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Abstract 

Quantitative analysis of experimental metabolic data is frequently challenged by non-intuitive, 

complex patterns which emerge from regulatory networks. Quantitative output of metabolic 

regulation can be summarised by metabolic functions which comprise information about 

dynamics of metabolite concentrations. They reflect the sum of biochemical reactions which 

affect a metabolite concentration. Derivatives of metabolic functions provide essential 

information about system dynamics. The Jacobian matrix of a reaction network summarises 

first-order partial derivatives of metabolic functions with respect to metabolite 

concentrations while Hessian matrices summarise second-order partial derivatives. Here, a 

simple model of invertase-driven sucrose hydrolysis is simulated and both Jacobian and 

Hessian matrices of metabolic functions are derived for quantitative analysis of kinetic 

regulation of sucrose metabolism. Based on previous experimental observations, metabolite 

dynamics are quantitatively explained in context of underlying metabolic functions. Their 

potential regulatory role during plant cold acclimation is derived from Jacobian and Hessian 

matrices. 
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Introduction 

The quantitative study of biochemical reaction networks represents an interdisciplinary 

research area of (bio)chemistry, physics and mathematics. Enzymes catalyse chemical 

reactions under physiologically relevant conditions. Enzyme activity directly depends on 

temperature, pH, ion strength and redox potential of a cell or compartment showing 

characteristic optima (Arcus & Mulholland, 2020; Bisswanger, 2017). In addition, enzyme 

activity in cellular systems is affected and regulated by diverse biochemical effectors, e.g., 

comprising other proteins and metabolites (Atkinson, 1969; Chen et al., 2021). As a result, 

cellular enzyme activity represents a variable of biochemical networks which is shaped by a 

large parameter space challenging experimental, but also theoretical, analysis. Enzyme kinetic 

models mathematically describe enzymatic reaction rates as a function of one or more 

parameters and variables. In general, biochemical kinetics is based on the mass action law 

assuming the reaction rate to be proportional to the probability of reactant collision (Waage 

& Gulberg, 1864, 1986). This probability is proportional (i) to the concentration of reactants, 

and (ii) to the number of molecules of a species which participate in a reaction, i.e., to the 

power of molecularity. The rate v of a reaction following the mass action law with 

molecularities mi and mj of substrates Si and products Pj, respectively, is described by the rate 

equation (Eq. 1):  

𝑣 = 𝑣𝑓 − 𝑣𝑏 = 𝑘𝑓∏𝑆𝑖
𝑚𝑖 − 𝑘𝑏

𝑙𝑖

𝑖=1

∏𝑃
𝑗

𝑚𝑗

𝑙𝑗

𝑗=1

 

(Eq. 1) 

Here, kf and kb represent the rate constants, i.e., proportionality factors, for the forward (kf) 

and backward (kb) reaction. Concentration dynamics of involved substrate and product 

molecules can be described by differential equations (DEs). If concentration dynamics are 

considered (only) over time, ordinary differential equations (ODEs) are applied while partial 

differential equations account for more than one independent variable, e.g., time and space. 

Concentration dynamics over time of an arbitrary enzyme reaction which interconverts a 

substrate molecule S1 into a product molecule P1 are then described by the following ODE (Eq. 

2). 
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𝑆1

𝑘𝑓
→

𝑘𝑏
←
 𝑃1

𝑑𝑆1
𝑑𝑡
= −𝑣 = −

𝑑𝑃1
𝑑𝑡

 

(Eq. 2) 

 

Deriving a Jacobian matrix to study invertase-catalysed sucrose hydrolysis 
Introducing the reversible formation of an enzyme-substrate complex (E + S → ES), a release 

of product P from ES (ES → E + P) (Brown, 1902), and the simplifying assumption that 

formation of ES is much faster than its decomposition into E and P finally yields the Henri-

Michaelis-Menten kinetics (Henri, 1902, 1903; Michaelis & Menten, 1913) (Eq. 3). 

𝑣 =
𝑉𝑚𝑎𝑥 𝑆

𝐾𝑀 + 𝑆
 

(Eq. 3) 

The parameter Vmax represents the maximal velocity which is reached when the enzyme is 

completely saturated with substrate. The parameter KM represents the Michaelis constant 

which equals the substrate concentration at Vmax/2. A more detailed derivation and an 

explanation of kinetics in context of reaction thermodynamics has been provided earlier, see 

e.g. (Klipp et al., 2016). Due to its capability to accurately describe and quantify mechanisms 

of enzyme catalysis and regulation, the Michaelis-Menten equation is crucial for biochemical 

understanding (Cornish-Bowden, 2015). It was derived based on experimental observations 

of sucrose hydrolysis, catalysed by invertase enzymes (Brown, 1902; Michaelis & Menten, 

1913). Within this reaction, the glycosidic bond of sucrose is hydrolysed, and glucose and 

fructose are released (Eq. 4). 

𝑟𝑖𝑛
→ 𝑆𝑢𝑐 

𝑟𝐼𝑛𝑣
→   𝐺𝑙𝑐 + 𝐹𝑟𝑐 

𝑟𝑜𝑢𝑡,𝐺𝑙𝑐
𝑟𝑜𝑢𝑡,𝐹𝑟𝑐
→       

(Eq. 4) 

In this kinetic model, rin represents the rate of sucrose biosynthesis, rinv the rate of invertase-

driven hydrolysis and rout,Glc and rout,Frc hexose consuming processes, e.g., phosphorylation by 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.05.463227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463227
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

hexokinase enzymes. The corresponding ODE model of this reaction system describes sucrose, 

fructose and glucose dynamics by the sum of in- and effluxes (Eqs. 5-7).  

𝑑

𝑑𝑡
𝑆𝑢𝑐 =  𝑟𝑖𝑛 − 𝑟𝐼𝑛𝑣 = 𝑓(𝑆𝑢𝑐) 

(Eq. 5) 

 

𝑑

𝑑𝑡
𝐺𝑙𝑐 =  𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐 = 𝑓(𝐺𝑙𝑐)          

(Eq. 6) 

 

𝑑

𝑑𝑡
𝐹𝑟𝑐 =  𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐 = 𝑓(𝐹𝑟𝑐) 

(Eq. 7) 

 

The right side of the ODEs, i.e., the sum of reactions, is summarised by metabolic functions f 

and their integration yields the time course of metabolite concentrations. 

Invertases play a central role in diverse processes of plant metabolism, development and 

response to environmental stress (Koch, 2004; Ruan, 2014; Vu et al., 2020; Weiszmann et al., 

2018; Xiang et al., 2011). Plant invertases occur in different isoforms with different 

compartmental localisation and biochemical properties (Sturm, 1996; Tymowska-Lalanne & 

Kreis, 1998). Both plant vacuolar and extracellular invertases possess an acidic pH optimum 

between 4.5 and 5.0 while cytosolic invertase has a neutral pH optimum between 7.0 and 7.8 

(Sturm, 1999). Acid and neutral invertases hydrolyse sucrose with a KM in a low-millimolar 

range (Sturm, 1999; Unger et al., 1992). Invertases are product inhibited, with glucose acting 

as a non-competitive inhibitor and fructose as a competitive inhibitor (Sturm, 1999). 

Due to its central role in sugar metabolism, a quantitative understanding of invertase kinetics 

is crucial for analysis and interpretation of photosynthesis and plant carbohydrate 

metabolism. Also, sugar signalling, plant fertility and fitness are significantly affected and 

regulated by invertases which emphasises even more their essential role in plants  (Wan et 

al., 2018). Yet, as soon as enzyme kinetics recorded in vitro are applied to explain in vivo 

metabolic regulation and to simulate metabolic fluxes, further information about involved 

metabolite pools, compartments and enzyme regulation is needed in order to estimate 
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dynamics of substrate (here: sucrose) and product (here: hexose) concentrations. If metabolite 

concentrations and kinetic parameters are known, the system of ODEs which describes 

dynamics of sucrose and hexose concentrations (Eqs. 5-7) can be numerically solved, i.e., 

numerically integrated. Thus, to estimate the impact of product inhibition of invertases, 

dynamics of hexoses need to be estimated which depend on invertase activity (input) and 

output reactions which consume or interconvert glucose and fructose (here: rout,Glc and rout,Frc). 

A physiologically important output reaction, which interconverts hexoses, is their 

phosphorylation, catalysed by hexokinases (Granot et al., 2014). To prevent the depletion of 

sucrose, an input function needs to be defined which supplies the system with sucrose 

molecules (rin). In plant metabolism, sucrose phosphate synthase (SPS) catalyses and regulates 

sucrose biosynthesis in the cytosol together with fructose-1,6-bisphosphatase (FBPase) 

(Doehlert & Huber, 1983; Stitt et al., 1983; Volkert et al., 2014). Here, the input reaction rate 

rin was defined to be constant without explicitly modelling SPS or FBPase kinetics (Eq. 8). 

Invertase reaction and hexose output followed Michaelis-Menten kinetics considering product 

inhibition of invertase (Eq. 9) while output was assumed not to be inhibited (Eqs. 10, 11).  

 

𝑟𝑖𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(Eq. 8) 

 

𝑟𝐼𝑛𝑣 =
𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 𝑆𝑢𝑐

(𝐾𝑀,𝑆𝑢𝑐 (1 +
𝐹𝑟𝑐

𝐾𝑖,𝐹𝑟𝑐
⁄ ) + 𝑆𝑢𝑐) (1 + 𝐺𝑙𝑐 𝐾𝑖,𝐺𝑙𝑐

⁄ )
 

(Eq. 9) 

 

𝑟𝑜𝑢𝑡,𝐺𝑙𝑐 =
𝑉𝑚𝑎𝑥,𝑜𝑢𝑡,𝐺𝑙𝑐  𝐺𝑙𝑐

(𝐾𝑀,𝑜𝑢𝑡,𝐺𝑙𝑐 + 𝐺𝑙𝑐)
 

(Eq. 10) 

 

𝑟𝑜𝑢𝑡,𝐹𝑟𝑐 =
𝑉𝑚𝑎𝑥,𝑜𝑢𝑡,𝐹𝑟𝑐  𝐹𝑟𝑐

(𝐾𝑀,𝑜𝑢𝑡,𝐹𝑟𝑐 + 𝐹𝑟𝑐)
 

(Eq. 11) 
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Parameters Vmax,… are the maximum velocities of enzyme reactions, i.e., reaction rates under 

substrate saturation. Michaelis constants KM,… are affinities of enzymes for their substrates 

and represent the metabolite concentration at r = Vmax/2. The inhibitory constants Ki,… indicate 

inhibitor concentrations which are needed to reduce enzyme velocity to half maximum. To 

study complex system properties like stabilization after perturbation, biochemical systems are 

typically linearised and considered near a steady state. Yet, due to strong external and internal 

dynamics, plant metabolism can hardly be described by steady state assumptions, which is 

dM(t)/dt = 0 where M(t) represents a vector of metabolite concentrations and 0 is the zero 

vector. In the given example of sucrose hydrolysis within plant cells (Eq. 4), both substrate and 

product molecules may show significant dynamics within a diurnal cycle (Sulpice et al., 2014). 

Although this clearly constrains the interpretation of findings made by assumptions of a steady 

state, it simplifies theoretical and computational analysis of metabolic systems. Additionally, 

analytical solutions of enzymatic reaction systems can be obtained using the assumption that 

velocity of an enzymatic reaction linearly depends on substrate concentrations (Heinrich & 

Rapoport, 1974). In contrast, solving nonlinear metabolic systems analytically is hardly 

possible. Taylor expansion of temporal changes of deviations from a steady state leads to the 

Jacobian matrix of a reaction system (Klipp et al., 2016). In context of metabolic networks, the 

Jacobian matrix describes elasticities of metabolic functions towards dynamics of metabolite 

concentrations. For the given reaction system (Eq. 4), the Jacobian matrix reads (Eq. 12): 

𝑱 = (

𝑗11 𝑗12 𝑗13
𝑗21 𝑗22 𝑗23
𝑗31 𝑗32 𝑗33

) =

(

  
 

𝜕(𝑓(𝑆𝑢𝑐))

𝜕(𝑆𝑢𝑐)

𝜕(𝑓(𝑆𝑢𝑐))

𝜕(𝐺𝑙𝑐)

𝜕(𝑓(𝑆𝑢𝑐))

𝜕(𝐹𝑟𝑐)

𝜕(𝑓(𝐺𝑙𝑐))

𝜕(𝑆𝑢𝑐)

𝜕(𝑓(𝐺𝑙𝑐))

𝜕(𝐺𝑙𝑐)

𝜕(𝑓(𝐺𝑙𝑐))

𝜕(𝐹𝑟𝑐)

𝜕(𝑓(𝐹𝑟𝑐))

𝜕(𝑆𝑢𝑐)

𝜕(𝑓(𝐹𝑟𝑐))

𝜕(𝐺𝑙𝑐)

𝜕(𝑓(𝐹𝑟𝑐))

𝜕(𝐹𝑟𝑐) )

  
 

  

=

(

 
 
 
 

𝜕(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)

𝜕(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐺𝑙𝑐)

𝜕(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐹𝑟𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝑆𝑢𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐺𝑙𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐹𝑟𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝑆𝑢𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐺𝑙𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐹𝑟𝑐) )

 
 
 
 

      

(𝐸𝑞. 12) 

 

with diagonal entries (Eqs. 13-15), 
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𝜕(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)
= −

𝐾𝑀,𝑆𝑢𝑐𝐾𝑖,𝐺𝑙𝑐𝐾𝑖,𝐹𝑟𝑐𝑉𝑚𝑎𝑥,𝑖𝑛𝑣(𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐)

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐)(𝐾𝑀,𝑆𝑢𝑐  𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐  𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐𝑆𝑢𝑐)
2   

(Eq. 13) 

 

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐺𝑙𝑐)
= −

𝐾𝑖,𝐹𝑟𝑐𝐾𝑖,𝐺𝑙𝑐𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 𝑆𝑢𝑐

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐)
2
(𝐾𝑀,𝑆𝑢𝑐  𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐  𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐  𝑆𝑢𝑐)

−
𝑉𝑚𝑎𝑥,𝑜𝑢𝑡,𝐺𝑙𝑐𝐾𝑀,𝑜𝑢𝑡,𝐺𝑙𝑐

(𝐾𝑀,𝑜𝑢𝑡,𝐺𝑙𝑐 + 𝐺𝑙𝑐)
2  

(Eq. 14) 

 

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐹𝑟𝑐)
= −

𝐾𝑀,𝑆𝑢𝑐  𝐾𝑖,𝐹𝑟𝑐𝐾𝑖,𝐺𝑙𝑐𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 𝑆𝑢𝑐

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐)(𝐾𝑀,𝑆𝑢𝑐 𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐𝑆𝑢𝑐)
2 −

𝑉𝑚𝑎𝑥,𝑜𝑢𝑡,𝐹𝑟𝑐𝐾𝑀,𝑜𝑢𝑡,𝐹𝑟𝑐

(𝐾𝑀,𝑜𝑢𝑡,𝐹𝑟𝑐 + 𝐹𝑟𝑐)
2  

(Eq. 15) 

In words, the diagonal entries represent elasticities of functions of metabolites with regard to 

dynamics in their own concentration. This reflects that metabolites are affecting their own 

concentration dynamics by participating as substrates and/or products in enzymatic reactions. 

Non-diagonal entries of J reflect any regulatory effects of metabolites on all other metabolic 

functions within a reaction system (equations of derivatives are not explicitly shown). Further, 

the equations show that, depending on the degree of substrate saturation of an enzyme, 

dynamics of substrate concentrations have a differential effect on the Jacobian trajectories. 

For example, if enzymes, catalysing the rout,Glc and rout,Frc reactions, are fully saturated, further 

increase of substrate concentration (here: Glc and Frc) results in square decrease towards zero 

of the second term in Eqs. 14 and 15. Hence, under such conditions where reaction products 

of invertases strongly accumulate, hexose consuming reactions have a lower impact on hexose 

dynamics than under non-saturated conditions. At the same time, (strong) hexose 

accumulation results in invertase inhibition which limits invertase-induced sucrose dynamics 

because (see Eq. 13): 

if Glc >> Suc and Frc >> Suc, then  lim
𝐺𝑙𝑐,𝐹𝑟𝑐 →∞

𝜕(𝑟𝑖𝑛−𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)
= 0 (Eq. 16) 

 

These considerations are simplified because also enzyme parameters need to be considered 

in order to determine the Jacobian entries as well as their dynamics under different ratios of 

substrate-product concentrations. While KM and Ki represent characteristic and constant 

enzyme parameters, Vmax might differ significantly between time points and conditions under 
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which (plant) metabolism is analysed. This might be due to a changing total enzyme amount 

or a changing temperature which affects reaction constants as described by the Arrhenius 

equation (Arrhenius, 1889). Altogether, this establishes a multi-parameter space for the 

estimation of a biochemical Jacobian matrix. Its estimation from experimental data is 

challenged by the need for kinetic parameters which are sometimes not available or need to 

be acquired within laborious, difficult and error-prone experiments.      

To overcome experimental limitations by forward kinetic experiments, inverse estimation of J 

has been suggested based on covariance information of metabolite concentrations (Steuer et 

al., 2003). Here, fluctuation terms at a metabolic steady state are estimated from (co)variance 

information contained in metabolomics data. Applying this approach, regulatory hubs of 

metabolic networks can be identified without measuring enzyme kinetic parameters (Nägele 

et al., 2014; Sun & Weckwerth, 2012; Weckwerth, 2019; Wilson et al., 2020). However, 

experimental validation of predicted effects on enzymatic regulation is essential for such 

inverse estimations. Two main reasons why such inverse approximation might fail to correctly 

predict metabolic regulation are (i) strong deviation from steady state assumption due to 

significant internal and/or external perturbations, and (ii) misinterpretation of reasons for 

metabolite (co)variance, e.g., technical variance. Despite all experimental complications, a 

combined approach of inverse Jacobian matrix estimation and experimental validation might 

support the analysis and understanding of complex metabolic network regulation (Wilson et 

al., 2020).    

In summary, calculation and estimation of Jacobian matrices is a crucial element of system 

theory, and its application to biochemical networks seems mandatory to unravel complex 

regulatory principles. Entries of the Jacobian matrix are first-order partial derivatives of 

variable functions. As explained before, in a metabolic network context, it provides 

information about the effect of dynamics of one metabolite concentration on a specific 

metabolic function. Also, evaluation of eigenvalues of J indicates stability or instability of a 

metabolic system which provides important information about system behaviour at a 

considered steady state (Fürtauer & Nägele, 2016; Grimbs et al., 2007; Reznik & Segrè, 2010). 

In the following paragraph, the Hessian matrix is introduced in context of metabolic regulation 

which comprises second-order partial derivatives. It is discussed in context of the provided 

example of invertase-catalysed sucrose cleavage.       
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Applying the Hessian matrix to study substrate-product-interactions on metabolic functions 
The Hessian matrix of a function f(x1, x2, x3, …, xn) with n variables contains its second-order 

partial derivatives. Following Schwarz’ theorem (also: Clairaut’s theorem), it is an n x n 

symmetric matrix, i.e., the second-order partial derivatives satisfy identity regarding the order 

of differentiation (Eq. 17). 

𝜕

𝜕𝑥𝑖
(
𝜕𝑓

𝜕𝑥𝑗
) =

𝜕

𝜕𝑥𝑗
(
𝜕𝑓

𝜕𝑥𝑖
) =

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
 

(Eq. 17) 

Considering metabolite concentrations as variables within metabolic functions of the given 

invertase reaction system (Eq. 4), the Hessian matrices of f(Suc) calculates as follows (Eq. 18): 

𝐻𝑓(𝑆𝑢𝑐)(𝑆𝑢𝑐, 𝐺𝑙𝑐 𝐹𝑟𝑐) = (

ℎf(Suc),11 ℎf(Suc),12 ℎf(Suc),13
ℎf(Suc),21 ℎf(Suc),22 ℎf(Suc),23
ℎf(Suc),31 ℎf(Suc),32 ℎf(Suc),33

) =

(

 
 
 
 

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)2
𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐺𝑙𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐺𝑙𝑐)2
𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐺𝑙𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐹𝑟𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐹𝑟𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐹𝑟𝑐)2 )

 
 
 
 

      

(𝐸𝑞. 18) 

 

Accordingly, Hessian matrices of metabolic functions of both reaction products, glucose and 

fructose, comprise second-order partial derivates of f(Glc) and f(Frc), respectively (Eqs. 19 and 

20). 

 

𝐻𝑓(𝐺𝑙𝑐)(𝐺𝑙𝑐, 𝑆𝑢𝑐, 𝐹𝑟𝑐) = (

ℎf(Glc),11 ℎf(Glc),12 ℎf(Glc),13
ℎf(Glc),21 ℎf(Glc),22 ℎf(Glc),23
ℎf(Glc),31 ℎf(Glc),32 ℎf(Glc),33

) =

(

 
 
 
 

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐺𝑙𝑐)2
𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐺𝑙𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐺𝑙𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝑆𝑢𝑐)2
𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐹𝑟𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐹𝑟𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐹𝑟𝑐)2 )

 
 
 
 

 

(𝐸𝑞. 19) 

 

𝐻𝑓(𝐹𝑟𝑐)(𝐹𝑟𝑐, 𝑆𝑢𝑐, 𝐺𝑙𝑐) = (

ℎf(Frc),11 ℎf(Frc),12 ℎf(Frc),13
ℎf(Frc),21 ℎf(Frc),22 ℎf(Frc),23
ℎf(Frc),31 ℎf(Frc),32 ℎf(Frc),33

) =

(

 
 
 
 

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐹𝑟𝑐)2
𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐹𝑟𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐹𝑟𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝑆𝑢𝑐)2
𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐺𝑙𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐺𝑙𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐺𝑙𝑐)2 )

 
 
 
 

 

(𝐸𝑞. 20) 
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The Hessian matrix provides information about simultaneous effects of a combination of 

concentration dynamics of substrates, products or other metabolic effectors on a metabolic 

function. For example, in an invertase reaction (Eq. 4), entries ℎf(Suc),11  =  
𝜕2(𝑟𝑖𝑛−𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)2
,   

ℎf(Suc),12  =  
𝜕2(𝑟𝑖𝑛−𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)
 and ℎf(Suc),13  =  

𝜕2(𝑟𝑖𝑛−𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)
 provide information about how the 

metabolic function of sucrose depends on dynamics of (i) sucrose (hf(Suc),11), (ii) sucrose and 

glucose (hf(Suc),12), and (iii) sucrose and fructose concentrations (hf(Suc),13), respectively (Eqs. 21-

23). 

 

ℎf(Suc),11  =  
𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)2
= 

2𝐾𝑀,𝑆𝑢𝑐 𝐾𝑖,𝐺𝑙𝑐 𝐾𝑖,𝐹𝑟𝑐
2 𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 (𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐)

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐)(𝐾𝑀,𝑆𝑢𝑐 𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐 𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐𝑆𝑢𝑐)
3 

(Eq. 21) 

 

ℎf(Suc),12  =  
𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)
=  

𝐾𝑀,𝑆𝑢𝑐𝐾𝑖,𝐺𝑙𝑐𝐾𝑖,𝐹𝑟𝑐𝑉𝑚𝑎𝑥,𝑖𝑛𝑣(𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐)

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐)
2
(𝐾𝑀,𝑆𝑢𝑐 𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐 𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐𝑆𝑢𝑐)

2 

(Eq. 22) 

 

ℎf(Suc),13  =  
𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)
=  
𝐾𝑀,𝑆𝑢𝑐𝐾𝑖,𝐺𝑙𝑐𝐾𝑖,𝐹𝑟𝑐𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 (𝐾𝑀,𝑆𝑢𝑐 𝐹𝑟𝑐  + 𝐾𝑀,𝑆𝑢𝑐𝐾𝑖,𝐹𝑟𝑐 − 𝐾𝑖,𝐹𝑟𝑐 𝑆𝑢𝑐)

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐) (𝐾𝑀,𝑆𝑢𝑐 𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐 𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐𝑆𝑢𝑐)
3  

(Eq. 23) 

 

Competitive (Frc) and non-competitive inhibitors (Glc) differentially shape and affect the 

metabolic function of the reaction substrate (Suc) which is expressed in Hessian terms by 

different positions and exponents in nominators and denominators (Eqs. 21-23). While 

differential regulatory impact of different types of inhibitors on enzyme kinetics becomes 

evident from experimental enzyme kinetic analysis using purified enzymes, its interpretation 

in context of metabolic functions remains difficult. In this context, Jacobian and Hessian 

matrices provide important insight because they describe dynamics of metabolic functions 

with respect to a certain variable, e.g., a metabolic inhibitor. Further, due to plasticity of 
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metabolism, metabolite concentrations may vary significantly under similar environmental 

conditions and without stress exposure. For example, sucrose and hexoses may accumulate 

significantly, and even double in amount, during the light period of a diurnal cycle (Brauner et 

al., 2014; Seydel et al., 2021; Sulpice et al., 2014). Such strong dynamics of reaction product 

and substrate concentrations aggravate the quantitative analysis of metabolic regulation due 

to their non-linear impact on enzymatic rates. It follows that instead of analysing one (single) 

snapshot, a broad range of physiologically relevant metabolite concentrations and/or enzyme 

parameters needs to be analysed in order to cope with metabolic plasticity. Here, an example 

for such an analysis is provided applying a kinetic parameter set of invertase reactions (Table 

I), which has previously been determined in Arabidopsis thaliana under ambient (22°C) and 

low (4°C) temperature  (Kitashova et al., 2021).  

 

Table I. Carbon uptake rates and kinetic parameters of invertase catalysed sucrose hydrolysis in 

Arabidopsis thaliana, accession Col-0, at 22°C and 4°C. Data source: (Kitashova et al., 2021). 

Kinetic Parameter Absolute value Dimension 

rin,22°C 8 [µmol Suc h-1 gFW-1] 

rin,4°C 0.75 [µmol Suc h-1 gFW-1] 

Vmax,inv,22°C 35.2 [µmol Suc h-1 gFW-1] 

Vmax,inv,4°C 2 [µmol Suc h-1 gFW-1] 

KM,Suc 12 [µmol Suc gFW-1] 

Ki,Frc 0.23 [µmol Frc gFW-1] 

Ki,Glc 0.12 [µmol Glc gFW-1] 

 

Reaction rates of invertase enzymes, rinv, were calculated across different combinations of 

physiologically relevant sucrose and hexose concentrations to determine the metabolic 

function of sucrose, i.e., f(Suc) = rin - rinv. Simulation results of different sucrose concentrations 

were plotted against glucose and fructose concentrations (Figure 1). Thus, each shown plane 

in the figure corresponds to solutions of f(Suc), J and H for one sucrose concentration (a 

detailed definition of concentrations is provided in the figure legend). Although sucrose 

concentrations used for 4°C simulations were up to 8-fold higher than under 22°C, resulting 

absolute values and dynamics of f(Suc) were significantly lower than under 22°C (Fig. 1 a and 

b). Reduced absolute values were due to a decreased input rate rin,4°C (based on experimental 

findings). As expected, under conditions of low product concentration, f(Suc) became minimal 
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under both temperatures due to increased rates of sucrose cleavage (Fig. 1 a, b). However, 

reduced dynamics of f(Suc) was due to increased hexose concentrations (inhibitors) and a 

reduced Vmax of invertase (see Table I). As a result, also the dynamic range of J and H decreased 

across all simulated scenarios by several orders of magnitude (10-1 → 10-4/10-5; Fig. 1 c-f). A 

main low temperature effect became visible in entries of Jacobian matrices which was a 

reduced degree of overlap between j12 (
𝜕(𝒇(𝑆𝑢𝑐))

𝜕(𝐺𝑙𝑐)
) and j13 (

𝜕(𝒇(𝑆𝑢𝑐))

𝜕(𝐹𝑟𝑐)
) (Fig. 1 c, d). Both terms 

describe changes of f(Suc) induced by (slight) changes of glucose and fructose concentrations, 

respectively. At 22°C, high glucose concentrations (~2.5-3 µmol gFW-1) minimise j13 and, with 

this, also the regulatory effect of fructose dynamics on f(Suc) (see Fig. 1 c). At 4°C, high glucose 

concentrations (~14-15 µmol gFW-1) also lead to minimal values of  j13, which were, however, 

still significantly higher than j12 (see Fig. 1 d; ANOVA, p<0.001). This discrepancy became also 

visible in the curvature of f(Suc), i.e., in the Hessian matrix (Fig. 1 e, f). 
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Figure 1. Dynamics of f(Suc) under ambient and low temperature. (a) f(Suc) at 22°C under variable 
concentrations of fructose (x-axis), glucose (y-axis) and sucrose (planes). (b) f(Suc) at 4°C under variable 
concentrations of fructose (x-axis), glucose (y-axis) and sucrose (planes). (c) Jacobian matrix entries of f(Suc) at 
22°C under variable concentrations of glucose (x-axis), fructose (y-axis) and sucrose (planes; see Eq. 12; j11: blue; 
j12: green; j13: grey). (d) Jacobian matrix entries of f(Suc) at 4°C under variable concentrations of glucose (x-axis), 
fructose (y-axis) and sucrose (planes). See also Eq. 12; J11: blue; J12: green; J13: grey. (e) Hessian matrix entries of 
f(Suc) at 22°C under variable concentrations of glucose (x-axis), fructose (y-axis) and sucrose (planes), see also 
Eq. 18; hf(Suc,11): blue; hf(Suc,12): green; hf(Suc,13): grey). (f) Hessian matrix entries of f(Suc) at 4°C under variable 
concentrations of glucose (x-axis), fructose (y-axis) and sucrose (planes), see also Eq. 18; hf(Suc,11): blue; hf(Suc,12): 
green; hf(Suc,13): grey). Each plane corresponds to a sucrose concentration which was varied between 1-3 µmol 
gFW-1 and 4-8 µmol gFW-1 for simulations at 22°C and 4°C, respectively.    

  

These observations suggest that, under ambient conditions and (increased) glucose 

concentrations, it is j12 ≈ j13, i.e., 
𝜕(𝒇(𝑆𝑢𝑐))

𝜕(𝐺𝑙𝑐)
 ≈  

𝜕(𝒇(𝑆𝑢𝑐))

𝜕(𝐹𝑟𝑐)
, and 𝒉𝐟(𝐒𝐮𝐜),𝟏𝟐  ≈ 𝒉𝐟(𝐒𝐮𝐜),𝟏𝟑 , i.e., 

𝜕2(𝑟𝑖𝑛−𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)
 ≈

𝜕2(𝑟𝑖𝑛−𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)
.  At low temperature, this similarity is not given even under 

(relatively) high glucose concentrations which might suggest a cold-induced switch of the 

regulatory role which fructose plays in plant metabolism (Klotke et al., 2004).   
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Conclusions 

Together with the Jacobian matrix, Hessian matrices are commonly applied to study n-

dimensional functions and surfaces, their extrema and their curvature (see e.g. (Basterrechea 

& Dacorogna, 2014; Ivochkina & Filimonenkova, 2019)). In context of the presented theory for 

analysis of biochemical metabolic functions, this suggests that metabolism can be summarised 

by a multi-dimensional function. Finally, Jacobian and Hessian matrices of these functions 

comprise multi-dimensional quantitative information about dynamics, shape and curvature 

which might support the identification of underlying regulators of metabolism. 
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