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Abstract 23 
 24 

Microbial natural products, in particular secondary or specialized metabolites, are an 25 
important source and inspiration for many pharmaceutical and biotechnological products. 26 
However, bioactivity-guided methods widely employed in natural product discovery programs 27 
do not explore the full biosynthetic potential of microorganisms, and they usually miss 28 
metabolites that are produced at low titer. As a complementary method, the use of genome-29 
based mining in natural products research has facilitated the charting of many novel natural 30 
products in the form of predicted biosynthetic gene clusters that encode for their production. 31 
Linking the biosynthetic potential inferred from genomics to the specialized metabolome 32 
measured by metabolomics would accelerate natural product discovery programs. Here, we 33 
applied a supervised machine learning approach, the K-Nearest Neighbor (KNN) classifier, for 34 
systematically connecting metabolite mass spectrometry data to their biosynthetic gene 35 
clusters. This pipeline offers a method for annotating the biosynthetic genes for known, 36 
analogous to known and cryptic metabolites that are detected via mass spectrometry. We 37 
demonstrate this approach by automated linking of six different natural product mass spectra, 38 
and their analogs, to their corresponding biosynthetic genes. Our approach can be applied to 39 
bacterial, fungal, algal and plant systems where genomes are paired with corresponding MS/MS 40 
spectra. Additionally, an approach that connects known metabolites to their biosynthetic genes 41 
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potentially allows for bulk production via heterologous expression and it is especially useful for 42 
cases where the metabolites are produced at low amounts in the original producer. 43 

Significance 44 
 45 

The pace of natural products discovery has remained relatively constant over the last 46 
two decades. At the same time, there is an urgent need to find new therapeutics to fight 47 
antibiotic resistant bacteria, cancer, tropical parasites, pathogenic viruses, and other severe 48 
diseases. To spark the enhanced discovery of structurally novel and bioactive natural products, 49 
we here introduce a supervised learning algorithm (K-Nearest Neighbor) that can connect 50 
known and analogous to known, as well as MS/MS spectra of yet unknowns to their 51 
corresponding biosynthetic gene clusters. Our Natural Products Mixed Omics tool provides 52 
access to genomic information for bioactivity prediction, class prediction, substrate predictions, 53 
and stereochemistry predictions to prioritize relevant metabolite products and facilitate their 54 
structural elucidation. 55 

Introduction 56 
 57 

Microbial natural products (NPs), also referred to as secondary or specialized 58 
metabolites, are often made by biosynthetic genes that are physically grouped into clusters 59 
(biosynthetic gene clusters or BGCs). Its been found that algae and plants can also contain 60 
BGCs, to some extent organized in a similar manner (1, 2). One of the challenges in the genome 61 
mining field is to connect microbial metabolites to their BGCs. Even the genome of 62 
Streptomyces coelicolor A3(2), one of the first sequenced microbial genomes, still contains a 63 
number of cryptic BGCs (BGCs without known metabolites)(3). In 2011, the bioinformatics tool 64 
antiSMASH (4) drastically improved the identification and annotation of BGCs based on 65 
automated genome mining. Similarly, since 2018, the program BiG-SCAPE (5) can reliably 66 
calculate the similarity between pairs of BGCs, grouping them into gene cluster families (GCFs). 67 
Recently, a number of approaches and tools have been created to connect NPs to their 68 
biosynthetic gene clusters, such as Pattern-based Genome Mining (6, 7), MetaMiner (8), 69 
CycloNovo (9), and NPLinker (10), recently reviewed by Van der Hooft et al., 2020 (11). 70 
However, most of these tools are not high-throughput or can only be used for a particular class 71 
of BGC (e.g., peptides or BGCs homologous to known BGCs). It has been challenging to create a 72 
systematic tool that can work at a repository scale to connect NP genotypes (BGCs) with their 73 
phenotypes (for example MS/MS spectra from untargeted mass spectrometry fragmentation 74 
profiles, LC-MS/MS). As a result, a large disparity exists between the number of known NPs 75 
versus the number of known BGCs. For example, the recently designated cyanobacterial genus 76 
Moorena has already yielded over 200 new metabolites, yet only a dozen of validated BGCs are 77 
currently deposited for this genus in the expert-annotated Minimum Information about a 78 
Biosynthetic Gene cluster (MIBiG) database (12). Connecting the molecules to the genes would 79 
facilitate research into the ecological role and functions of the specialized metabolome by 80 
studying the regulation of the expression of their biosynthetic gene clusters. 81 

To begin to address this gene cluster annotation gap, we deployed a K-Nearest Neighbor 82 
(KNN) algorithm that uses a similarity/absence BGC fingerprints and analogous 83 
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similarity/absence MS/MS fingerprints to classify gene cluster family (GCF, a group of similar 84 
BGCs) candidates for each MS/MS spectrum (Fig. 1). We recently sequenced draft 85 
metagenomic-assembled genomes (MAGs) for 60 cyanobacteria, mostly from tropical marine 86 
environments. The most complete drafts were reported in Leao et al., 2021 (13), and for these 87 
we also obtained untargeted metabolomic data via LC-MS/MS (36 deposited in the PoDP 88 
platform and 24 not published due to the quality of their paired MAGs). Despite the bad quality 89 
of some of these MAGs, we could still annotated BGCs. As a first test for our NPOmix workflow, 90 
using this cyanobacterial dataset, we connected curacin A’s MS/MS spectrum with its correct 91 
GCF/BGC. The performance of our KNN approach was superior to using a Mantel correlation 92 
method (the Jupyter notebook for this correlation is available at the GitHub repository: 93 
https://github.com/tiagolbiotech/NPOmix). The major limitation for evaluation of our method 94 
was the lack of available test data for structures that are linked to their MS/MS spectra and 95 
biosynthetic gene clusters. 96 

However, the training and testing set was expanded by the paired omics dataset from 97 
the recently built Paired Omics Data Platform (PoDP) (14), and enabled a further evaluation of 98 
our KNN tool (named NPOmix). The PoDP is the first community effort to make available 99 
validated links between BGCs, structures, and MS/MS spectra. In the present work, we used 36 100 
out of the 71 paired metadatasets (listed in Dataset S1, sheet one). We selected genomic 101 
samples that contained a valid Genome ID or BioSample ID to aid in downloading them from 102 
the National Center for Biotechnology Information (NCBI) database, resulting in 732 103 
genomes/MAGs obtained from these 36 PoDP metadatasets. Following the same procedure of 104 
the genomes, we also selected and assembled 1,034 metagenomes from part of these PoDP 105 
datasets. Additionally, using already linked MS/MS-BGC information from the PoDP and from a 106 
NPLinker dataset (10), we obtained validated data for eight metabolite families (major 107 
compounds and analogs). These compound families were orfamides, albicidins, bafilomycin, 108 
nevaltophin D, jamaicamide, hectochlorin, palmyramide and cryptomaldamide (totaling 15 109 
reference MS/MS spectra due to the presence of analogs and sometimes more than one 110 
spectrum per metabolite). By training with the BGC fingerprints and testing these 15 validated 111 
links, we were able to correctly predict GCFs for 66.66% of the tested MS/MS fingerprints 112 
(10/15 reference MS/MS spectra were correctly classified using k = 3). Well-annotated links can 113 
be quickly prioritized by comparing substructures to mass differences in the fragmentation 114 
spectrum and/or predicted structures. A two-dimensional comparison of both types of 115 
fingerprints (BGC and MS/MS) can be a proxy for distinguishing some true positives from false 116 
positives. Critically, we filtered for BGC-MS/MS links wherein the query MS/MS spectra were 117 
mainly present in the same strains that the query BGCs were found (cutoff of 90% concordance 118 
between both BGC and MS/MS fingerprints). Once the PoDP data was filtered, our approach 119 
could connect BGCs with three types of mass spectra: known molecules (e.g., links that are 120 
validated experimentally), analogs of known molecules (e.g., links not validated but similar to 121 
validated reference spectra from the MS/MS database) or cryptic molecules (e.g., links without 122 
any library match, absent from the MS/MS database). We exemplify how it is possible to 123 
connect known BGCs to cryptic MS/MS spectra, new spectra that can be added to the current 124 
MS/MS databases. The same approach can be used for connecting new BGCs to cryptic MS/MS 125 
spectra that can be validated experimentally. While our approach uses unique fingerprints and 126 
a machine learning approach for connecting metabolites to BGCs, it can be considered a type of 127 
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Pattern-based Genome Mining (PBGM) which was previously reported by Doroghazi et al. in 128 
2014 and Duncan et al. in 2015 (6, 7). PBGM is based on the idea that the distribution of a given 129 
secondary metabolite should be comparable to the distribution of the BGCs responsible for 130 
their production. 131 

Generally, finding novel metabolites for cryptic BGCs or even known BGCs (e.g., novel 132 
analogs) is very useful to accelerate natural products discovery, however, connection of known 133 
metabolites to their biosynthetic gene clusters is also important. Newly linked BGCs for known 134 
metabolites can lead to the discovery of new enzymatic processes. For example, in the strain 135 
Anabaena variabilis ATCC 29413, a NRPS gene is responsible for the attachment of a serine 136 
residue to generate the final mycosporine-like amino acids (MAA) product. However, in the 137 
strain Nostoc punctiforme ATCC 29133, this same step is performed by an ATP-grasp ligase (15). 138 
This highlights that different microbes can generate the same specialized metabolites through 139 
different biosynthetic routes, and therefore, we believe that our NPOmix tool will assist with 140 
the discovery of both novel metabolites as well as known metabolites with new biosynthesis. 141 

Results and Discussion 142 
 143 

The Natural Products Mixed Omics (NPOmix) Approach: Description of the Genomic and 144 
Metabolomic Pipelines. To use the NPOmix approach (Fig. 1 shows a conceptual example using 145 
only four samples), it is required to have a dataset of paired genomic and MS/MS information. 146 
The genomic information can be either that of a genome or metagenome, and the MS/MS spectra 147 
should be obtained via untargeted LC-MS/MS. Paired datasets have become available at the 148 
Paired omics Data Platform (PoDP)(14), one of the first initiatives to gather paired genomic and 149 
MS/MS information. Using BiG-SCAPE (5), each biosynthetic gene cluster (BGC) in the genome to 150 
be queried undergoes a pairwise similarity comparison (Fig. 1A) to every other BGC in the query 151 
set (e.g., the set of genomes used for the training, for example, the genomes downloaded from 152 
the PoDP), and similarity scores are computed as “1 minus BiG-SCAPE raw distance” to assign 153 
BGCs to Gene Cluster Families (GCFs), if possible. In order to create a BGC fingerprint (Fig. 1C), 154 
we identify the similarity between the query BGC and each of the BGCs in each genome in the 155 
training dataset. The BGC fingerprint that emerges is a series of columns for each compared 156 
genome, the column value of which represents the similarity score between the query BGC and 157 
the BGC to which it is maximally similar in a given genome (column).  Similarity scores range from 158 
0.0 to 1.0; identical BGCs have perfect similarity and are scored as 1.0 whereas a score of 0.8 159 
would indicate that a homologous BGC is present in the genome.  A score below the similarity 160 
cutoff of 0.7 indicates that the queried BGC is likely absent in the genome. A similar process is 161 
used to create MS/MS fingerprints (Fig. 1B); a query MS/MS spectrum is compared to all of the 162 
MS/MS spectra in the query set.  This query spectrum could be either a reference spectrum from 163 
GNPS (16, 17) or a cryptic MS/MS spectrum from a new sample that contains a sequenced 164 
genome and experimental MS/MS spectra. In the case of MS/MS fingerprints (Fig. 1D), GNPS 165 
molecular networking was used to calculate the pairwise modified cosine score and then the 166 
maximum similarity was identified between the query MS/MS spectrum and the many MS/MS 167 
spectra in each experimental sample. This analysis only used the GNPS functions that are 168 
required to calculate a modified cosine similarity score between a pair of MS/MS spectra. The 169 
BGC fingerprints were used to create a training matrix (Fig. 1E) where rows are the maximum 170 
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similarity scores for each BGC.  Typically, this results in thousands of rows, and for our first release 171 
of NPOmix, we have captured this analysis for 5,421 BGCs that were present in 1,040 networked 172 
genomes/metagenomes (DNA samples can be downloaded using code from the GitHub 173 
repository, notebook 1), where each column is a genome and each value is the maximum 174 
similarity between the query BGC and the BGCs in this given genome. This BGC training matrix 175 
can be fed into the K-Nearest Neighbor (KNN) algorithm in order to train it with the genomic 176 
data. Additionally, one extra column is required in this BGC data matrix, a column that labels each 177 
BGC fingerprint with a GCF so the KNN algorithm will know the fingerprint patterns that belong 178 
together. The KNN algorithm plots the BGC fingerprints in the KNN feature space (in Fig. 1G). The 179 
KNN feature space is exemplified by only two dimensions as 1,040 dimensional space is not 180 
feasible to visualize (one dimension per sample). More details of how this multidimensional 181 
plotting occurs are described in the Fig. S1. where 3 BGCs are plotted in the three-dimensional 182 
space according to the scores from genomes A-C. The axis represent the genomes and the 183 
similarity values are coordinates in three-dimensional space. Next, the MS/MS fingerprints form 184 
a testing matrix (Fig. 1F), in this case, the matrix also contains 1,040 columns due to the 1,040 185 
sets of paired experimental MS/MS spectra (samples can be downloaded using the ftp links from 186 
Dataset S1, sheet two). For example, for our first release, this testing matrix contained 15 MS/MS 187 
fingerprints (rows) for MS/MS reference spectra from the GNPS database (also present at the 188 
PoDP). Each query MS/MS fingerprint (a row in the testing metabolomic matrix and columns are 189 
the experimental MS/MS spectra per sample) are plotted into the same KNN feature space (Fig. 190 
1G) so the algorithm can obtain the GCF labels for the nearest neighbors to the query MS/MS 191 
fingerprint (e.g., for three most similar BGC neighbors, k = 3). We note that GCF labels can be 192 
present more than once in the returned list if two or more BGC nearest neighbors belong to the 193 
same GCF. This repetition on the GCF classification is a common behavior of the KNN approach. 194 
Our approach is suitable for bacterial, fungal, algal and plant genomes and MS/MS spectra 195 
obtained from the same organism. Metagenomes and metagenome-assembled genomes (MAGs) 196 
can also be used instead of genomes, however, complete genomes are preferred. This KNN 197 
approach also supports LC-MS/MS from fractions or from different culture conditions; multiple 198 
LC-MS/MS files for the same genome were merged together into a single set of experimental 199 
MS/MS spectra. 200 
 201 

 202 
  203 
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 210 

 211 
 212 
Fig. 1. The genomics and metabolomics pipelines to use the proposed KNN approach for a 213 
hypothetical dataset with 4 paired genomes-MS/MS samples. Representation of how to 214 
calculate the similarity scores between BGCs (A) and between MS/MS spectra (B). Schematic of 215 
how to create BGCs (C) and MS/MS (D) fingerprints using a paired genomics-metabolomics 216 
dataset of four samples (genomes, metagenomes or MAGs)(samples A-D) and similarity scores 217 
from BiG-SCAPE and GNPS. The dashed red line represents the selected cutoff of 0.7. The query 218 
BGC is highly similar to a BGC in sample B (indicating as identical BGC), while it is probably 219 
absent in sample A and C. The BGC fingerprints are grouped together in a training matrix (E) 220 
and the MS/MS fingerprints compose the testing matrix (F). All fingerprints are plotted in the 221 
multi-dimensional KNN space (G, here represented in only 2D for simplification) where each 222 
shape represents a BGC fingerprint and each X represents an MS/MS fingerprint. BGCs are 223 
labeled according to one of the five GCFs (five different shapes). KNN ranking of neighbors is 224 
based in the proximity between the query MS/MS fingerprint and the neighboring BGC 225 
fingerprints. In this example, a KNN = 3 (three closest neighbors) is depicted. BGC = biosynthetic 226 
gene cluster; MS/MS = mass fragmentation spectrum; KNN = K-Nearest Neighbor; BiG-SCAPE = 227 
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software to calculate pairwise BGC-BGC similarity; Cosine score = modified cosine score from 228 
GNPS to calculate pairwise spectrum-spectrum similarity. 229 
 230 
Cyanobacterial dataset: connecting a known metabolite (link validated experimentally) with a 231 
cyanobacterial BGC. Marine cyanobacteria living on coral reefs have resulted in the discovery 232 
of many novel NPs (13, 18). We collected, sequenced and binned 60 cyanobacterial MAGs, 233 
mainly from the NP rich genera of Moorena, Okeania, Symploca, Leptolyngbya, Oscillatoria and 234 
Spirulina (13). Strains with good quality MAGs and paired LC-MS/MS data were published at 235 
PoDP under the ID “864909ec-e716-4c5a-bfe3-ce3a169b8844.2”. We clustered 2,558 BGCs (not 236 
including the BGCs from MIBiG) and we obtained high resolution LC-MS/MS for the same set of 237 
marine cultures/environmental samples. Previous investigations (19–26) reported the discovery 238 
of 8 cyanobacterial metabolites (Fig. 2) and their BGCs from a subset of these 60 marine 239 
cyanobacteria. Hence, we used these 8 BGC-MS/MS links, with a total of 39 different MS/MS 240 
spectra, to validate our KNN algorithm for a small, uniformly built and not so sparse dataset. 241 
There are multiple spectra per compound due to different types of molecular ions (protonated, 242 
sodiated, halogenated, etc.). From this relatively small dataset, we were already able to 243 
connect one MS/MS spectrum to its correct BGC – curacin A (23), marked in red in Fig. 2 – thus 244 
providing a fairly low precision of 1/39 (2.56%). However, the BGC fingerprints had a very small 245 
number of similarity scores and it is expected that the fingerprints and the algorithm’s precision 246 
would improve with a larger dataset with more complete BGCs (many of the 60 MAGs 247 
contained several fragmented BGCs). Despite its low precision, this approach is already an 248 
improvement over an earlier attempt that used a presence/absence Mantel correlation, as that 249 
effort to connect genomes and metabolomes only yielded false positives for this same small 250 
cyanobacterial dataset (Mantel correlation generated 51 GCF-MF links, all false positives). 251 
Mantel correlation is an approach that combines two presence/absence matrices (one for 252 
genomics and one for experimental MS/MS spectra) into a single output, creating a pairwise 253 
association between a given row of the genomics matrix with a second row from the 254 
metabolomics matrix. The Mantel correlation code is available in a Jupyter notebook found at 255 
the GitHub repository: https://github.com/tiagolbiotech/NPOmix. 256 
  257 
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 258 
Fig. 2. Structures of compounds used for validating links between BGC and MS/MS spectra for 259 
the 60 cyanobacterial samples. Highlighted in red is curacin A, the one correct link that was 260 
predicted via this KNN approach. 261 
 262 
  263 
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PoDP dataset: connecting known metabolites (links validated experimentally) to PoDP BGCs. 264 
To further validate our NPOmix approach, we used 36 out of 71 datasets from the PoDP (from 265 
February 2021, listed at Dataset S1, sheet one). We selected genomic samples that contained a 266 
valid Genome ID or BioSample ID to aid their downloading from the NCBI database and totaling 267 
732 genomes/MAGs obtained from these 36 metadatasets. We also selected and assembled 268 
1,034 metagenomes from two major metagenomic datasets: 1) MSV000082969 and PoDP ID 269 
cd327ceb-f92b-4cd3-a545-39d29c602b6b.1 - 556 cheetah fecal samples and environmental 270 
samples; 2) MSV000080179 and PoDP ID 50f9540c-9c9c-44e6-956c-87eabc960d7b.3 - The 271 
American Gut Project (27) that contains fecal samples from 481 human subjects. These 272 
(meta)genomes were automatically downloaded with the code shared at the GitHub repository 273 
https://github.com/tiagolbiotech/NPOmix, notebook 1. The LC-MS/MS files can be downloaded 274 
using “ftp” from links found at Dataset 1, sheet two. We were able to cluster 1,040 275 
(meta)genomes that contained 5,681 BGCs (including 260 BGCs from the MIBiG database) 276 
distributed into 997 GCFs. In the untargeted metabolomics data, we matched 3,248 LC-MS/MS 277 
files to 15 GNPS (16, 17) reference library spectra in order to create the MS/MS fingerprints for 278 
testing the KNN classification (one fingerprint per spectra). In the near future, we envision 279 
creating a balanced, diverse and less sparse training dataset. To maximize precision rates in the 280 
future, we plan to purchase cultures from collections that have well assembled genomes so we 281 
can obtain the paired LC-MS/MS. However, the current dataset produced highly supportive 282 
results by testing validated links from the PoDP, links generated by the Gerwick lab dataset, and 283 
validated links used in the NPLinker publication (10). We attempted to test all 242 metabolite-284 
BGC links from NPLinker (totaling 2,069 unique MS/MS spectra, Dataset S1, sheet four), 109 285 
manually added MS/MS spectra (connected to BGCs, annotated by experts at the PoDP, Dataset 286 
S1, sheet three) and 406 MS/MS spectra from metabolites isolated by the Gerwick lab. 287 
Although, most of these validated links were not present in the 1,040 paired (meta)genomes-288 
MS/MS samples from the PoDP (as NPLinker used BGCs from MIBiG and not PoDP) or their BGC 289 
scores did not co-occur with their MS/MS scores because they were not present in the same 290 
sample. Hence, our validation dataset was limited to 8 validated links found in the paired 291 
(meta)genomes-MS/MS samples (orfamides, albicidins, bafilomycin, nevaltophin D, 292 
jamaicamide, hectochlorin, palmyramide and cryptomaldamide, totaling 15 reference MS/MS 293 
spectra that were present in the GNPS database). We stress that a larger training dataset with 294 
more complete genomes is likely to increase the size of the validation set by adding more valid 295 
BGCs into the analysis. We also combined the NPOmix program with in silico tools like 296 
Dereplicator+ (28) to make new links between MS/MS spectra, BGCs and molecular structures.  297 
This was accomplished by annotating cryptic MS/MS spectra (without a GNPS library hit and 298 
therefore not present in either the GNPS or the PoDP databases) to known BGCs. Such new 299 
links could be confirmed experimentally to improve the size of the validation set, as well as to 300 
expand MS/MS databases by adding these cryptic spectra to them. 301 

A two-dimensional comparison of both types of fingerprints (BGC and MS/MS) can be a 302 
proxy for distinguishing some true positives from false positives. As observed in Fig. S2, we can 303 
visualize a mismatch between the BGC fingerprints (one GCF) and the MS/MS fingerprint in the 304 
“reduced” KNN-space (represented schematically in only two dimensions), indicative of a 305 
possible false positive link. This GCF is dereplicated as the known metabolite, pyocyanin, and it 306 
was incorrectly associated with the metabolite 2,4-diacetylphloroglucinol, confirming the false 307 
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positive (at k = 3). In contrast, Fig. 3 illustrates that 5 metabolites, 2 albicidins and 3 albicidin 308 
analogs, could be correctly assigned to their corresponding GCF that contains 2 BGCs.  In this 309 
case, the BGC fingerprints match the MS/MS fingerprints (Fig. 3C, 3D). Using this second larger 310 
dataset comprised of 1,040 samples instead of only 60 yielded a precision of 66.7% as 10 out of 311 
15 reference MS/MS spectra were correctly labeled when top-n = 3 (k also equal to 3). Top-n 312 
represents how often the correct GCF label was found among the top n labels classified by the 313 
KNN approach (see Tables 1 and 2). The observed precision was much higher than with the 314 
cyanobacterial dataset because the PoDP dataset has a larger number of samples and it also 315 
contains a larger diversity of microbial entries thus providing fingerprint-based approaches 316 
more resolution. Lastly, we regard our NPOmix approach as multi-omics enabled dereplication 317 
because the 5 MS/MS albicidin labels were automatically assigned to a known GCF that 318 
confirmed their metabolite labels, thereby minimizing the necessity to purchase standards, to 319 
perform isolation and NMR characterization, gene knockout or heterologous expression. 320 
 321 

 322 
Fig. 3. Multi-omics enabled dereplication of albicidin by automatically predicting a true BGC-323 
metabolite link. Structure of the dereplicated metabolite (A) and its corresponding 324 
representative MS/MS spectrum (B, spectrum example from GNPS ID CCMSLIB00000579285 325 
and m/z of 843.27), obtained via Metabolite Spectrum Resolver (29). The two BGC fingerprints 326 
(1130 and 1131) are represented in a 2D plot (C) and they match the 2D plot for the 5 MS/MS 327 
fingerprints obtained from GNPS for albicidin and its analogs (D). BGC = biosynthetic gene 328 
cluster; MS/MS = mass fragmentation spectrum; m/z = mass over charge calculated via mass 329 
spectrometry. 330 
  331 
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Connecting analogs to BGCs: the example of orfamide C. An NPOmix link can be further 332 
confirmed by matching the AA predictions from the BGC with the structure prediction for the 333 
query metabolite based on library match or in silico annotations (Fig. 4). For example, the BGC 334 
(genes 1-6 in Fig. 4) for the metabolite orfamide C (MIBiG ID BGC0000399) was automatically 335 
connected by our KNN approach to a GNPS metabolite labeled “putative orfamide C” 336 
(CCMSLIB00004679300). This MS/MS spectrum was obtained from the same strain where the 337 
BGC was first identified (Pseudomonas protegens Pf-5, Genbank ID GCA_000012265)(30). The 338 
nine amino acid (AA) predictions for this BGC, based on the specificity of adenylation domains, 339 
match the structure for orfamide C in the correct order: leu, asp, thr, ile, leu, ser, leu, leu and 340 
ser. AntiSMASH was not able to predict the tenth and last in the biosynthetic series, namely 341 
valine. The matching between the predicted structures confirmed the multi-omics enabled 342 
dereplication of orfamide C (using k = 3, BGC predictions and predicted metabolite structure are 343 
represented in Fig. 4). The KNN GCF predictions do not use structures/substructures for linking 344 
MS/MS spectra to BGCs; hence, as demonstrated in Fig. 4, these substructure predictions can 345 
be an extra dimension for selecting links that are true positives over false positives. 346 

We have determined that the use of three neighbors is the optimal performance, 347 
providing a good balance between precision and number of links to validate (top-3 = 66.7% and 348 
randomness equal to 0, as detailed in Table 1). Randomness is observed by shuffling the testing 349 
columns, experimental MS/MS names, and counting how many correct links are present 350 
between the top-n GCF candidates. This parameter (n and k = 3) enabled the dereplication of 351 
the albidicins, orfamides B-C, jamaicamides A and C and cryptomaldamide, totaling 4 different 352 
metabolite families (and analogs) that were correctly predicted by our KNN approach using the 353 
PoDP dataset. Noteworthy, the top-10 precision had a maximum score of 73.33% with 354 
randomness still equal to 0.  However, 10 GCF candidates is practically too large for useful 355 
genome mining as all those candidates would need to be tested experimentally. We expect that 356 
our approach will improve with a larger training set and with further improvement of the 357 
features in the BGC and MS/MS fingerprints (e.g., based on substructure presence/absence). 358 
The 15 BGC-MS/MS validated links reported herein and their predictions using k = 3 are found 359 
in Table 2 that provides the GCF labels for the three closest BGCs to a given MS/MS fingerprint 360 
(the 10 correct GCF predictions are colored red and highlighted in bold). We confirm that all 10 361 
correct GCF predictions reported here were found in the original producer of the identified 362 
metabolites and they matched the reported masses. With 49 known GCF-MS/MS links were 363 
present in the 1,040 samples with paired data, the annotation rate was reasonably high (around 364 
30%, 15 out of 49 links were retained after the co-occurrence filter, a filter to keep only the 365 
metabolites that are found among the same samples that contain the candidate BGCs). 366 
  367 
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 368 

 369 
Fig. 4. NPOmix automatically connected an MS/MS spectrum annotated as “putative orfamide 370 
C” to the MIBiG BGC annotated as orfamide C. The figure illustrates the matches between the 371 
BGC’s AA predictions (via antiSMASH) and the predicted metabolite structure (orfamide C, 372 
predicted via MS/MS spectral matching). Only one AA (valine, in red) out of 10 AA could not be 373 
predicted by the BGC annotation tool (antiSMASH), however, this valine residue was predicted 374 
by the MS/MS spectrum. BGC = biosynthetic gene cluster; AA = amino acid; AmT = 375 
aminotransferase; TE = thioesterase; A = adenylation domain; ER = enol reductase; “?” in the 376 
BGC represents that one AA could not be predicted by antiSMASH. 377 
 378 
  379 
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Table 1. Top-n precision scores (how often the correct GCF label was found among the top n 380 
labels classified by the KNN approach) for 15 reference GNPS MS/MS spectra connected to a 381 
BGC found in the paired 1,040 (meta)genomes-MS/MS downloaded from the PoDP. These links 382 
were obtained from the NPLinker dataset, GNPS and PoDP databases. Randomness is observed 383 
by shuffling the testing columns, experimental MS/MS names, and counting how many correct 384 
links are present between the top-n GCF candidates. Based on this, we believe the best 385 
performance is n = 3 for the examined dataset. 386 
 387 

 Top-1 Top-3 Top-5 Top-10 Top-50 Top-100 
Data 46.66% 66.66% 66.66% 73.33% 73.33% 73.33% 
Random 0% 0% 0% 0% 0% 20% 

 388 
Table 2. 15 links between GNPS MS/MS spectra (with CCMS metabolite ID) and networked gene 389 
cluster family (true GCF). The table also includes their KNN predictions (k = 3); the predicted 390 
GCFs are ordered according to the value for k, from 1 (nearest) to 3 (furthest), and the first 391 
correct family is marked in bold red font. GCF labels can be repeated because multiple BGCs 392 
from the same GCF can be predicted as the nearest neighbors. Classification is considered 393 
correct if the true GCF is among the top-3 candidates. Annotations are according to each MIBiG 394 
BGC(s) found in the true GCFs. The “orphan” label indicates that the BGC was not networked in 395 
the current dataset. 396 
 397 

CCMS metabolite ID True GCF Predicted GCFs for k = 3 Annotation 
CCMSLIB00000479759 GCF320 GCF122, GCF115, GCF112 Bafilomycin 
CCMSLIB00000579285 GCF476 GCF476, GCF180, GCF476 Albicidin 
CCMSLIB00000840594 GCF488 GCF740, GCF740, GCF739 Nevaltophin D 
CCMSLIB00004679298 GCF450 GCF465, GCF445, GCF439 Orfamide A 
CCMSLIB00004679299 GCF450 GCF465, GCF445, GCF450 Orfamide B 
CCMSLIB00004679300 GCF450 GCF465, GCF445, GCF450 Orfamide C 
CCMSLIB00004681475 GCF476 GCF476, GCF180, GCF476 Propionyl-albicidin 
CCMSLIB00004681481 GCF476 GCF476, GCF180, GCF476 Beta-methoxy-albicidin 
CCMSLIB00004681486 GCF476 GCF476, GCF180, GCF476 Carbamoyl-beta-methoxy-albicidin 
CCMSLIB00004681487 GCF476 GCF476, GCF180, GCF476 Albicidin 
CCMSLIB00000001706 GCF471 GCF471, GCF498, GCF471 Jamaicamide A 
CCMSLIB00005724004 GCF498 GCF471, GCF498, GCF471 Cryptomaldamide 
CCMSLIB00000001553 Orphan GCF471, GCF498, GCF471 Hectochlorin 
CCMSLIB00000001751 Orphan GCF471, GCF498, GCF471 Palmyramide A 
CCMSLIB00000001708 GCF471 GCF471, GCF498, GCF471 Jamaicamide C 

 398 
 399 
 400 
  401 
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Connecting cryptic metabolites (without GNPS library matches) to BGCs: the example of 402 
brasilicardin A. We used a combination of MS/MS fingerprints (notebook 2), BGC fingerprints 403 
(notebook 3), MZmine (31) and Dereplicator+ (28) in order to annotate brasilicardin A. This 404 
approach differs from the previous NPOmix analysis because it uses MZmine to select the 405 
MS/MS spectra instead of collecting spectra from the GNPS and PoDP databases. After selecting 406 
300 MS/MS spectra from the 16 most diverse genomes in the dataset with 1,040 samples, 407 
Dereplicator+ had three in silico predictions and one of them was the unique tricyclic 408 
glycosylated terpene brasilicardin A. The observed m/z matches the value previously reported 409 
in the literature)(32), identifying an MS/MS spectrum that is currently absent from both the 410 
GNPS and the PoDP databases. NPOmix connected the MS/MS spectrum (predicted to be 411 
brasilicardin A by Dereplicator+, information not used in the NPOmix training) with the correct 412 
BGC (brasilicardin A MIBiG ID BGC0000632 from the strain Nocardia terpenica IFM 0406, 413 
GenBank ID GCA_001625105)(33), highlighting how NPOmix can connect cryptic molecules 414 
without library matches (absent from MS/MS databases) to their corresponding BGCs. 415 
Predicted fragmentation (Fig. S3 and table with deltas in Dataset S1, sheet seven) strongly 416 
suggests that the query MS/MS spectrum is indeed brasilicardin A (all differences between 417 
exact m/z and observed m/z were extremely low). This pipeline provided additional 70 links 418 
between cryptic MS/MS spectra and BGCs from the most diverse strains (links listed at Dataset 419 
S1, sheet six) and potentially new BGCs can be explored experimentally (e.g., BGC knock-out, 420 
heterologous expression or isolation and NMR structure elucidation), especially if coupled to 421 
NMR SMART analysis (34, 35) to confirm their novelty. 422 
 423 
Improving the fingerprint for known metabolites using biosynthetic class. In order to increase 424 
the precision of our NPOmix algorithm, we added the biosynthetic classes (PKSs, NRPSs, 425 
terpenes, siderophores, RiPPs, phosphonates, oligosaccharides, phenolic metabolites, 426 
others/unknowns and other minor classes) to the BGC and MS/MS fingerprints as 427 
presence/absence in the training set (5,681 BGCs). For example, if a given BGC is a hybrid PKS-428 
NRPS, it was annotated as 1 in the PKS and NRPS columns, and with a 0 in the remaining classes 429 
(additional columns). For the MS/MS fingerprints in the validation set (testing set), we manually 430 
annotated these same features (biosynthetic classes) because the structures for these testing 431 
MS/MS spectra were known. In cases where the structure is unknown, tools like CANOPUS (36) 432 
and MolNetEnhancer (37) can provide a similar biosynthetic class prediction, and these 433 
predictions can be further confirmed using substructures predicted with unsupervised tools like 434 
MS2LDA (38) or dedicated tools like MassQL (based on specific MS/MS fragments found in the 435 
spectra, manuscript in preparation) or CSI:FingerID via SIRIUS 4 (39). As observed in the 436 
precision curves from Fig. S4 for version 1.0 (fingerprints without biosynthetic classes) and 437 
version 2.0 (fingerprints with biosynthetic classes), the precision increased for top-3 and top-5 438 
testing results, for top-3 it increased from 66.66% without the biosynthetic class (good score 439 
with a lower number of GCF candidates than top-10) to 73.33% with the biosynthetic class 440 
added, requiring less GCF candidates to obtain a similar precision as the top-10 without 441 
inclusion of the biosynthetic class. Consequently, we observed a better ranking of the predicted 442 
GCFs when the new class features were added.  443 
  444 
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Conclusion 445 
 446 
 We created a machine learning solution, a K-Nearest Neighbors algorithm named 447 
NPOmix, to connect specialized metabolites observed by untargeted mass spectrometry to 448 
their biosynthetic gene clusters (BGCs). We demonstrated that the tool performs reasonably 449 
well for a small dataset that was sequenced and collected in a uniform fashion; in this case, the 450 
dataset was constructed from 60 marine cyanobacterial samples with MAGs and high 451 
resolution untargeted LC-MS/MS spectra.  These were mostly from tropical marine 452 
cyanobacteria, which are known to be rich producers of NPs. Nevertheless, performance was 453 
limited by the small size of the dataset of good cyanobacterial genomes. We showed that a 454 
larger dataset, deriving from heterogeneous sources such as the ones currently available in the 455 
Paired omics Data Platform (PoDP), can create better fingerprints and can thus more 456 
successfully connect known metabolites to their corresponding BGCs, such as albicidin and its 457 
analogs to a BGC in Xanthomonas albilineans GPE PC73 (GenBank ID GCA_000087965.1), 458 
orfamides A-C to a BGC in Pseudomonas protegens Pf-5 (GCA_000012265), and 459 
cryptomaldamide and jamaicamide A and C to BGCs in Moorena producens JHB 460 
(GCA_001854205).  All three of these strains were the original producers of these metabolites. 461 
In Fig. 4, we illustrated how the BGC predictions (such as predicted moieties) can help to 462 
prioritize true links over false positives via matching of predicted structures between a given 463 
MS/MS spectrum and its BGC candidates.  464 

In this work we demonstrated the use of machine learning and genome mining to 465 
process several thousand LC-MS/MS files and a thousand genomes to connect MS/MS spectra 466 
to GCFs. Our approach can systematically connect MS/MS spectra from known metabolites 467 
(links validated experimentally), spectra from metabolites analogous to known (links with GNPS 468 
library matches) and spectra from cryptic metabolites (links without GNPS library matches and 469 
therefore absent from the MS/MS database, as exemplified by brasilicardin A). The advantage 470 
of using paired data is that the genomic information represents the full metabolic potential of 471 
an organism, and hence, we can prioritize the discovery of the most diverse BGCs via genome 472 
mining. Additionally, the use of genetic information can help in the structure elucidation and 473 
prediction of bioactivity (40), highlighting the advantage of using the BGC information in the 474 
drug discovery process. Moreover, predicting linked MS/MS spectra for a promising BGC can 475 
facilitate their heterologous expression as expression can be difficult if the target molecule is 476 
not known. Furthermore, we show how cryptic MS/MS spectra (absent from MS/MS databases 477 
like GNPS) can be annotated using NPOmix, MZmine (31) and Dereplicator+ (28), allowing 478 
expansion of the current MS/MS databases. We also demonstrated how our methodology is 479 
suitable for linking cryptic MS/MS spectra with putative BGC candidates that can assist in the 480 
isolation of novel natural product scaffolds. Despite the relatively small size of the training 481 
dataset (in comparison to other machine learning approaches, 1,040 paired samples and 5,681 482 
BGCs from the PoDP database), we observed good precision scores of top-3 = 66.66% and top-483 
10 = 73.33% (both with randomness equal to 0). By including the biosynthetic class in the 484 
fingerprints, the best precision score was top-3 = 73.33%. In effect, this latter analysis required 485 
less GCF candidates to obtain a similar precision as the top-10 without inclusion of the 486 
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biosynthetic class. We observed an annotation rate of around 30%, as 15 out of 49 GCF-MS/MS 487 
validated links were retained after the co-occurrence filter. 488 

The use of complete genomes over MAGs and metagenomes is preferred to create a 489 
more “complete” training set; we predict that this would result in better precision than if the 490 
training set is populated with several fragmented BGCs. Our results highlight the importance of 491 
making genomics and metabolomics data publicly available with curated metadata, because 492 
more available paired data would enable better training of models, and therefore, better tools 493 
for the research community. Future plans include the testing of other similarity metrics for 494 
networking and fingerprinting such as BiG-SLICE (41) for genomics and Spec2Vec (42) and 495 
MS2DeepScore (43) for the metabolomics. We will also look for synergy with correlation scores 496 
from NPLinker to better annotate paired datasets. We intend to implement structure and 497 
substructure predictions from the MS/MS fragmentation spectra using tools like SIRIUS 4 (39), 498 
MS2LDA (44), MolNetEnhancer (37) or CANOPUS (36), prioritizing candidates that have several 499 
substructures or predicted chemical compound classes matching between BGCs and MS/MS 500 
spectra. The GNPS molecular family information could be used to select a consensus prediction 501 
among different MS/MS spectra from the same family. The BGCs assembled from the 502 
metagenomic samples could be improved using tools like metaBGC (45) and BiG-Mex (46). 503 
Enrichment of the current Paired Omics Data Platform dataset (we could now use 1,040 PoDP 504 
samples) with higher quality samples as well as more validated BGC-MS/MS links will further 505 
drive the development of tools such as NPOmix, and this will spark the discovery of more novel 506 
NPs. Furthermore, machine learning can be used to connect promising BGCs with their 507 
biological activities (anticancer, antimicrobial and antifungal)(40). Finally, we would like to 508 
stress that all true positive BGC-MS/MS validated links reported here were found in the original 509 
producer of the metabolites and they matched the reported masses.  We expect that NPOmix is 510 
a promising tool to search for new natural products in paired omics data of natural extracts by 511 
using links between cryptic MS/MS and putative BGCs. This will, for example, facilitate the use 512 
of genome mining in drug discovery pipelines. 513 
 514 

Code and Data Availability  515 
 516 
 The code (a collection of Jupyter notebooks) required to reproduce this work and to use 517 
the NPOmix tool for new samples can be found in the following GitHub repository page: 518 
https://github.com/tiagolbiotech/NPOmix. The repository also includes short video 519 
explanations on how the tool works and its importance for natural product discovery. The 520 
(meta)genomes used to create the NPOmix training dataset for validation were downloaded 521 
from the Paired omics Data Platform (PoDP)(14) using notebook 1 from the GitHub repository. 522 
The paired experimental MS/MS files were downloaded using the ftp links (also from the Paired 523 
omics Data Platform) found in Dataset S1, sheet two. The testing set included MS/MS spectra 524 
from PoDP, spectra from the Global Natural Products Social Molecular Networking database 525 
(GNPS)(16) and also spectra used in the NPLinker dataset (10). If the potential users find the 526 
tool challenging to run, we have our contact information at the GitHub web page (link above) to 527 
submit samples and we expect that promising results will lead to fruitful collaborations. In the 528 
near future, we will have a web-based interface for direct submission of samples.  529 
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Methods 559 
 560 
Obtaining paired data. Sixty cyanobacterial samples were collected via SCUBA diving or 561 
snorkeling along coastal shores around the globe and subjected to processing as described by 562 
Leao et al., 2021, (13). High quality genomes were published at NCBI database and LC-MS/MS 563 
data were collected for the same set of samples, also as described by Leao et al., (2021)(13). 564 
The paired data is available at the PoDP (ID “864909ec-e716-4c5a-bfe3-ce3a169b8844.2”). We 565 
automatically downloaded the paired (meta)genomics-metabolomics data from the samples in 566 
the PoDP according to the code in the notebook 1 at the GitHub repository described below. 567 
The cyanobacterial high resolution LC-MS/MS data was obtained according to the methods in 568 
by Luzzatto-Knaan et al. (47). 569 
 570 
Genome assembly and annotation, BGC and MS/MS similarity calculation. Metagenomic 571 
reads were assembled with SPAdes 3.15.2. (48). For BGC annotation, we used antiSMASH 5.0 572 
(49) and for gene cluster networking we used BiG-SCAPE 1.0 (similarity cutoff of 0.7) (5). BiG-573 
SCAPE raw distance is measured via the domain sequence similarity (DSS) index, an index that 574 
calculates the Pfam domain copy number differences and sequence identity (5). For networking 575 
metabolites, we used GNPS classical molecular networking release 27 (similarity cutoff of 0.7). 576 
We did not use the full classical molecular networking capabilities in the NPOmix approach, as 577 
only the functions required to calculate a modified cosine score between a pair of MS/MS 578 
spectra were needed.  579 
 580 
Creating fingerprints. We developed python scripts and we combined with scripts from sklearn 581 
(https://scikit-learn.org/stable/index.html) to create both BGC and MS/MS fingerprints and to 582 
run the KNN algorithm. A BGC fingerprint is created by pairwise BiG-SCAPE comparison 583 
between the queried BGC and all the BGCs found in the (meta)genomes in the training set, 584 
selecting the highest similarity scores for each (meta)genomes. An MS/MS fingerprint (part of 585 
the testing set) is created by pairwise modified cosine comparison between the queried MS/MS 586 
and all the MS/MS present in the LC-MS/MS files paired with the genomes from the training 587 
set, also selecting only the highest similarity scores per set of experimental MS/MS spectra.  588 
 589 
Jupyter notebooks. All scripts used in this research can be found at this GitHub repository: 590 
https://github.com/tiagolbiotech/NPOmix. Notebook 1 can be used to download 591 
(meta)genomes and metagenome-assembled genomes (MAGs) that contain paired untargeted 592 
metabolomics (LC-MS/MS)(metabolomic files will also be downloaded by the notebook). We 593 
selected genomic samples that contained a valid Genome ID or BioSample ID, resulting in 732 594 
genomes/MAGs. We also selected and assembled 1,034 metagenomes. Notebook 2 can be 595 
used to process downloaded metabolomics files and a selected set of “.mgf” reference MS/MS 596 
spectra, creating a matrix containing the MS/MS fingerprints for the selected set of reference 597 
spectra (reference MS/MS spectra for the validation but for using the tool these reference 598 
spectra will be replaced by cryptic MS/MS spectra). If there are more than one LC-MS/MS file 599 
per genome (for example different media conditions or different chemical fractions), these files 600 
were merged into a single file representing these experimental MS/MS spectra. Notebook 3 can 601 
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be used to process the antiSMASH results to create BGC fingerprints and use those to train the 602 
KNN algorithm. The MS/MS fingerprints are used to predict a/multiple GCF(s) for each tested 603 
reference MS/MS spectra found in the paired genomes-MS/MS data. We filtered the GCF-604 
MS/MS links for cases that the top GCF candidate had co-occurrence (GCF and MS/MS scores 605 
were present in the same set of samples, as illustrated in Fig. 3C and 3D). Notebook 3 also 606 
performs cross-validation (dividing the data into 5 parts) and the average precision score for 607 
the cross-validation was 56.9%. Notebook 4 can be used to generate metadata such as the type 608 
of GCF or the count of BGCs per each genus in the database. The code for making the Mantel 609 
correlation, an approach that combines two presence/absence matrices, can be found in 610 
notebook 5. Notebook 6 presents the code for genome mining that yielded the annotation of 611 
brasilicardin A (more details below). Notebook 7 expanded the similarity/absence fingerprints 612 
by including the biosynthetic class (NPOmix version 2.0). 613 
 614 
Genome mining for new MS/MS spectra using Dereplicator+ and NPOmix. In order to use the 615 
NPOmix approach to find new NPs without any GNPS library matches (absent from the MS/MS 616 
database), we developed a pipeline combining NPOmix, MZmine (31) and Dereplicator+ (28). 617 
First, a number of strains were selected using MZmine, here exemplified with 16 strains, based 618 
on their BGC beta-diversity scores. The Jaccard beta-diversity score metric of the similarity 619 
between a pair of strains was calculated as the intersection over the union of the detected gene 620 
cluster families. Using MZmine, we select peaks that were above a certain intensity threshold 621 
(we used base peak relative abundance of 1E6) in order to prioritize the chromatographic peaks 622 
that could reasonably be isolated for structure elucidation.  In this example, we detected 623 
approximately 3,800 peaks with MS/MS spectra found in the analysis of the 16 most diverse 624 
strains. This MZmine list of peaks that have associated MS/MS data was filtered for minimum 625 
precursor mass of m/z 500 to promote the presence of multiple moieties (substructures) in the 626 
predicted structures, generating 300 “.mgf” files. These mgf files were used by NPOmix to 627 
predict the GCFs/BGCs for each of the 300 MS/MS spectra. We filtered for BGC-MS/MS links 628 
that the query MS/MS spectra existed in the same strains that the query BGCs were found (e.g., 629 
Fig 3C-D) and not across different strains (e.g., Fig. S2), using the Jaccard index in the 630 
presence/absence of fingerprints, essentially a pairwise analysis between the BGC fingerprint 631 
and the MS/MS fingerprint. This second filter narrowed down the number of mgf files to 72, as 632 
listed in Dataset S1, sheet six. These 72 mgf files were processed by Dereplicator+ for predicting 633 
structures for each MS/MS spectrum, leading to the annotation of brasilicardin A. Two other 634 
Dereplicator+ hits did not match the predicted GCFs. MZmine parameters were as follows: 635 
noise level of 1E6 for MS1 and 1E3 for MS/MS, minimum group size in number of scans of 4, 636 
group intensity threshold of 1E6, minimum highest intensity of 3E6, m/z tolerance of 10 ppm, 637 
retention time tolerance of 0.2, weight for m/z of 75%, and weight for retention time of 25%. 638 
 639 
  640 
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Expanding BGC and MS/MS fingerprints using biosynthetic classes. In notebook 7, the BGC 641 
classes were annotated and included in the BGC fingerprints.  To accomplish this, all of the 642 
antiSMASH annotations for a given BGC were added to the presence of all predicted classes. 643 
Each class represented a new column in the fingerprints and the columns were filled with 1 (if 644 
the class was present) and 0 (if the class was absent). We observed the following classes in our 645 
dataset: PKSs, NRPSs, terpenes, siderophores, RiPPs, phosphonates, oligosaccharides, phenolic 646 
metabolites, others/unknowns and other minor classes. In the MS/MS fingerprint, for each one 647 
of the 15 validated MS/MS spectra, we annotated the presence/absence of the biosynthetic 648 
classes based on the known structures. These new fingerprints were used in the machine 649 
learning process, analogously to the notebook 3.  650 
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 651 
Fig. S1. Representation of how BGCs can be plotted in the KNN space by using the values in the 652 
training matrix, each column represents a genome in the training set and it also represents a 653 
dimension in the KNN space (1,040 genomes distributed in 1,040 columns). This example has 654 
three dimensions because it uses only three genomes; the actual training matrix used in this 655 
study had 1,040 genomes and therefore 1,040 dimensions. 656 
  657 
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 658 
  659 
Fig. S2. Representation of a mismatch linked by the KNN algorithm using k = 3. It is visually clear 660 
that the closest neighboring BGC fingerprints for pyocyanine does not properly match the 661 
MS/MS fingerprint from the metabolite 2,4- diacetylphloroglucinol, indicating that NPOmix 662 
suggested the wrong GCF for the 2,4- diacetylphloroglucinol MS/MS spectrum. 663 
 664 
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 670 
 671 
Fig. S3. Proposed mechanism for the fragmentation of brasilicardin A by ESI mass spectrometry. 672 
The structure was proposed by NPOmix as a possible match for the MS/MS spectrum with 673 
protonated m/z 893.4624. Dataset S1, sheet seven, shows the SMILES strings and delta m/z 674 
values for the predicted structural fragments and the observed fragments in the MS/MS 675 
spectrum. All delta m/z values in the table were extremely small, strongly indicating that 676 
brasilicardin A is the correct structure for this MS/MS spectrum and it matches well with the 677 
BCG identified in genome of Nocardia terpenica IFM 0406 (BGC known to produce brasilicardin 678 
A, ID BGC0000632). 679 
 680 
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 682 
Fig. S4. Comparison of precision curves before (blue line, version 1.0) and after addition of the 683 
biosynthetic class (green line, version 2.0). Best precisions are marked by dots (version 1.0 is 684 
top-3 = 66.66% and version 2.0 is top-3 = 73.33%). Randomness is represented by the red line. 685 
 686 
 687 
 688 
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