fig	5A,	S8A).	

Motif	distances	had	indeed	a	strong	influence	on	predicted	enhancer	activity	and	

we	 observed	 four	 distinct	modes	 of	 distance-dependent	 TF	motif	 cooperativity:	motif	

pairs	can	synergize	exclusively	at	close	distances	(<	25	bp;	mode	1),	exclusively	at	longer	

distances	(>	25	bp;	2),	preferentially	at	closer	distances	and	either	plateau	(3)	or	decay	

(4)	at	long	distances	(>	75	bp;	Fig	5B,	S8B-D).	While	all	motifs	in	housekeeping	enhancers	

cooperate	according	to	mode	4	(decay),	modes	1	to	3	all	occur	for	motifs	in	developmental	

enhancers	 (Fig	 S8C,D).	 Interestingly,	 whether	 cooperativity	 followed	modes	 1,	 2	 or	 3	

depended	on	the	motif	pair	and	even	changed	for	a	given	motif	based	on	the	partner	motif	

(Fig	5C,	S8C).	For	example,	GATA/ETS	synergized	only	when	closer	than	25	bp	(mode	1),	

whereas	 GATA/GATA	 synergy	 was	 lost	 at	 short	 distances	 (mode	 2)	 and	 GATA/AP-1	

cooperated	according	to	mode	3	(Fig	5C).	Thus,	DeepSTARR	predicts	distinct	modes	of	

motif	cooperativity	that	can	determine	the	contribution	of	different	motif	instances.		

We	 next	 asked	 how	 frequently	 these	 optimal	 inter-motif	 distances	 occur	 in	

endogenous	 enhancers	 compared	 to	 negative	 regions.	 Motif	 pairs	 of	 housekeeping	

enhancers	 followed	 the	 optimal	 spacing	 rules	 (enrichment	 at	 close	 distances;	 Fig	 5B,	

S9A,D),	as	did	some	motif	pairs	in	developmental	enhancers	such	as	GATA/GATA	motif	

pairs	 that	were	 strongly	 depleted	 at	 close	 and	 enriched	 at	 longer	 distances	 (Fig.	 5B).	
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However,	 several	 pairs	 in	 developmental	 enhancers	 occurred	 only	 rarely	 at	 optimal	

distances	 (e.g.	 ETS/SREBP	 and	AP-1/GATA;	 Fig	 5B,	 S9A,C),	 even	 though	 the	 enhancer	

activities	followed	the	predicted	optimal	spacing	rules	also	in	these	cases	(Fig	5B,	S9).	For	

instance,	even	though	ETS/SREBP	motifs	separated	by	short	distances	(<	25	bp)	were	

rare,	 such	 motif	 pairs	 were	 associated	 with	 stronger	 enhancer	 activity	 than	 pairs	

separated	 by	 larger	 distances	 (75-100	 bp;	 Fig	 5B),	 validating	 the	 ETS/SREBP	motifs’	

optimal	distance.		

To	experimentally	test	the	importance	of	motif	pairs	at	optimal	versus	non-optimal	

distances	more	directly,	we	mutated	either	GATA	or	AP-1	motifs	at	close	(<	25	bp)	and	

longer	 distances	 (>	 50	 bp)	 to	 a	 GATA	 instance	 (Fig	 5D,E).	 The	 results	 validated	 the	

DeepSTARR	predictions	and	showed	higher	importance	of	GATA/GATA	pairs	at	 longer	

(Fig	5D)	and	AP-1/GATA	pairs	at	 closer	distances	 (Fig	5E).	Thus,	different	motif	pairs	

display	distinct	distance	preferences,	which	dictate	the	contribution	of	individual	motif	

instances	to	overall	enhancer	activity.	As	endogenous	enhancers	often	contain	motif	pairs	

at	non-optimal	distances,	optimal	distances	only	become	apparent	by	our	in	silico	analysis	

but	not	in	frequency-based	analyses.		

	

Motif	syntax	rules	are	generalizable	to	human	enhancers	

To	 test	 if	 individual	 instances	 of	 the	 same	 motif	 also	 contribute	 differently	 to	

enhancer	 activities	 in	humans	 and	 if	motif	 flanks	 and	 spacing	determine	 the	different	

contributions,	we	chose	the	human	colon	cancer	cell	line	HCT116	as	a	model.	We	selected	

nine	TF	motifs	based	on	motif	enrichment	analysis	(AP-1,	P53,	MAF,	CREB1,	ETS,	EGR1,	

MECP2,	 E2F1	 and	 Ebox/MYC),	 mutated	 all	 their	 instances	 in	 1,083	 enhancers	 and	

assessed	the	enhancer	activity	of	wildtype	and	mutant	sequences	by	UMI-STARR-seq	(Fig	

S10;	 see	Methods).	 This	 revealed	 that	 AP-1	 and	 P53	motifs	were	 the	most	 important	

motifs	(median	5.6-	and	5.5-fold	reduction,	respectively),	followed	by	MAF	(3.1),	CREB1	

(2),	ETS	(1.9)	and	EGR1	(1.5),	while	MeCP2,	E2F1	and	Ebox/MYC	motifs	had	 the	 least	

impact	on	enhancer	activity	(lower	than	1.5-fold;	Fig	S10D-F).	Based	on	these	results,	we	

chose	AP-1,	P53,	MAF,	CREB1,	ETS	and	EGR1	motifs	for	the	analysis	of	motif	instances.	 	
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Figure	6.	Motif	 syntax	rules	dictate	 the	contribution	of	TF	motif	 instances	 in	human	
enhancers.	A)	Top:	Genome	browser	screenshot	showing	DNA	accessibility	(ATAC-seq	data	
from74)	 and	 enhancer	 chromatin	 marks	 (H3K27ac	 and	 H3K4me1	 from	 ENCODE75)	 for	 a	
human	HCT116	enhancer	(chr14:44,786,141-44,786,389)	with	4	AP-1	instances.	Bottom:	The	
designed	249	bp	oligo	covering	the	enhancer	summit	used	for	motif	mutagenesis	is	shown	
together	 with	 its	 containing	 AP-1	 motif	 instances	 and	 the	 impact	 on	 enhancer	 activity	
(negative	 fold-change)	 of	 mutating	 each	 individual	 instance.	 Observed	 and	 expected	 per-
nucleotide	DNase	I	cleavage	and	consensus	TF	footprints	from	a	related	colon	cancer	cell	line	
(RKO;	data	from	76)	are	shown	below.	B)	TF	motif	non-equivalence	is	widespread	in	human	
enhancers.	Distribution	of	log2	FC	enhancer	activity	between	mutating	the	least	and	the	most	
important	instance	of	each	motif	type	per	enhancer.	Dashed	line	represents	2-fold	difference	
between	instances	in	the	same	enhancer.	Number	of	enhancers	mutated	for	each	motif	type	
are	shown.	The	box	plots	mark	the	median,	upper	and	lower	quartiles	and	1.5× interquartile	
range	 (whiskers).	C)	 57%	 of	 enhancers	 have	 a	motif	 instance	 that	 is	 at	 least	 2-fold	more	
important	than	another	instance.	Grey	bars:	proportion	per	motif	type;	dashed	line:	average	
across	motif	types	(excluding	control	motifs).	D)	Important	TF	motif	instances	are	associated	
with	TF	footprints.	Log2	FC	enhancer	activity	of	mutating	individual	instances	that	do	not	(-)	
or	do	(+)	overlap	TF	footprints	(FDR	0.001)	in	RKO	cells	(DNase	I	footprinting	data	from76).	
****	p-value	<	0.0001,	**	<	0.01,	*	<	0.05,	n.s.	non-significant	(Wilcoxon	rank-sum	test).	Box	
plots	as	in	(B).	E)	Motif	syntax	rules	dictate	the	contribution	of	TF	motif	instances	in	human	
enhancers.	For	each	TF	motif	type	(rows),	we	built	a	linear	model	containing	the	number	of	
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instances,	the	motif	core	(defined	as	the	nucleotides	included	in	each	TF	motif	PWM	model)	
and	flanking	nucleotides,	and	the	distance	to	all	other	TF	motifs	to	predict	the	contribution	of	
its	individual	instances	(mutation	log2	fold-change,	from	Fig	S11A)	across	all	enhancers.	The	
PCC	between	predicted	and	observed	motif	contribution	is	shown	with	the	green	color	scale	
on	the	left.	Heatmap	shows	the	contribution	of	each	feature	(columns)	for	each	model,	colored	
by	 the	 FDR-corrected	 p-value	 (red	 scale).	F)	Motif	mutagenesis	 shows	 that	 AP-1	 and	ETS	
instances	 closer	 to	 each	 other	 are	 more	 important	 to	 enhancer	 activity.	 Left:	 expected	
mutational	impact	when	mutating	AP-1	and	ETS	instances	depending	on	the	distance	to	each	
other.	 Middle	 and	 right:	 enhancer	 activity	 changes	 (log2	 FC)	 after	 mutating	 AP-1	 or	 ETS	
instances	at	close	(<	25	bp)	or	longer	(>	50	bp)	distance.	Number	of	instances	are	shown.	****	
p-value	 <	 0.0001	 and	 **	 <	 0.01	 (Wilcoxon	 rank-sum	 test).	 Box	 plots	 as	 in	 (B).	 G)	 Motif	
instances	need	to	be	analyzed	within	their	cis-regulatory	context.	Motif	syntax	rules,	such	as	
motif	 combination,	 flanks	 and	 distance	 dictate	 the	 contribution	 of	 TF	 motif	 instances	 in	
enhancer	sequences.	Important	motif	instances	will	have	a	higher	impact	on	enhancer	activity	
when	mutated.	

	

Mutation	of	hundreds	of	 individual	motif	 instances	showed	that	 instances	of	 the	

same	TF	motif	are	not	functionally	equivalent	(Fig	6A-C,	S11A).	For	example,	the	enhancer	

shown	 in	 Fig	 6A	 contains	 four	 AP-1	 instances	 with	 very	 different	 contributions	 to	

enhancer	activity	as	 judged	by	 fold-changes	after	motif	 instance	mutagenesis	between	

1.2-	and	3.8-fold.	Interestingly,	DNase	I	footprinting	data	from	a	related	colon	cancer	cell	

line	 (RKO76)	 suggests	 that	 the	 AP-1	 instance	 with	 low	 importance	 was	 not	 bound	

endogenously,	 in	contrast	 to	the	three	 important	AP-1	 instances	(Fig	6A).	Both	results	

generalize	to	all	tested	motifs	and	across	enhancers:	57%	of	human	enhancers	displayed	

non-equivalent	instances	of	the	same	motif	type	(Fig	6B,C)	and	TF	motif	instances	with	

DNase	 I	 footprints	 are	 more	 important	 than	 those	 without	 (Fig	 6D),	 supporting	 the	

functional	differences	between	motif	instances	at	endogenous	enhancers.	

Having	trained	a	convolutional	neural	network	to	learn	the	motif	syntax	rules	for	

Drosophila	 enhancers,	we	wanted	 to	determine	 if	 the	 same	 type	of	 rules	also	apply	 to	

human	enhancers.	Therefore,	we	generated	simple	linear	models	based	on	these	rules	to	

predict	the	contribution	of	individual	motif	instances	in	human	enhancers.	Specifically,	

these	models	consider	the	number	of	instances,	the	motif	core	and	flanking	sequence,	and	

distance	to	other	TF	motifs	(Fig	6E,	S11B,C).	Despite	their	simplicity,	these	models	were	

able	 to	 predict	motif-instance	 importance,	with	 PCCs	 to	 experimentally	 assessed	 log2	

fold-changes	of	0.66	(P53),	0.61	(ETS),	0.59	(MAF)	and	0.5	(AP-1),	outperforming	models	

based	solely	on	PWM	scores	(Fig	S11D).	For	most	TFs,	motif	instances	closer	to	an	AP-1	

or	ETS	motif	were	more	important,	suggesting	that	high	cooperativity	with	these	TFs	is	

important	 in	 HCT116	 enhancer	 sequences	 (Fig	 6E,	 S11B).	 This	 was	 also	 observed	

between	AP-1	and	ETS	motifs	themselves,	where	mutation	of	either	AP-1	or	ETS	instances	

had	stronger	impact	in	enhancer	function	if	located	at	close	(<	25	bp)	rather	than	longer	
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distances	(>	50	bp)	from	each	other	(Fig	6F),	and	similarly	between	two	AP-1	instances	

(Fig	S11E).	Altogether,	these	results	confirm	that	the	motif	syntax	rules	derived	for	motif	

flanking	 sequence	 and	 inter-motif	 distances	 dictate	 the	 contribution	 of	 individual	 TF	

motif	instances	in	human	enhancers	(Fig	6G).	Determining	how	distinct	instances	of	the	

same	motif	 differentially	 contribute	 to	 enhancer	 activity	 could	 improve	 the	 ability	 to	

predict	the	functional	impact	of	disease-associated	variants,	which	typically	affect	only	

one	motif	instance.	

	

DeepSTARR	designs	synthetic	enhancers	with	desired	activities	

	

Figure	 7.	DeepSTARR	designs	 synthetic	 enhancers	 using	 optimal	 sequence	 rules.	 A)	
Comparison	between	DeepSTARR	predicted	and	experimentally	measured	enhancer	activity	
(log2)	for	249	synthetic	sequences	binned	(left)	or	not	(right).	The	‘‘Native’’	category	contains	
all	Drosophila	developmental	enhancer	sequences.	The	box	plots	mark	the	median,	upper	and	
lower	quartiles	and	1.5× interquartile	range	(whiskers);	outliers	are	shown	individually.	The	
three	 synthetic	 sequences	 shown	 in	 (B)	 are	 highlighted.	 B)	 DeepSTARR	 nucleotide	
contribution	scores	for	three	synthetic	sequences	from	(A)	spanning	different	activity	levels.	
Instances	of	GATA,	AP-1	and	ETS	motifs	are	shown	together	with	their	observed	distances	
(proximal	or	distal).	

	

Understanding	 how	DNA	 sequence	 encodes	 enhancer	 activity	 should	 enable	 the	

design	 of	 synthetic	 enhancers	 with	 desired	 activity	 levels.	 We	 used	 DeepSTARR	 to	

computationally	 design	new	S2	 cell	 developmental	 enhancers,	 by	predicting	 enhancer	

activity	 for	 one	 billion	 random	 249	 bp	 DNA	 sequences	 that	 are	 not	 present	 in	 the	

Drosophila	 genome	(see	Methods).	We	 then	selected	249	of	 these	 sequences	 spanning	

different	predicted	activity	levels	and	experimentally	measured	their	enhancer	activity	

by	 UMI-STARR-seq	 in	 S2	 cells.	 The	 predicted	 activity	 of	 the	 synthetic	 sequences	was	

highly	 accurate	 (PCC=0.62;	 Fig	 7A)	 and	 DeepSTARR	 was	 able	 to	 design	 synthetic	

enhancers	as	strong	as	the	strongest	native	S2	developmental	enhancers	(activity	(fold-

change	over	negative	regions)	≈	500;	Supplementary	Table	17).	

Inspection	of	the	designed	sequences	suggested	that	their	different	activity	levels	

correlated	 not	 only	 with	 motif	 composition	 but	 also	 the	 motif	 syntax	 (Fig	 7B).	 For	
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example,	 three	 different	 synthetic	 sequences,	 all	 containing	 two	 GATA	 and	 two	 AP-1	

motifs,	 were	 predicted	 by	 DeepSTARR	 and	 validated	 experimentally	 to	 have	 very	

different	 activities	 (from	 0.87	 to	 630).	 Interestingly,	 the	 strongest	 synthetic	 enhancer	

followed	 the	 optimal	 spacing	 rules	 predicted	 by	 DeepSTARR,	 such	 as	 distal	 GATA	

instances	 and	 proximal	 AP-1/GATA	 and	 ETS/AP-1	 instances,	 whereas	 the	 other	 two	

synthetic	sequences	contained	motifs	in	suboptimal	syntax,	such	as	distal	AP-1	instances	

and	proximal	GATA	instances	(Fig	7B).	This	proof-of-concept	experiment	shows	that	the	

rules	 learned	 by	 DeepSTARR	 enable	 the	 a	 priori	 design	 of	 synthetic	 enhancers	 with	

desired	activity	levels.	

	

Discussion	
Deciphering	the	rules	governing	the	relationship	between	enhancer	sequence	and	

function	–	 typically	 called	 the	cis-regulatory	code	of	enhancers	–	has	 remained	a	 long-

standing	 open	problem.	 It	 has	proved	 so	 challenging	because	methods	 to	 functionally	

characterize	large	numbers	of	enhancers	have	only	become	available	a	few	years	ago	and	

also	 because	 the	 cis-regulatory	 code,	 unlike	 the	 protein-coding	 genetic	 code,	 follows	

complex	and	cell	type-specific	sequence-rules.			

To	dissect	 the	 relationship	between	enhancer	 sequence	and	activity	 for	 a	 single	

model	 cell	 type,	we	built	 a	 deep	 learning	model,	DeepSTARR,	 that	 accurately	predicts	

enhancer	activity	for	two	different	transcriptional	programs	directly	from	DNA	sequence.	

DeepSTARR	learned	 important	TF	motif	 types	and	higher-order	syntax	rules:	different	

instances	of	 the	same	TF	motif	are	not	 functionally	equivalent,	and	the	differences	are	

determined	 by	 motif	 flanks	 and	 inter-motif	 distances.	 These	 types	 of	 rules	 are	 also	

important	 in	 human	 enhancers	 and	 will	 be	 relevant	 to	 predict	 the	 impact	 of	 genetic	

variants	linked	to	disease	in	the	human	genome.	

The	 discovery	 that	 relatively	 rare	 sequence	 features	 can	 be	 important	 and	

predictive	of	enhancer	activity	is	important	and	unexpected	and	highlights	the	potential	

of	unbiased	deep	learning	models	that	are	not	based	on	over-representation47,77.	The	fact	

that	motifs	 are	 often	 not	 arranged	 in	 optimal	 syntax	 agrees	with	 previous	work	 that	

suggested	that	suboptimal	enhancers	might	have	evolved	to	allow	cell	type	specificity12,13.	

Consistent	with	this	interpretation,	we	observed	optimized	sequences	of	housekeeping	

enhancers	that	operate	in	all	cell	types.	

Our	results	reveal	an	underappreciated	property	of	enhancers:	identical	instances	

of	the	same	TF	motif	with	non-equivalent	contributions	to	enhancer	activity.	Although	the	

observation	 that	 only	 a	 small	 fraction	 of	 potential	 motifs	 throughout	 the	 genome	 is	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.05.463203doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463203
http://creativecommons.org/licenses/by-nc-nd/4.0/


18	

actually	 bound21,78,79	 suggests	 that	 motif	 instances	 cannot	 all	 be	 equivalent,	 the	 non-

equivalence	of	motif	instances	within	the	same	enhancer	is	surprising.	In	fact,	previous	

studies	 and	 computational	models	 have	 typically	 considered	 different	motif	 instances	

solely	 according	 to	 their	 PWM	scores	 or	 even	 as	 equivalent17,26,80.	 The	 contribution	of	

motif	instances	depended	on	high-order	motif	syntax	rules	such	as	inter-motif	distances	

that	are	not	captured	by	traditional	PWM	models	and	need	to	be	modelled	within	the	full	

enhancer	sequence.	This	is	in	line	with	the	recently	reported	limitations	of	PWM	models	

for	predicting	 the	effects	of	noncoding	variants	on	TF	binding	 in	vitro81	 and	 improved	

performance	 of	 deep	 learning	 models	 for	 the	 prediction	 of	 motif	 instances	 bound	 in	

vivo47,57.	Together	these	results	suggest	that	motif	instances	need	to	be	analysed	within	

their	cis-regulatory	context,	which	should	improve	our	ability	to	predict	and	interpret	the	

impact	 of	 disease-related	 sequence	 variants	 that	 typically	 affect	 individual	 motif	

instances.	

The	rules	 learned	by	DeepSTARR	allowed	the	de	novo	design	of	synthetic	S2	cell	

enhancers	with	desired	activity	 levels,	which	not	only	demonstrates	the	validity	of	the	

model	and	its	rules	but	also	illustrates	the	power	of	this	approach.	Although	libraries	of	

synthetic	 elements	 have	 been	 used	 to	 explore	 enhancer	 structure68,	 it	 has	 remained	

impossible	to	build	fully	synthetic	sequences	with	specific	characteristics.	It	is	interesting	

how	these	synthetic	enhancers	are	of	similar	complexity	as	endogenous	enhancers,	e.g.	in	

terms	of	motif	number	and	diversity,	and	that	a	vast	number	of	different	sequences	can	

have	 similar	 enhancer	 strengths,	 highlighting	 regulatory	 sequence	 flexibility	 and	

evolutionary	 opportunities.	 We	 expect	 that	 combining	 DeepSTARR	 with	 emerging	

algorithms	 that	 allow	 the	 direct	 generation	 of	 DNA	 sequences	 from	 deep	 learning	

models54	 will	 provide	 unanticipated	 opportunities	 for	 the	 engineering	 of	 synthetic	

enhancers.		

A	next	key	challenge	for	the	field	will	be	to	generalize	such	models	from	individual	

deeply	 characterized	model	 cell	 lines	 to	 all	 cell	 types	 of	 an	 organism	 or	 even	 across	

species.	This	 task	 is	 challenging	because	enhancers	 form	 the	basis	of	differential	 gene	

transcription,	 and	 their	 activities	 are	 inherently	 cell-type	 specific.	 The	 underlying	

sequences	and	rules	must	therefore	–	by	definition	–	also	differ	between	cell	types,	at	least	

to	some	extent.	It	is	well	known	for	example	that	enhancers	that	are	active	in	different	

cell	types	or	tissues	contain	different	TF	motifs26,80,82,	which	enables	the	binding	of	cell	

type-specific	TFs.	Therefore,	 it	 remains	unclear	how	and	to	what	extent	cis-regulatory	

rules	generalize	or	even	apply	universally.	

We	show	here	that	differences	between	motif	instances	as	well	as	the	importance	

of	 motif	 flanks	 and	 distances	 generalize	 from	 Drosophila	 to	 human	 enhancers.	
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Unexpectedly,	 for	AP-1	motifs,	which	we	 could	 assess	 in	both	 species,	 the	Drosophila-

trained	DeepSTARR	model	was	able	to	predict	the	importance	of	AP-1	instances	in	human	

enhancers	(PCC=0.42;	Fig	S12)	and	in	both	species	ETS-AP-1	pairs	synergize	only	at	short	

distances	but	not	at	 longer	ones	(mode	1;	Fig	S8C	and	Fig	6E,F,	S11B).	Ultimately,	 this	

demonstrates	 that	 although	 the	 specific	 rules	 vary	 between	 TF	motif	 types	 and	motif	

combinations,	 the	 types	 of	 rules	 as	well	 as	 some	 specific	 rules	 apply	more	 generally.	

Dissecting	important	types	of	rules	in	model	cell	lines	together	with	the	wealth	of	genomic	

data	 across	 many	 cell	 types	 (such	 as	 those	 from	 ENCODE)	 should	 unveil	 the	 gene-

regulatory	information	in	our	genomes	and	a	general	cis-regulatory	code.	 	
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Methods 
 

UMI-STARR-seq 

 

Cell culture  

Drosophila S2 cells 

Schneider ʹ cells were grown in Schneider’s Drosophila Medium (Gibco; 21720-024) 

supplemented with 10% heat inactivated FBS (Sigma; F7524) at 27ºC. Cells were 

passaged every 2-3 days.  

 

Human HCT116 cells 

Human HCT116 cells were cultured in DMEM (Gibco; 52100-047) supplemented with 

10% heat inactivated FBS (Sigma; F7524) and 2mM L-Glutamine (Sigma; G7513) at 37ºC 

in a 5% C02-enriched atmosphere. Cells were passaged every 2-3 days.  

 

Electroporation 

The MaxCyte-STX system was used for all electroporations. S2 cells were electroporated 

at a density of 50 x 107 cells per 100ρL and ͷρg of DNA using the “Optimization 1” 

protocol. HCT116 cells were electroporated at a density of 1 x 107 cells per 100µL and 

ʹ0ρg of DNA using the preset “HCT11͸” program.  

 

UMI-STARR-seq experiments  

Library cloning 

Drosophila genome-wide libraries were generated by shearing genomic DNA from the 

sequenced D.mel strain (y; cn bw sp) to an average of 200 bp fragments. Inserts were 

cloned into the standard Drosophila STARR-seq vector61 containing either the DSCP or 

Rps12 core-promoters, and libraries grown in 6l of LB-Amp.  

Drosophila and human oligo libraries were synthesized by Twist Bioscience including 249 

bp enhancer sequence and adaptors for library cloning. Fragments from the Drosophila 

library were amplified (primers see Supplementary Table 1) and cloned into Drosophila 

STARR-seq vectors containing either the DSCP or Rps12 core-promoters using Gibson 

cloning (New England BioLabs; E2611S). The oligo library for human STARR-seq screens 

was amplified (primers see Supplementary Table 1) and cloned into the human STARR-

seq plasmid with the ORI in place of the core promoter83. Libraries were grown in 2l LB-

Amp.  

All libraries were purified with Qiagen Plasmid Plus Giga Kit (cat. no. 12991).  
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Drosophila S2 cells  

UMI-STARR-seq was performed as described previously61,62. In brief, the screening 

libraries were generated from genomic DNA isolated of the sequenced D.mel strain (y; cn 

bw sp) or synthesized as oligo pools by Twist Bioscience (see above). We transfected 400 

× 10^6 S2 cells total per replicate with ʹ0 μg of the input library using the MaxCyte 

electroporation system. After 24 hr incubation, poly-A RNA was isolated and processed 

as described before62. Briefly: after reverse transcription and second strand synthesis a 

unique molecular identifier (UMI) was added to each transcript. This is followed by two 

nested PCR steps, each with primers that are specific to the reporter transcripts such that 

STARR-seq does not detect endogenous cellular RNAs. 

 

Human HCT116 cells  

STARR-seq was performed as described previously61,62,83. Screening libraries were 

generated from synthesized oligo pools by Twist Bioscience (see above). We transfected 

80 × 10^6 HCT116 cells total per replicate with 160 µg of the input library using the 

MaxCyte electroporation system. After 6 hr incubation, poly-A RNA was isolated and 

further processed as described before62.  

 

Illumina sequencing 

Next-generation sequencing was performed at the VBCF NGS facility on an Illumina HiSeq 

2500, NextSeq 550 or NovaSeq SP platform, following manufacturer’s protocol. Genome-

wide UMI-STARR-seq screens were sequenced as paired-end 36 cycle runs (except the 

developmental input library, as paired-end 50 cycle runs) and Twist-oligo library screens 

were sequenced as paired-end 150 cycle runs, using standard Illumina i5 idexes as well 

as unique molecular identifiers (UMIs) at the i7 index.  

 

Genome-wide UMI-STARR-seq data analysis 

Paired-end genome-wide UMI-STARR-seq RNA and DNA input reads (36 bp; except the 

developmental input library that was 50 bp) were mapped to the Drosophila genome 

(dm3), excluding chromosomes U, Uextra, and the mitochondrial genome, using Bowtie 

v.1.2.284. Mapping reads with up to three mismatches and a maximal insert size of 2 kb 

were kept. For paired-end RNA reads that mapped to the same positions, we collapsed 

those that have identical UMIs (10 bp, allowing one mismatch) to ensure the counting of 

unique reporter transcripts (Supplementary Table 2). We further computationally 

selected both RNA and input fragments of length 150-250 bp to only capture active 
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sequences derived from short fragments. After processing the two biological replicates 

separately, we pooled both replicates for developmental and housekeeping screens for 

further analyses. 

Peak calling was performed as described previously61. Peaks that had a hypergeometric 

p-value <= 0.001 and a corrected enrichment over input (corrected to the conservative 

lower bound of a 95% confidence interval) greater than 3 were defined as enhancers and 

resized to 249 bp (same length as used in oligo libraries) (Supplementary Table 3). Non-

corrected enrichment over input was used as enhancer activity metric. Enhancers were 

classified as developmental or housekeeping based on the screen with the highest 

activity. 

 

Oligo library UMI-STARR-seq data analysis 

Oligo library UMI-STARR-seq RNA and DNA input reads (paired-end 150 bp) were 

mapped to a reference containing 249 bp long sequences containing both wildtype and 

mutated fragments from the Drosophila or human libraries using Bowtie v.1.2.284. For the 

Drosophila library we demultiplexed reads by the i5 and i7 indexes and oligo identity. 

Mapping reads with the correct length, strand and with no mismatches (to identify all 

sequence variants) were kept. Both DNA and RNA reads were collapsed by UMIs (10 bp) 

as above (Supplementary Table 2). 

We excluded oligos with less than 10 reads in any of the input replicates and added one 

read pseudocount to oligos with zero RNA counts. The enhancer activity of each oligo in 

each screen was calculated as the log2 fold-change over input, using all replicates, with 

DESeq285. We used the counts of wildtype negative regions in each library as scaling 

factors between samples. This normalization only changes the position of the zero and 

consequently does not affect the calculation of log2 fold-changes between different 

sequences or the p-values for the statistical tests used. 

 

Deep Learning 

 

Data preparation 

We selected all windows at the summit of developmental and housekeeping enhancers, 

in addition to three windows on either side of the regions (stride 100 bp). The remaining 

part of the genome was binned into 249 bp windows with a stride of 100 bp, excluding 

chromosomes U, Uextra, and the mitochondrial genome. We only included bins with more 

than five reads in the input and at least one read in the RNA of both developmental and 

housekeeping screens. To have a diversity of inactive sequences, we selected (1) 20,000 
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random bins overlapping accessible regions in different Drosophila cell types (S2, kc167 

and OSC61,86) and embryogenesis stages87, as well as all bins overlapping (2) enhancers 

from different Drosophila cell types (OSC and BG326) and (3) inducible enhancers in S2 

cells for two different stimuli (ecdysone88 and Wnt signaling89). Lastly, we added 59,081 

random windows with a range of enhancer activity levels. We augmented our dataset by 

adding the reverse complement of each original sequence, with the same output, ending 

up with 242,026 examples (484,052 post-augmentation). Sequences from the first 

(40,570; 8.4%) and second half of chr2R (41,186; 8.5%) were held out for validation and 

testing, respectively. 

 

DeepSTARR model architecture and training 

DeepSTARR was designed as a multi-task convolutional neural network (CNN) that uses 

one-hot encoded 249 bp long DNA sequence (A=[1,0,0,0], C=[0,1,0,0], G=[0,0,1,0], 

T=[0,0,0,1]) to predict both its developmental and housekeeping enhancer activities (Fig 

1C). We adapted the Basset CNN architecture45 and built DeepSTARR with four 1D 

convolutional layers (filters=246,60,60,120; size=7,3,5,3), each followed by batch 

normalization, a ReLU non-linearity, and max-pooling (size=2). After the convolutional 

layers there are two fully connected layers, each with 256 neurons and followed by batch 

normalization, a ReLU non-linearity, and dropout where the fraction is 0.4. The final layer 

mapped to both developmental and housekeeping outputs. Hyperparameters were 

manually adjusted to yield best performance on the validation set. The model was 

implemented and trained in Keras (v.2.2.490) (with TensorFlow v.1.14.091) using the 

Adam optimizer92 (learning rate = 0.002), mean squared error (MSE) as loss function, a 

batch size of 128, and early stopping with patience of ten epochs. Model training, 

hyperparameter tuning and performance evaluation were performed on different sets of 

genomic regions in distinct chromosomes. 

 

Performance evaluation 

The performance of the model was evaluated separately for developmental and 

housekeeping predictions on the held-out test sequences. We used the Pearson 

correlation coefficient (PCC) across all bins for a quantitative genome-wide evaluation 

and the area under the precision-recall curve (AUPRC; calculated using pr.curve from R 

package PRROC v.1.3.192) for enhancer classification (enhancers vs. 2,685 negative 

control regions from the test set). 
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To test the robustness of the model, we trained 1,000 DeepSTARR models with the same 

set of hyperparameters and compared their performance. This accounted for the 

stochastic heterogeneity due to the random initialized weights in the neural network. 

 

Prediction on full Drosophila genome 

We extracted 249 bp sequences tiled across the Drosophila dm3 genome with a stride of 

20 bp using ‘‘bedtools makewindows’’ (parameters -w 249 -s 20’) and ‘‘bedtools 

getfasta”93. We next predicted the developmental and housekeeping enhancer activity of 

each genomic window with DeepSTARR and averaged these per nucleotide to obtain 

genome-wide coverage. The DeepSTARR predicted coverage tracks are shown as 

examples in Fig 1B and S1A,B and are available at 

https://genome.ucsc.edu/s/bernardo.almeida/DeepSTARR_manuscript. 

 

Models for comparison 

The performance of DeepSTARR in the test set sequences was compared with two 

different methods: (1) a gapped k-mer support vector machine (gkm-SVM)39 and (2) a 

lasso regression model based on TF motif counts (Fig S1D). 

(1) We used a 10-fold cross-validation scheme to train a developmental and a 

housekeeping gkm-SVM model to classify 249 bp DNA sequences into enhancers. Training 

was performed using developmental or housekeeping enhancers and a set of 21,463 

negative control regions from the training set. The gkm-SVMs were done using LS-GKM94 

and the following parameters: (dev) gkmtrain -t 0 -l 8 -k 5 -x 10; (hk) gkmtrain -t 0 -l 11 -

k 7 -x 10. We used the resulting support vectors of each trained model to score the DNA 

sequences of the test set by running gkmpredict and used these scores for the PCC and 

AUPRC analysis. 

(2) We trained lasso regression models for developmental and housekeeping enhancer 

activity using the counts of 6,502 known TF motifs (see “Reference compendium of non-

redundant TF motifs” below) as features across Ͷ0,000 random selected bins from the 

training set. Motif counts were calculated using the matchMotifs function from R package 

motifmatchr (v.1.4.095) with the following parameters: genome = 

“BSgenome.Dmelanogaster.UCSC.dm3”, p.cutoff = 5e-04, bg="even". The model was trained 

using the optimal lambda retrieved from 10-fold cross-validation and the glmnet function 

from R package glmnet (v.2.0-1696). 
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Nucleotide contribution scores 

We used DeepExplainer (the DeepSHAP implementation of DeepLIFT, see refs. 55,63,64; 

update from 

https://github.com/AvantiShri/shap/blob/master/shap/explainers/deep/deep_tf.py) 

to compute contribution scores for all nucleotides in all sequences in respect to either 

developmental or housekeeping enhancer activity. We used 100 dinucleotide-shuffled 

versions of each input sequence as reference sequences. For each sequence, the obtained 

hypothetical importance scores were multiplied by the one-hot encoded matrix of the 

sequences to derive the final nucleotide contribution scores, which were visualized using 

the ggseqlogo function from R package ggseqlogo (v.0.197). 

 

Motif discovery using TF–Modisco 

To consolidate motifs, we ran TF–Modisco (v.0.5.12.056) on the nucleotide contribution 

scores for each enhancer type separately using all developmental or housekeeping 

enhancers (Fig 2B). We specified the following parameters: sliding_window_size=15, 

flank_size=5, max_seqlets_per_metacluster=50000 and 

TfModiscoSeqletsToPatternsFactory(trim_to_window_size=15, initial_flank_to_add=5). 

 
Reference compendium of non-redundant TF motifs 

 

Reference compendium of non-redundant TF motifs 

6,502 TF motif models were obtained from iRegulon 

(http://iregulon.aertslab.org/collections.html 98) covering the following databases: 

Bergman (version 1.199), CIS-BP (version 1.02100), FlyFactorSurvey (2010101), HOMER 

(2010102), JASPAR (version 5.0_ALPHA103), Stark (2007104) and iDMMPMM (2009105). We 

systematically collapsed redundant motifs by similarity by a previously described 

approach76. Specifically, we computed the distances between all motif pairs using 

TOMTOM106 and performed hierarchical clustering using Pearson correlation as the 

distance metric and complete linkage using the hclust R function. The tree was cut at 

height 0.8, resulting in 901 non-redundant motif clusters that were manually annotated 

(Fig S2A-E). Clustering of motifs from each cluster and their logos were visualized using 

the motifStack R package (v.1.26.0107). The code and TF motif compendium are available 

from https://github.com/bernardo-de-almeida/motif-clustering. 
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TF motif enrichment analyses in developmental and housekeeping enhancers 

We tested the enrichment of each TF motif in developmental or housekeeping enhancers 

over negative genomic regions (Fig S2F,G, Supplementary Table 4). Counts for each motif 

in each sequence were calculated using the matchMotifs function from R package 

motifmatchr (v.1.4.095) with the following parameters: genome = 

“BSgenome.Dmelanogaster.UCSC.dm3”, p.cutoff = 1e-04, bg="genome". For each enhancer 

type, we assessed the differential distribution of each motif between the enhancers and 

negative regions by two-sided Fisher’s exact test. Obtained P-values were corrected for 

multiple testing by Benjamini-Hochberg procedure and considered significant if FDR ζ 

0.05. To remove motif redundancy, only the most significant TF motif per motif cluster 

was shown. 

 

TF motif mutagenesis in Drosophila S2 enhancers 

 

Oligo library design 

Selection of enhancer regions 

A comprehensive library of 5,082 wildtype enhancer sequences in D. melanogaster S2 

cells was compiled by selecting previously published developmental61, housekeeping40 

and inducible (ecdysone88 and Wnt signaling89) enhancers. 249 bp sequences centered on 

the enhancers’ summit in both forward and reverse orientation were retrieved. We added 

524 249-bp negative genomic regions in both orientations as controls (Supplementary 

Table 5). 

 

Generation of TF motif mutations 

We selected four predicted developmental motifs (GATA, AP-1, twist, Trl), three predicted 

housekeeping motifs (Dref, Ohler1, Ohler6) and three control motifs (length-matched 

random motifs to control for enhancer-sequence perturbation). For each motif type, we 

mapped all instances using string-matching (GATA: GATAA; AP-1: TGA.TCA; twist: 

CATCTG/CATATG; Trl: GAGAG; Dref: ATCGAT; Ohler1: GTGTGACC; Ohler6: AAAATACCA; 

control: TAGG, GGGCT, CCTTA) in 2,194 enhancers (both motif orientations) and mutated 

all instances both simultaneously and each instance individually to a motif shuffled 

variant (Supplementary Table 5; Fig S3A). Each instance for a given motif was mutated 

always to the same shuffled variant to allow the comparison of effects between instances 

of the same motif type. We designed motif-mutant sequences for each enhancer only for 

the orientation with the strongest wildtype enhancer activity. In addition, for each motif 
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type we repeated mutations with two other different shuffled variants in 50 enhancers to 

control for the impact of the selected shuffled variant (Supplementary Table 5; Fig S3C). 

 

Enhancers with swapped GATA motif flanks 

We selected 100 developmental enhancers from above that contain 2 GATA instances 

(inst1 and inst2) with different importance as predicted by DeepSTARR and swapped the 

flanking nucleotides (both 2 bp and 5 bp separately) between both instances (Fig 4C, 

S7B). For each enhancer, we designed sequences where the flanks of inst1 were replaced 

by the flanks of inst2 and vice versa, resulting in sequences where both the two GATA 

instances contained either the flanks of inst1 or the flanks of inst2. In addition, when 

replacing the flanks of inst1 by the flanks of inst2, we also mutated inst2 to assess how the 

flanks of inst2 affected the contribution of inst1. The opposite was also done, with the 

flanks of inst2 being replaced by the flanks of inst1 together with mutation of inst1. The 

mutated sequences are listed in Supplementary Table 5. 47 active enhancers contained 

one strong and one weak GATA instances (η 2-fold difference as assessed afterwards by 

mutagenesis) were used for the analyses in Fig 4C and S7B (Supplementary Table 11). 

 

Designing of synthetic S2 developmental enhancers 

1 billion random 249 bp DNA sequences were generated in bash with the following code: 

cat /dev/urandom | tr -dc 'ACGT' | fold -w 249 | head -n 1000000000. Bowtie v.1.2.2 84 was 

used to remove sequences that exist in the D. melanogaster genome, which were none. 

The developmental enhancer activity of these sequences was predicted using DeepSTARR 

and 249 sequences spanning different activity levels were selected for the oligo library 

(Supplementary Table 5 and 17). 

 

Oligo library synthesis and UMI-STARR-seq 

The Drosophila enhancers’ motif mutagenesis oligo library contained wildtype (both 

orientations) and motif-mutant enhancers, enhancers with swapped GATA motif flanks 

and synthetic enhancer sequences (Supplementary Table 5). All sequences were designed 

using the dm3 genome version. The enhancer sequences spanned 249 bp total, flanked by 

the Illumina i5 (25 bp; 5′ -TCCCTACACGACGCTCTTCCGATCT) and i7 (26 bp; 5′ 

AGATCGGAAGAGCACACGTCTGAACT) adaptor sequences upstream and downstream, 

respectively, serving as constant linkers for amplification and cloning. The resulting 

21,758-plex 300-mer oligonucleotide library was synthesized by Twist Biosciences Inc. 

UMI-STARR-seq using this oligo library was performed (“UMI-STARR-seq experiments”) 

and analyzed (“Oligo library UMI-STARR-seq data analysis”) as described above. We 
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performed three independent replicates for developmental and housekeeping screens 

(correlation PCC=0.93-0.98; Fig S3B). 

 

TF motif mutation analysis and equivalency 

From the candidate 249 bp enhancers, we identified 855 active developmental and 905 

active housekeeping Drosophila enhancers (log2 wildtype activity in oligo UMI-STARR-

seq >= 3.15 and 2.51, respectively; the strongest negative region in each screen) that we 

used in the subsequent TF motif mutation analyses. The impact of mutating all instances 

of a TF motif type simultaneously or each instance individually was measured as the log2 

fold-change enhancer activity between the respective mutant and wildtype sequences 

(Supplementary Table 6 and 8). This was done separately for developmental and 

housekeeping enhancer activities. 

Motif non-equivalency across all enhancers (Fig 3B, S5B,D) or within the same enhancer 

(Fig 3A,C) was assessed by comparing the impact of mutating individual instances of the 

same TF motif, i.e. the log2 fold-changes of each instance (Supplementary Table 8). For 

the comparison between instances in the same enhancer, only enhancers that require the 

TF motif (> 2-fold reduction in activity after mutating all instances) and contain two or 

more instances were used. Motif instances with >2-fold different contributions in the 

same enhancer were considered as non-equivalent. The same comparison across 

enhancers or within the same enhancer was performed for the three control motifs. 

 

Motif syntax features 

 

DeepSTARR predicted global importance of motif types and comparison with motif 

enrichment 

To quantify the global importance of all known TF motifs to enhancer activity in silico (see 

ref. 58), we embedded each motif from the 6,502 TF motif compendium at five different 

locations and in both strands in 100 random backbone DNA sequences and predicted 

their developmental and housekeeping enhancer activity with DeepSTARR. The 249 bp 

backbone sequences were generated by sampling the base at each position with equal 

probability. The five different locations were the same for all motifs, centered at positions 

25, 75, 125 (middle of the 249 bp oligo), 175 and 225. For each motif, we used the 

sequence corresponding to the highest affinity according to the annotated PWM models. 

The average activity across the different locations per backbone was divided by the 

backbone initial activity to get the predicted increase in enhancer activity per TF motif. 
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The resultant log2 fold-change was averaged across all 100 backbones to derive the final 

global importance of each TF motif. 

The global motif importance predicted by DeepSTARR was compared with the 

enrichment of TF motifs at developmental and housekeeping enhancers, measured as the 

two-sided Fisher’s exact test logʹ odds ratio (described in “TF motif enrichment analyses 

in developmental and housekeeping enhancers”) (Fig ʹD, Supplementary Table 7). To 

remove motif redundancy, only the TF motif with the strongest predicted global 

importance or the strongest motif enrichment per motif cluster are shown in Fig 2D. 

 

DeepSTARR predictions for the contribution of motif instances 

We used two complementary approaches to measure the predicted contribution of each 

motif instance by DeepSTARR. 

First, we measured the predicted importance of all string-matched instances of each TF 

motif type in 9,074 developmental enhancers, 6,369 housekeeping enhancers or 26,938 

negative genomic regions (Fig S5A,C; Supplementary Table 9). The predicted importance 

of an instance was calculated as the average developmental or housekeeping DeepSTARR 

contribution scores over all its nucleotides. These scores represent the global 

contribution of motif instances captured by the model and were used for the analyses of 

figures: 4A,B, S5A,C, S7A. 

Second, to compare with the experimentally derived motif importance through motif 

mutagenesis, we used DeepSTARR to predict the log2 fold-change between wildtype and 

the motif-mutant enhancer sequences included in the oligo library for all instances of the 

different motif types (Fig 3B,D, S6). This was done by calculating the log2 fold-change 

between the predicted activity of the wildtype and respective motif-mutant sequences. 

Since the experimentally derived importance can be dependent on the shuffled mutant 

variant selected, this provides a more direct evaluation of the capability of DeepSTARR to 

predict the importance of a motif instance assessed by experimental mutagenesis. 

 

Scoring of TF motif instances with PWM motif scores 

To assess how the PWM motif models predict the importance of a motif instance, we 

scored the wildtype sequence of each mutated motif instance (extended 10 nucleotides 

on each flank to account for the flanking sequence) with the PWM models of the selected 

TF motifs (Supplementary Table 10). We used the matchMotifs function from R package 

motifmatchr (v.1.4.0; genome = “BSgenome.Dmelanogaster.UCSC.dm3”, bg="even"95) with 

a p-value cutoff of 1 to retrieve the PWM scores of all sequences. These PWM scores were 

compared with the experimental log2 fold-changes using Pearson correlation (Fig 3D). 
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We tested different PWM models for each TF motif if available and reported always the 

one with the best correlation (Supplementary Table 10). 

 

Correlation between motif importance and motif flanks 

String-matched motif instances of each TF were sorted by their predicted (DeepSTARR) 

or experimentally derived (minus signed (-) mutation log2 fold-change) importance. 

Their 5 flanking nucleotides were shown using heatmaps and the importance of each 

nucleotide at each flanking position summarized using box plots (Fig 4A, S7A). Significant 

differences between the four nucleotides per position were assessed through Welch One-

Way ANOVA test followed by FDR multiple testing correction. The motif logos represent 

the frequency of each nucleotide at each position among the top 90th percentile instances 

and were compared with the logos of existing PWM models (Fig 4B). 

 

In silico motif distance preferences 

Two consensus TF motifs were embedded in 60 random backbone 249 bp DNA 

sequences, MotifA in the center and MotifB at a range of distances (d) from MotifA, both 

up- and downstream (Fig 5A, S8). Backbone sequences were generated by sampling the 

base at each position with equal probability. DeepSTARR was used to predict the 

developmental or housekeeping activity of the backbone synthetic sequences (1) without 

any motif (b), (2) only with MotifA in the center (A), (3) only with MotifB d-bases up- or 

downstream (B) and (4) with both MotifA and MotifB (AB). The cooperativity between 

MotifA and MotifB at each distance d was then defined as the fold-change between AB and 

(b + (A-b) + (B-b) = A+B-b), where a value of 1 means an additive effect or no synergy 

between the motifs, and a value higher than 1 means positive synergy. The median of fold-

changes across the 60 backbones was used as the final cooperativity scores. This analysis 

was performed for all motif pair combinations of AP-1, SREBP, GATA, Trl, twist and ETS 

motifs for developmental enhancer activity, and Dref, Ohler1 and Ohler6 for 

housekeeping enhancer activity in both strand orientations. Pairs with a negative control 

motif (GGGCT) were also included. 

 

Enrichment of motif pairs at different distances in genomic enhancers 

We obtained the positions of the different TF motif instances across all 9,074 

developmental enhancers, 6,369 housekeeping enhancers and 26,938 negative genomic 

regions as described above (“Correlation between motif number and enhancer activity”). 

To compute whether MotifA is located within a certain distance (bins: 0-25, 25-50, 50-75, 

75-100, 100-125, 125-150, 150-250 bp) of MotifB more/less frequently in enhancers than 
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in negative sequences, we counted the number of times a MotifA instance is at each 

distance bin to a MotifB instance in enhancers and in negative sequences. The enrichment 

or depletion of motif pairs at each bin was tested with two-sided Fisher’s exact test and 

the log2 odds ratio used as metric. Obtained P-values were corrected for multiple testing 

by Benjamini-Hochberg procedure and considered significant if FDR ζ 0.05. We 

performed this analysis separately for all developmental motif pairs in developmental 

enhancers and all housekeeping motif pairs in housekeeping enhancers (Fig 5B, S9A,C,D). 

 

Association between motif pair distances and enhancer activity 

We obtained the positions of the different TF motif instances across all 9,074 

developmental enhancers, 6,369 housekeeping enhancers and 26,938 negative genomic 

regions as described above (“Correlation between motif number and enhancer activity”). 

For each pair of motif instances at each distance bin (0-25, 25-50, 50-75, 75-100, 100-

125, 125-150, 150-250 bp), we tested the association between enhancer activity and the 

presence of the pair at the respective distance bin using a multiple linear regression, 

including as independent variables the number of instances for the different 

developmental or housekeeping TF motif types. The linear model coefficient was used as 

metric and considered significant if the FDR-corrected p-values ζ 0.05. We performed this 

analysis separately for all developmental motif pairs in developmental enhancers and all 

housekeeping motif pairs in housekeeping enhancers (Fig 5B, S9B-D). 

 

Validation of motif distance preferences by motif mutagenesis 

To test how the importance of GATA and AP-1 instances associate with the absolute 

distance d to a second GATA instance, we compared the log2 fold-change in enhancer 

activity after mutating individual GATA (Fig 5D) or AP-1 (Fig 5E) instances at close (< 25 

bp; n=14 and 29, respectively) or longer (> 50 bp; n=129 and 38) distance to a second 

GATA instance. Only pairs of non-overlapping motif instances were used. A Wilcoxon 

rank-sum test was used to test this association. 

 

TF motif mutagenesis in human HCT116 enhancers 

 

TF motif enrichment 

We characterized the motif composition of 5,891 strong STARR-seq enhancers in human 

HCT116 cells83 using the 501 bp sequence centered on the summit. We generated 5,891 

negative GC-matched genomic regions using the genNullSeqs function from R package 

gkmSVM108. 1,689 TF motif PWM models and respective motif clustering information 
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were retrieved from Vierstra et al.,76 covering the following databases: JASPAR (2018), 

Taipale HT-SELEX (2013) and HOCOMOCO (version 11). Counts for each motif in each 

501 bp enhancer and negative sequence were calculated using the matchMotifs function 

from R package motifmatchr (v.1.4.095) with the following parameters: genome = 

“BSgenome.Hsapiens.UCSC.hg19”, p.cutoff = 1e-04, bg="genome". We assessed the 

differential distribution of each motif between the enhancers and negative regions by 

two-sided Fisher’s exact test. We selected the nine TF motifs with the strongest 

enrichment in enhancers: AP-1, P53, MAF, CREB1, ETS, EGR1, MECP2, E2F1 and 

Ebox/MYC (Supplementary Table 12). 

 

TF motif mutagenesis oligo library design and synthesis 

Generation of TF motif mutations 

For UMI-STARR-seq of wild type and mutant enhancers, we selected 3,200 enhancer 

candidates, defining short 249 bp windows (the limits of oligo synthesis), and mapped 

the position of all instances of the nine TF motif types in these candidates using the 

matchMotifs function from R package motifmatchr (v.1.4.095) with the following 

parameters: genome = “BSgenome.Hsapiens.UCSC.hg19”, p.cutoff = 5e-04, bg="genome". 

Overlapping instances (minimum 70%) for the same TF motif were collapsed. We also 

mapped all instances of four control motifs (length-matched random motifs to control for 

enhancer-sequence perturbation) using string-matching. We then designed enhancer 

variants with all instances of each motif type mutated simultaneously or individually to a 

motif shuffled variant (Supplementary Table 13; Fig S10A). Each instance for a given 

motif was mutated always to the same shuffled variant to allow the comparison of effects 

between motif instances. We designed motif-mutant sequences for each enhancer only 

for the orientation with the strongest activity in the genome-wide STARR-seq. In addition, 

for each motif type we repeated mutations with two other different shuffled variants in 

50 enhancers to control for the impact of the selected shuffled variant (Supplementary 

Table 13; Fig S10F). 

 

Oligo library synthesis and UMI-STARR-seq 

The final human enhancers’ motif mutagenesis library contained 3,200 wildtype and 

18,780 motif-mutant enhancer sequences that we combined with 920 249-bp negative 

genomic regions as controls (Supplementary Table 13). All sequences were designed 

using the hg19 genome version. Apart from the specific sequences, this human motif 

mutagenesis library exhibits the same specifications as the Drosophila library and was 

also synthesized by Twist Biosciences Inc. UMI-STARR-seq using this oligo library was 
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performed (“UMI-STARR-seq experiments”) and analyzed (“Oligo library UMI-STARR-seq 

data analysis”) as described above. We performed two independent replicates 

(correlation PCC=0.99; Fig S10B). 

 

TF motif mutation analysis 

From the 3,200 designed candidate 249 bp enhancers, we identified 1,083 active short 

human enhancers (log2 wildtype activity in oligo UMI-STARR-seq >= 2.03, the strongest 

negative region; Fig S10C) that we used in the subsequent TF motif analyses. The impact 

of mutating all instances of a TF motif type simultaneously or each instance individually 

was calculated as the log2 fold-change enhancer activity between the respective mutant 

and wildtype sequences (Fig S10D,E, S11A; Supplementary Table 14 and 15). Motif non-

equivalency across all enhancers (Fig S11A) or within the same enhancer (Fig 6B,C) was 

assessed as in the Drosophila enhancers. 

 

Validation of important TF motif instances with genomic DNase I footprinting data 

We compared the importance of individual motif instances with genomic DNase I 

footprinting data of RKO cells (another human colon cancer cell line; 

https://www.vierstra.org/resources/dgf 76), as a surrogate for TF occupancy (Fig 6D). 

Footprints detected at different FPR adjusted p-value thresholds and coverage tracks 

with observed and expected cleavage counts were downloaded from 

https://resources.altius.org/~jvierstra/projects/footprinting.2020/per.dataset/h.RKO-

DS40362/, in hg38 coordinates. All coordinates were converted to hg19 coordinates 

using the UCSC liftOver tool109 and the hg38ToHg19.over.chain chain file 

(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToHg19.over.chain.

gz). For each TF motif type, a Wilcoxon rank-sum test was used to determine whether the 

mutation log2 fold-change of instances overlapping TF footprints (FPR threshold of 

0.001) is significantly greater or less than the one of instances not overlapping footprints. 

Only instances within HCT116-accessible enhancers were used in the analysis. Enhancers 

were defined as accessible if they overlap any of the DNase-seq peaks from the following 

ENCODE75 identifiers (hg19 coordinates) (https://www.encodeproject.org/): 

ENCFF001SQU, ENCFF001WIJ, ENCFF001WIK, ENCFF175RBN, ENCFF228YKV, 

ENCFF851NWR, ENCFF927AHJ, ENCFF945KJN and ENCFF360XGA. 

 

Association between motif syntax rules and the contribution of TF motif instances 

For each TF motif type, we built a multiple linear regression model to predict the 

contribution of its individual instances (log2 fold-changes) using as covariates the 
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number of instances of the respective motif type in the enhancer, the motif core (defined 

as the nucleotides included in each TF motif PWM model) and flanking nucleotides (5 bp 

on each side), and the distance to all other TF motifs (close: < 25 bp; intermediate: η 25 

bp and ζ 50 bp; distal: >50 bp) (Fig 6E, S11B-D). Only motif instances that start after 

position 5 and end before position 245 of the 249 bp oligos were used, in order to be able 

to retrieve their 5 bp flanking sequences. In addition, for the motif distance analyses only 

non-overlapping motif pairs were used. All models were built using the Caret R package 

(v. 6.0-80110) and 10-fold cross-validation. Predictions for each held-out test sets were 

used to compare with the observed log2 fold-changes and assess model performance. The 

linear model coefficients and respective FDR-corrected p-values were used as metrics of 

importance for each feature (Fig 6E, S11B). For each TF motif type, we compared the main 

regression model with a simple linear model only using the PWM scores as covariate (Fig 

S11D). 

 

DeepSTARR prediction of the importance of AP-1 instances in human enhancers 

We used the DeepSTARR model trained in Drosophila S2 enhancers to predict the 

importance of AP-1 instances in human HCT116 enhancers. This was done by predicting 

the activity of the wildtype and motif-mutant enhancer sequences included in the human 

oligo library for all AP-1 instances and further calculating the log2 fold-change. This 

predicted log2 fold-change was compared with the experimentally measured log2 fold-

change and its association assessed through Pearson correlation (Fig S12; Supplementary 

Table 16). 

 

Statistics and data visualization 

All statistical calculations and graphical displays have been performed in R statistical 

computing environment (v.3.5.1111) and using the R package ggplot2 (v.3.2.1112). 

Coverage data tracks have been visualized in the UCSC Genome Browser113 and used to 

create displays of representative genomic loci. In all box plots, the central line denotes the 

median, the box encompasses 25th to 75th percentile (interquartile range) and the 

whiskers extend to 1.5×Ԝinterquartile range.   
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Data availability 

The raw sequencing data are available from GEO (https://www.ncbi.nlm.nih.gov/geo/) 

under accession number GSE183939. Data used to train and evaluate the DeepSTARR 

model as well as the final pre-trained model are found on zenodo at 

https://doi.org/10.5281/zenodo.5502060. We also plan to release the pre-trained 

DeepSTARR model in the Kipoi model repository114. Genome browser tracks showing 

genome-wide UMI-STARR-seq and DeepSTARR predictions in Drosophila S2 cells, 

together with the enhancers used for mutagenesis, mutated motif instances and 

respective log2 fold-changes in enhancer activity, are available at 

https://genome.ucsc.edu/s/bernardo.almeida/DeepSTARR_manuscript. TF motif 

models were obtained from iRegulon (http://iregulon.aertslab.org/collections.html 98). 

DNase-seq data in Drosophila S2 cells were obtained from ref.61. Genomic DNase I 

footprinting data of RKO cells were downloaded from 

https://resources.altius.org/~jvierstra/projects/footprinting.2020/per.dataset/h.RKO-

DS40362/. HCT116 DNase-seq, H3K27ac and H3K4me1 data were obtained from 

ENCODE75 (https://www.encodeproject.org/) and ATAC-seq data from ref.74. 

 

Code availability 

Code used to process the genome-wide and oligo UMI-STARR-seq data and train 

DeepSTARR, as well as to predict the enhancer activity for new DNA sequences is 

available on GitHub (https://github.com/bernardo-de-almeida/DeepSTARR). The code 

and TF motif compendium are available from https://github.com/bernardo-de-

almeida/motif-clustering. 
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Supplementary	Figures	
	

Supplementary	 Figure	 1.	 Additional	 performance	 evaluation	 of	 DeepSTARR	

predictions.	

	
A-B)	 DeepSTARR	 predicts	 enhancer	 activity	 genome-wide.	 Genome	 browser	 screenshot	
depicting	UMI-STARR-seq	observed	(top)	and	predicted	(bottom)	profiles	for	both	promoters	
(development,	red;	housekeeping,	blue)	for	two	loci	located	on	held-out	test	chromosome	2R.	
C)	DeepSTARR	predicts	enhancer	activity	quantitatively.	Left:	Scatter	plots	of	predicted	vs.	
observed	developmental	(top)	and	housekeeping	(bottom)	enhancer	activity	signal	across	all	
DNA	 sequences	 in	 the	 train,	 validation	 and	 test	 set	 chromosomes.	 Right:	 Scatter	 plots	 of	
developmental	 (top)	 and	 housekeeping	 (bottom)	 enhancer	 activity	 signal	 between	 two	
biological	replicates	across	all	DNA	sequences	in	the	test	set	chromosome.	Color	reflects	point	
density.	 The	 PCC	 is	 denoted	 for	 each	 comparison.	D)	 DeepSTARR	 performed	 better	 than	
methods	based	on	known	TF	motifs	or	unbiased	k-mers.	Left:	Comparison	of	different	models	
for	 predicting	 enhancer	 activity.	 Bar-plots	with	 the	 PCC	 between	 observed	 and	 predicted	
activities	for	both	developmental	and	housekeeping	enhancer	types	across	all	DNA	sequences	
in	the	test	set	chromosome.	PCC	between	replicates	is	also	shown.	Middle:	Bar-plots	with	the	
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auPRC	for	the	classification	of	enhancer	sequences	from	the	test	set	for	the	different	models,	
compared	with	the	expected	by	a	random	model.	Right:	precision-recall	curve	for	the	different	
models	on	test	data.	Error	bars	represent	the	5th	and	95th	percentile	of	the	performance	of	
1000	DeepSTARR	models.	PCC:	Pearson	correlation	coefficient,	R2:	R-squared,	auPRC:	area	
under	precision-recall	curve.	
	

Supplementary	 Figure	 2.	 Developmental	 and	 housekeeping	 enhancers	 are	

enriched	in	different	TF	motifs.	

	
A)	 Hierarchically	 clustered	 heat	 map	 of	 the	 pairwise	 similarity	 scores	 between	 6,502	 TF	
motifs.	The	cluster	dendrogram	was	cut	at	height	0.8,	resulting	in	901	non-redundant	motif	
clusters	that	were	manually	annotated.	B-E)	Exemplar	TF	motif	clusters.	F)	Enrichment	of	TF	
motifs	 in	developmental	 (left)	 and	housekeeping	 (right)	 enhancers	over	negative	genomic	
regions.	Log2	Fisher’s	odds	ratio	compared	with	significance	(-log10	p-value)	 for	the	most	
significant	 TF	 motif	 per	 motif	 cluster,	 to	 remove	 motif	 redundancy.	 Motifs	 significantly	
(FDR<0.05)	 enriched	 or	 depleted	 are	 highlighted.	 G)	 Scatter	 plot	 comparing	 the	 motif	
enrichment	(log2	odds	ratio)	in	developmental	and	housekeeping	enhancers.	To	remove	motif	
redundancy,	 only	 the	 most	 significant	 TF	 motif	 per	 motif	 cluster	 was	 shown.	 Motifs	
significantly	(FDR<0.05)	enriched	or	depleted	in	each	or	both	enhancer	types	are	highlighted.	
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Supplementary	Figure	3.	Large-scale	systematic	TF	motif	mutagenesis.	

	
A)	 Overview	 of	 the	 (1)	 design,	 (2)	 synthesis	 and	 (3)	 UMI-STARR-seq	 screen	 of	 the	
mutagenesis	oligo	library.	UMI-STARR-seq	was	performed	with	a	developmental	(red)	and	a	
housekeeping	(blue)	promoter	in	D.	melanogaster	S2	cells.	B)	Pairwise	comparisons	of	input	
(top)	and	UMI-STARR-seq	(bottom)	signal	between	three	independent	biological	replicates	
across	all	oligos	included	in	the	library	with	a	developmental	(left)	or	housekeeping	(right)	
promoter.	Axes	 show	counts	per	million	 in	 logarithmic	 scale.	The	PCC	 is	denoted	 for	each	
comparison.	 C)	 Motif	 requirements	 are	 independent	 of	 motif	 mutant	 variants.	 Pairwise	
comparisons	 of	 log2	 fold-change	 (log2	 FC)	 to	 wildtype	 activity	 between	 the	 three	 motif-
mutant	 shuffled	versions	across	developmental	 (left)	 and	housekeeping	 (right)	enhancers.	
The	PCC	 is	 denoted	 for	 each	 comparison.	D)	 Activity	 (log2)	of	wildtype	 and	motif-mutant	
developmental	(left)	and	housekeeping	(right)	enhancers	that	were	used	to	derived	the	log2	
fold-changes	from	Fig	2C.	Number	of	enhancers	mutated	for	each	motif	type	are	shown.	The	
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box	 plots	 mark	 the	 median,	 upper	 and	 lower	 quartiles	 and	 1.5× interquartile	 range	
(whiskers);	outliers	are	shown	individually.	
	

Supplementary	 Figure	 4.	 DeepSTARR	 predicts	 enhancer	 activity	 of	 wildtype	

sequences	in	oligo	UMI-STARR-seq.	

	
Scatter	plots	of	predicted	vs.	observed	developmental	(A)	and	housekeeping	(B)	enhancer	
activity	signal	across	wildtype	sequences	from	the	test	set	chromosome.	The	PCC	is	denoted	
for	each	comparison.	
	

Supplementary	Figure	5.	 Instances	of	 the	 same	TF	motif	do	not	have	equivalent	

contribution	to	enhancer	activity.	

	
A)	 DeepSTARR	 predicts	 that	 instances	 of	 the	 same	 TF	 motif	 do	 not	 have	 equivalent	
contribution.	Density	distributions	of	the	DeepSTARR	predicted	contribution	scores	(average	
over	 all	 its	 nucleotides)	 of	 GATA	 (blue)	 or	 GGGCT	 (as	 control;	 grey)	 instances	 in	
developmental	 enhancers.	 B)	 Systematic	 mutagenesis	 of	 individual	 TF	 motif	 instances	
validates	motif	non-equivalency.	Density	distributions	of	 the	experimentally	derived	(oligo	
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UMI-STARR-seq)	log2	FC	in	enhancer	activity	after	mutation	of	GATA	(blue)	or	control	(grey)	
individual	 instances	 in	developmental	enhancers.	C)	DeepSTARR	predicts	that	 instances	of	
the	same	TF	motif	are	not	equivalent.	Distributions	of	the	DeepSTARR	predicted	contribution	
scores	 (average	 over	 all	 its	 nucleotides)	 of	 instances	 of	 different	 TF	 motif	 types	 across	
developmental	 enhancers	 (red),	 housekeeping	 enhancers	 (blue)	 and	 negative	 genomic	
regions	(grey).	Number	of	instances	for	each	motif	type	are	shown.	The	box	plots	mark	the	
median,	 upper	 and	 lower	 quartiles	 and	 1.5× interquartile	 range	 (whiskers).	 D)	 Motif	
mutagenesis	 validates	motif	 non-equivalency.	 Distributions	 of	 the	 experimentally	 derived	
(oligo	UMI-STARR-seq)	log2	FC	in	enhancer	activity	after	mutation	of	individual	instances	of	
different	TF	motif	types	or	control	motifs	in	developmental	or	housekeeping	enhancers.	Note	
that	the	core	sequence	of	different	instances	of	the	same	motif	type	are	identical,	despite	the	
different	log2	FC.	Number	of	instances	for	each	motif	type	are	shown.	The	Fligner-Killeen	test	
of	homogeneity	of	variances	was	used	to	compare	the	distributions	of	each	TF	motif	type	with	
the	one	from	control	motifs:	****	p-value	<	0.0001	and	*	<	0.05.	Box	plots	as	in	(C).	
	

Supplementary	 Figure	 6.	 Prediction	 of	 motif	 contribution	 by	 PWM	 scores	 or	

DeepSTARR.	

	
Distribution	 of	 experimentally	 measured	 fold-change	 (log2	 FC)	 enhancer	 activity	 after	
mutating	individual	motif	instances	of	the	GATA	(A),	AP-1	(B),	twist	(C),	Trl	(D)	and	Dref	(E)	
motifs	 (violin	plots),	 compared	with	 the	 respective	TF	motif	PWM	scores	 and	 the	 log2	FC	
predicted	by	DeepSTARR.	The	PCC	is	denoted	for	each	comparison.	The	box	plots	mark	the	
median,	upper	and	lower	quartiles	and	1.5× interquartile	range	(whiskers).	 	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.05.463203doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463203
http://creativecommons.org/licenses/by-nc-nd/4.0/


48	

Supplementary	Figure	7.	Contribution	of	TF	motifs	depend	on	their	flanks.	

	
A)	Motif	contribution	correlates	with	flanking	base-pairs.	Heatmaps:	Flanking	nucleotides	of	
instances	of	different	TF	motif	types	across	developmental	(GATA:	GATAA,	AP-1:	TGA.TCA,	
Trl:	 GAGAG,	 twist:	 CATCTG)	 or	 housekeeping	 (Dref:	 ATCGAT)	 enhancers	 sorted	 by	 their	
DeepSTARR	predicted	contribution	(left)	or	the	experimentally	derived	(oligo	UMI-STARR-
seq)	log2	fold-change	in	enhancer	activity	after	mutation	(right;	minus	log2	fold-change,	-log2	
FC).	Box	plots:	Importance	of	motif	instances	according	to	the	different	bases	at	each	flanking	
position.	*	marks	positions	with	significant	differences	between	the	four	nucleotides	(FDR-
corrected	Welch	One-Way	ANOVA	test	p-value	<	0.01).	The	box	plots	mark	the	median,	upper	
and	 lower	quartiles	and	1.5× interquartile	 range	 (whiskers).	Number	of	 instances	 for	each	
motif	type	are	shown.	Top:	logos	of	the	top	90th	percentile	motif	instances	for	each	sorting	
method.	 B)	 GATA	 flanking	 nucleotides	 are	 sufficient	 to	 switch	 motif	 contribution.	 47	
developmental	enhancers	containing	both	one	strong	(purple)	and	one	weak	(green)	GATA	
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instance	(≥	2-fold	difference	between	instances)	were	selected.	Top:	log2	FC	enhancer	activity	
to	wildtype	for	sequences	where	the	2	or	5	bp	flanks	of	strong	instances	were	replaced	by	the	
ones	of	weak	instances	(purple)	and	vice	versa	(green).	Bottom:	log2	FC	enhancer	activity	to	
wildtype	of	mutating	 the	strong	 instance	(purple)	compared	to	mutating	 this	 instance	and	
additionally	replacing	the	2	or	5	bp	flanks	of	the	weak	instance	by	the	flanks	of	the	strong	
instance	(light	purple).	Log2	FC	of	mutating	the	weak	instance	(green)	compared	to	mutating	
this	instance	and	additionally	replacing	the	2	or	5	bp	flanks	of	the	strong	instance	by	the	flanks	
of	 the	weak	 instance	 (light	 green).	 ****	 p-value	 <	 0.0001,	 ***	 <	 0.001,	 **	 <	 0.01,	 *	 <	 0.05	
(Wilcoxon	signed	rank	test).	Box	plots	as	in	(A).	 	
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Supplementary	Figure	8.	 Interpretation	of	DeepSTARR	reveals	TF	motif	distance	

preferences.	

	
A)	 In	silico	 characterization	of	TF	motif	distance	preferences.	MotifA	was	embedded	 in	the	
center	of	60	synthetic	random	DNA	sequences	and	MotifB	at	a	range	of	distances	from	MotifA,	
both	 up-	 and	 downstream.	 Both	 the	 average	 developmental	 and	 housekeeping	 enhancer	
activity	 is	 predicted	 by	 DeepSTARR.	 The	 cooperativity	 (residuals	 fold-change)	 between	
MotifA	and	MotifB	as	a	function	of	distance	is	quantified	as	the	activity	of	MotifA+B	divided	by	
the	sum	of	 the	marginal	effects	of	MotifA	 and	MotifB	(MotifA	+	MotifB	–	backbone	 (b)).	B)	
Heatmaps	showing	the	pairwise	cooperativity	(residuals)	between	different	TF	motif	types	in	
developmental	(left)	or	housekeeping	(right)	enhancers.	C-D)	Cooperativity	between	motif	
pairs	at	different	distances	in	(C)	developmental	and	(D)	housekeeping	enhancers.	Points	and	
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smooth	 lines	 show	 the	median	 cooperativity	 across	 all	 60	 backbones	 for	 each	motif	 pair	
distance	up-	and	downstream.	The	MotifA	in	the	center	is	mentioned	in	each	plot’s	title	and	
tested	with	 all	MotifB	motifs	 (different	 colours).	 GGGCT	motif	was	 used	 as	 control	 (grey).	
Dashed	line	at	1	represents	no	interaction.	 	
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Supplementary	Figure	9.	Motifs	are	not	often	at	optimal	distances	in	developmental	

enhancers,	but	enhancer	activity	follows	optimal	spacing	rules.	

	
A)	Occurrence	of	motif	pairs	at	different	distances	in	genomic	enhancers.	Heatmaps	showing	
the	enrichment	(Fisher’s	odds	ratio)	of	motif	pairs	at	different	distance	bins	in	developmental	
(left)	or	housekeeping	(right)	enhancers.	*	represents	significant	enrichment	or	depletions	
(FDR-corrected	p-value	<	0.05).	B)	Validation	of	optimal	spacing	rules	for	enhancer	activity.	
Heatmaps	showing	the	association	between	enhancer	activity	and	the	presence	of	motif	pairs	
at	different	distance	bins	in	developmental	(left)	or	housekeeping	(right)	enhancers	using	a	
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multiple	linear	regression.	The	multiple	linear	regression	included,	as	independent	variables,	
the	 number	 of	 instances	 for	 the	 different	 developmental	 or	 housekeeping	 TF	motif	 types.	
Linear	 model	 coefficients	 are	 shown	 and	 *	 represents	 significant	 positive	 or	 negative	
associations	(FDR-corrected	p-value	<	0.05).	C-D)	Top:	Same	as	in	Fig	S8C,D	(but	with	up-	and	
downstream	 distances	 combined)	 per	 (C)	 developmental	 or	 (D)	 housekeeping	motif	 pair.	
Middle:	Association	between	enhancer	activity	and	 the	distance	at	which	 the	motif	pair	 is	
found.	 Coefficient	 (y-axis)	 and	 p-value	 from	 a	 multiple	 linear	 regression	 including,	 as	
independent	 variables,	 the	 number	 of	 instances	 for	 the	 different	 developmental	 or	
housekeeping	TF	motif	types.	Bottom:	Odds	ratio	(log2)	by	which	the	two	motifs	are	found	
within	a	specified	distance	from	each	other	in	enhancers	compared	with	negative	genomic	
regions.	Color	legend	is	shown.	Example	motif	pairs	where	optimal	spacing	preferences	are	
concordant	 or	 discordant	with	 their	 occurrence	 in	 enhancers	 are	 shown.	 *	 FDR-corrected	
Fisher's	Exact	test	p-value	<	0.05.	
	

Supplementary	 Figure	 10.	 Systematic	 TF	 motif	 mutagenesis	 in	 human	 HCT116	

enhancers.	

	
A)	Systematic	TF	motif	mutagenesis	in	human	HCT116	enhancers.	We	selected	1,083	strong	
human	 enhancers	 and	 9	 TF	 motif	 types	 and	 mutated	 all	 instances	 of	 the	 same	 motif	
simultaneously	 or	 each	 instance	 individually.	 The	 activity	 of	 the	 wildtype	 and	 mutant	
sequences	were	measured	through	UMI-STARR-seq.	B)	Pairwise	comparisons	of	 input	and	
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STARR-seq	signal	between	two	independent	biological	replicates	across	all	oligos	included	in	
the	 human	 oligo	 library.	 Axes	 are	 in	 logarithmic	 scale.	 The	 PCC	 is	 denoted	 for	 each	
comparison.	C)	 Identification	 of	 1,083	 active	 short	 human	 enhancers.	Distribution	 of	 log2	
enhancer	 activity	 for	 oligos	 selected	 from	 negative	 regions	 (grey)	 or	 enhancer	 sequences	
(blue).	1,083	active	short	human	enhancers	(log2	wildtype	activity	in	oligo	UMI-STARR-seq	
>=	 2.03,	 the	 strongest	 negative	 region,	 red	 dashed	 line;	 see	 Methods)	 were	 selected	 for	
subsequent	 motif	 mutation	 analyses.	 The	 box	 plots	 mark	 the	 median,	 upper	 and	 lower	
quartiles	 and	 1.5× interquartile	 range	 (whiskers).	 D)	 TF	 motif	 requirements	 of	 human	
HCT116	 enhancers.	 Log2	 FC	 enhancer	 activity	 for	 hundreds	 of	 human	 enhancers	 after	
mutating	all	instances	of	four	control	(grey)	and	nine	candidate	human	TF	motifs.	Number	of	
enhancers	mutated	for	each	motif	type	and	respective	motif	PWM	logos	are	shown.	Box	plots	
as	in	(C);	but	outliers	are	shown	individually.	E)	Activity	(log2)	of	wildtype	and	motif-mutant	
enhancer	sequences	that	were	used	to	derived	the	log2	fold-changes	from	Fig	S10D.	Number	
of	enhancers	mutated	is	shown.	Box	plots	as	in	(C);	but	outliers	are	shown	individually.	F)	
Motif	requirements	are	independent	of	motif	mutant	variants.	Left:	Distribution	of	enhancer	
activity	 for	wildtype	or	motif-mutant	 enhancer	 sequences	 for	 the	different	TF	motifs.	 The	
activity	of	sequences	where	the	motifs	were	mutated	to	different	motif	shuffled	versions	is	
shown.	Number	of	enhancers	mutated	for	each	motif	type	are	shown.	Box	plots	as	in	(C);	but	
outliers	are	shown	individually.	Right:	Pairwise	comparisons	of	log2	FC	to	wildtype	activity	
between	the	three	motif-mutant	shuffled	versions	across	all	enhancers.	The	PCC	is	denoted	
for	each	comparison.	 	
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Supplementary	 Figure	 11.	 Motif	 syntax	 rules	 dictate	 the	 contribution	 of	 motif	

instances.	

	
A)	TF	motif	non-equivalence	is	widespread	in	human	enhancers.	Distributions	of	the	log2	FC	
in	 enhancer	 activity	 after	 mutation	 of	 individual	 instances	 of	 different	 TF	motif	 types	 or	
control	motifs.	Number	of	instances	for	each	motif	type	are	shown.	The	Fligner-Killeen	test	of	
homogeneity	of	variances	was	used	to	compare	the	distributions	of	each	TF	motif	type	with	
the	one	from	control	motifs:	****	p-value	<	0.0001.	The	box	plots	mark	the	median,	upper	and	
lower	 quartiles	 and	 1.5× interquartile	 range	 (whiskers).	B)	 Motif	 syntax	 rules	 dictate	 the	
contribution	of	TF	motif	 instances	in	human	enhancers.	For	each	TF	motif	type	(rows),	we	
built	 a	 linear	 model	 containing	 the	 number	 of	 instances,	 the	 motif	 core	 (defined	 as	 the	
nucleotides	included	in	each	TF	motif	PWM	model)	and	flanking	nucleotides	(5	bp	on	each	
side),	and	the	distance	to	all	other	TF	motifs	(close:	<	25	bp;	intermediate:	≥	25	bp	and	≤	50	
bp;	distal:	>50	bp)	to	predict	the	contribution	of	its	individual	instances	(mutation	log2	FC,	
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from	 Fig	 S11A)	 across	 all	 enhancers.	 Heatmap	 shows	 the	 contribution	 of	 each	 feature	
(columns)	for	each	model,	colored	by	the	direction	(positive:	red,	negative:	blue)	and	FDR-
corrected	p-value.	The	PCC	between	predicted	and	observed	motif	contribution	is	shown	with	
the	 green	 color	 scale.	C)	 Scatter	 plots	 comparing	 the	measured	 contribution	 of	 individual	
instances	of	each	TF	motif	 type	(log2	FC	 in	enhancer	activity	after	mutation)	with	 the	one	
predicted	by	the	models	from	(B).	The	PCC	is	denoted	for	each	comparison.	D)	Models	taking	
into	the	motif	syntax	features	predict	better	the	contribution	of	motif	instances	than	solely	
the	PWM	scores.	Bar-plots	comparing	the	PCC	from	the	full	models	(from	(B);	green)	and	the	
same	 just	 using	 existing	 PWM	 scores	 (orange).	 E)	 Motif	 mutagenesis	 validates	 that	 AP-1	
instances	 close	 to	 a	 second	 AP-1	 instance	 are	more	 important.	 Left:	 expected	mutational	
impact	when	mutating	AP-1	instances	depending	on	the	distance	to	other	AP-1	motifs.	Right:	
enhancer	activity	changes	(log2	FC)	after	mutating	AP-1	instances	at	optimal	close	(<	25	bp)	
or	suboptimal	longer	(>	50	bp)	distance	to	a	second	instance.	Number	of	instances	are	shown.	
***	p-value	<	0.001	(Wilcoxon	rank-sum	test).	Box	plots	as	in	(A).	
	

Supplementary	Figure	12.	DeepSTARR	predicts	the	contribution	of	AP-1	instances	

in	human	enhancers.	

	
Distribution	of	experimentally	measured	log2	fold-change	(log2	FC)	enhancer	activity	after	
mutating	1,617	different	AP-1	instances	across	HCT116	enhancers	(A),	compared	with	the	
log2	FC	predicted	by	DeepSTARR	(B).	The	PCC	is	denoted.	The	box	plots	mark	the	median,	
upper	and	lower	quartiles	and	1.5× interquartile	range	(whiskers).	
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