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Abstract
In essentially all species where meiotic crossovers have been studied, they occur
preferentially in open chromatin, typically near gene promoters and to a lesser extent at
the end of genes. Here, in the case of Arabidopsis thaliana, we unveil further trends arising
when one considers contextual information, namely summarized epigenetic status, size of
underlying genomic regions and degree of divergence between homologs. For instance we
find that intergenic recombination rate is reduced if those regions are less than 1.5 kb in
size. Furthermore, we propose that the presence of single nucleotide polymorphisms is a
factor driving enhanced crossover rate compared to when homologous sequences are
identical, in agreement with previous works comparing rates in homozygous and
heterozygous blocks. Lastly, by integrating these different factors, we produce a
quantitative and predictive model of the recombination landscape that reproduces much of
the experimental variation.

Introduction
Crossovers formed during meiosis drive the shuffling of allelic combinations when going
from one generation to the next. They thereby play a central role in genetics and evolution
and they are also key in all forms of breeding. In cultivated plants, the pericentromeric
regions tend to be large and refractory to crossovers (Bauer et al., 2013; Choulet et al.,
2014). Although these regions have a high density of transposable elements, in crops they
nevertheless contain a sizable number of genes. Attracting crossovers (COs) into these
regions could have benefits for genetic studies (e.g., to identify gene functions) and for
selection of new combinations of alleles of relevance for breeding.

CO formation processes (Villeneuve et al., 2001; Mercier et al., 2015) start with the active
formation of double strand breaks (Keeney & Neale, 2006) and end with DNA repair,
leading to either CO or non-COs (Hunter, 2015). They are tightly regulated, in particular
they ensure at least one CO per bivalent (Jones & Franklin, 2006; Zickler & Kleckner,
2016) but not many more in spite of huge variations in genome size (Fernandes et al.,
2018). Furthermore, CO distribution tends to be very heterogeneous along chromosomes,
indicating that there are also determinants of CO formation at finer scales. Typically,
pericentromeres and more generally regions rich in heterochromatin are depleted in COs.
In contrast, regions of open chromatin such as gene promoters are enriched in COs. In
yeast it has been possible to measure precisely the distribution of double strand breaks
(precursors of both COs and non-COs), revealing a very high level of heterogeneity
genome-wide (Pan et al., 2011). It is generally assumed that such heterogeneities,
detected all the way down to the scale of a few kb, arise also for CO distributions in most
species, though the resolution of CO maps have not been able to fully confirm this
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expectation. That is particularly true in plants that are our focus here and for which the
best dataset averages about one CO every 3.5 kb (Rowan et al., 2019).

Our objective here is to shed light on genomic and epigenomic features that shape
recombination rate on fine scales in A. thaliana, a species chosen because it has more
extensive CO datasets than other species. Nevertheless, the data are not totally adequate.
Firstly, high resolution CO maps are sex-averaged because produced using F2
populations, so we cannot address sex-dependencies of crossover landscapes. Secondly,
although it is widely accepted that open chromatin favors CO formation, we lack
information on the state of chromatin during meiosis, i.e., in the actual cells (meiocytes)
where COs arise. In the absence of such data, we have to rely on epigenetic
measurements in other types of cells, germinal or somatic. Modulo these caveats, we
exploit a recent high resolution dataset detecting 17077 COs in a large A. thaliana F2
population (Rowan et al., 2019). Analysis of these COs provides new insights. For
instance, the size of an intergenic region affects recombination rate, there being a
suppression for regions whose size is less than about 1.5 kb. Furthermore, it is likely that
COs are partly suppressed by lack of SNPs, a result that explains the «heterozygous block
effect» found previously (Ziolkowski et al., 2015) whereby the insertion of a heterozygous
block into an otherwise homozygous region enhances recombination rate therein. Use of
additional datasets (Blackwell et al., 2020) provides further evidence for this suppression
effect. These different insights allow us to build a quantitative model that integrates
genomic information, local epigenetic status and contextual factors. This model has good
predictive power and reproduces much of the recombination rate variation in A. thaliana,
pointing to the importance of different contextual factors modulating local crossover rate.

Materials and Methods

CO datasets
COs are inferred to lie within intervals, delimited by SNPs, anchoring transitions between
homozygous and heterozygous regions (Rowan et al., 2019). When measuring
recombination rate in a given bin, we count one CO for each CO interval lying completely
within that region, and otherwise we apply the simple pro-rata rule. We downloaded the
dataset of CO intervals of Rowan et al. (Rowan et al., 2019) based on 2182 F2 individuals
from a cross between Col-0 and Ler. We also used the data of 5 F2 populations based on
crossing Col-0 with other 5 accessions (Blackwell et al. 2020). The associated files were
kindly provided by Ian Henderson, University of Cambridge, Cambridge, UK, and are
included as Supplementary Material. For the whole study, the experimental recombination
rate r (in cM/Mb) was calculated using the formula:
where is the number of crossover intervals contained in the relevant bin or region,

is the number of F2 plants, and is the length of the bin in Mb.

Genomic annotation of Col-0 and structural variations between Col-0 and Ler
genomes
For Col-0 genomic features, we utilized TAIR10 annotation specifying coding genes and
super families of transposable elements. We compared the TAIR10 reference Col-0
genome and the Ler assembled genome to detect syntenic regions and structural
variations (SVs) (Berardini et al., 2015; Jiao & Schneeberger, 2020). SVs were identified
using MuMmer4 and SyRI software (Goel et al., 2019). The parameters used in the
“nucmer” function of MuMmer4 were set via “-l 40 -g 90 -b 100 -c 200”. All genomic and
epigenomic features were computed after masking out the regions containing the
structural variations defined by SyRI.
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Col-0 epigenomic features and segmentation of chromosomes into chromatin states
BigWig, bedGraph and bed files of H3K4me1, H3K4me3, H3K9me2, H3K27me3, ATAC
and DNase measurements on Col-0 were downloaded from the NCBI and ArrayExpress
databases (cf. Supplementary Table S1). Segmentation of the chromosomes into 9
chromatin states were obtained from the study of Sequeira-Mendes et al. (2014) which
again is specific to Col-0.

Identifying SNPs in the 5 F2 populations
The 5 F2 populations (Blackwell et al., 2020) had Col-0 as shared parent, the other parent
was Ler, Ws, Ct, Bur or Clc. Their sequences were downloaded from the ArrayExpress
database (accession identifiers E‐MTAB‐5476, E-MTAB-6577, E-MTAB-8099,
E-MTAB-8252, E-MTAB-8715, E-MTAB-9369). For aligning the reads to the TAIR10
reference genome (Berardini et al., 2015), we used the “mem” algorithm of
Burrows-Wheeler Alignment (BWA-MEM; v0.7.17) (Li, 2013), then samtools (v1.10) (Li,
2011) and bcftools (v1.12) for SNPs calling. Finally, we applied filters to keep SNPs with
(1) a quality score ≥ 100, (2) mapping quality score ≥ 20, (3) depth below 2.5 mean depth
of the corresponding F2 population to eliminate anomalously high coverages indicative of
multi mappings, and (4) positions that only contained uniquely mapped reads.

Testing causality of the SNP density effect by comparing H0 and H1
Under H0 and H1 there is an underlying “reference” recombination landscape common to
all crosses. H1 allows for a causal SNP density effect by modulating this bin-dependent
reference recombination rate by a multiplicative factor, parametrized as (1 + ρ) exp(-
ρ) where ρ is the SNP density for that population and bin while α1 and α2 are parameters
to be adjusted using the whole dataset (containing all bins and all 5 of the F2 populations).
In contrast, H0 has no such modulation effect. We defined a chi-square

where and are the number of observed and H0- or H1-predicted crossovers in the
jth bin belonging to the i’th F2 population, respectively. This chi-square is minimized to infer
α1 and α2 in addition to the reference recombination rates in each bin. Our test compares
the values of chi-square under H1 and H0. To extract an associated p-value, we
disassociate SNP density and recombination rate by shuffling SNP density between the 5
F2 populations, independently in each bin. From this randomization process taking one
from H1 to H0, we acquired 1,024 chi-square values that give the distribution of chi square
under H0, and then the p-value is the probability of having within this distribution a chi
square as low as the one of H1. In practice, since high SNP density hinders CO formation
(homology is lost at high divergence), we selected the data along the chromosomes where
SNP density was in the bottom 50% quantile.

The quantitative model based on epigenetic states and genomic features
Sequeira-Mendes et al. (2014) identified 9 distinct chromatin states in Col-0 segmenting
the whole genome. We modified their segmentation as follows. First, noting that
heterochromatic regions often contained stretches of alternating states 8 and 9, we
relabeled segments of state 8 as state 9 when they were sandwiched between two state-9
segments. This relabeling affected almost exclusively segments in the pericentromeric
regions and provided a proxy for heterochromatin. We verified that recombination rate was
highly suppressed in such relabeled segments while non relabeled state 8 segments (lying
almost exclusively in the arms) did not lead to crossover suppression. Second, we added a
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new state corresponding to having an SV or insufficient synteny between the two parental
genomes of interest.

Given these 10 states and their segmentation of the genome, our model introduces an
adjustable “base” recombination rate for each and then applies three modulation factors.
The modulation by the intergenic region size is straightforward if one considers a genomic
segment lying entirely between two genes; if it does not satisfy that condition, we break it
into underlying pieces so that each piece is either entirely within an intergenic region or
entirely within a genic region; the modulation is then applied to each piece separately.

The 15 parameters of this quantitative model were identified by fitting to the experimental
data using the least square method as the measure of goodness of fit. Specifically, we

minimized the sum of squares: where and represent the
number of experimental and predicted crossovers in the i’th bin.

The software of statistical analysis and visualization
All statistical analysis was based on R 3.63. For fitting model parameters to data, we used
the “optim” function with the method “L-BFGS-B”. All visualizations were carried out by the
“tidyverse” package (Wickham et al., 2019).

Results
Standard modeling of crossover rate based on genomic and epigenomic factors is
unsatisfactory
Based on 17,077 crossovers from an F2 population (Rowan et al., 2019), we related
recombination rate to the local density of various genomic and epigenomic features. As
shown in Fig. 1, the individual relations found are typically non monotonic with correlations
of one sign within chromosome arms and of the opposite sign within pericentromeric
regions. Such a characteristic makes it difficult to assign a role to any individual feature.
This result holds whether using data obtained from somatic tissues or from germinal
tissues (cf. Supplementary Fig. S1).

To combine all these factors into a model, the standard approach is to consider an additive
framework and then possibly generalize it by including interaction terms. The additive
model corresponds to predicting recombination rate within a bin using the following
formula:

(Eq. 1)

where fi is the density of the ith feature in the bin. In this spirit, we include all 9 feature
densities of Fig. 1. In Supplementary Table S2 we provide the fitted values , , …,
when using different bin sizes. Somewhat surprisingly, the coefficient in Eq. 1 for gene
coverage density is negative, making the interpretation of the model problematic and
suggesting that the additivity assumption is not supported by the data. Finally, to have a
measure of goodness of fit, we use the fraction of the recombination rate variation that is
“explained” by the model, defined as:

R2 =  1 - mean[ (y - ŷ)² ] / var(y) (Eq. 2)

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.06.463263doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=S%3D%5Csum_%7Bi%7D%5E%7Bn%7D%5B(O_%7Bi%7D-P_%7Bi%7D)%5E%7B2%7D%5D#0
https://www.codecogs.com/eqnedit.php?latex=O_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=P_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=r%20%3D%20a_0%20%2B%20a_1*f_1%20%2B%20a_2*f_2%20%2B%20...%20%2B%20a_n*f_n#0
https://www.codecogs.com/eqnedit.php?latex=a_0#0
https://www.codecogs.com/eqnedit.php?latex=a_1#0
https://www.codecogs.com/eqnedit.php?latex=a_9#0
https://doi.org/10.1101/2021.10.06.463263
http://creativecommons.org/licenses/by-nc-nd/4.0/


where y is the experimental and ŷ is the predicted value of recombination rate in the
different bins along the genome. R2 as well as the coefficients in Eq. 1 depend on the bin
size; for our “reference” bin size of 100 kb, the model calibration gives R2 = 0.36.

To allow for deviations from additivity we follow the standard practice of including
interaction terms in the form of pairwise products of feature density values, leading to the
formula:

(Eq. 3)

This leads to 46 adjustable parameters vs 10 in the additive model. This more complex
model explains a fraction R2 = 0.35, 0.43, 0.51 and 0.66 of the total recombination rate
variance when bin size is 50, 100, 200 and 500kb. Although this is better than the additive
model, the interactions do not lead to biological interpretations. Furthermore, the problem
of the negative predictions remains, and we also find that the fitted parameters vary
substantially with bin size. Thus this model with interactions is not satisfactory and it does
not provide insights into the biological determinisms of recombination rate.

Aggregating genomic and epigenomic features using a chromatin state classifier
Given the drawbacks of the previous modeling framework, we performed aggregation
using an automatic classifier approach (Sequeira-Mendes et al., 2014), assigning a
“chromatin state” to a local region according to a (non linear) combination of such features.
The methodology is general but those authors implemented it in the case of Col-0,
producing 9 chromatin states based on the combination of 16 genomic or epigenomic
features. Their states 8 and 9 correspond to AT-rich and GC-rich heterochromatic regions,
respectively, with state 9 being strongly enriched in the pericentromeric regions. Their 7
other states are typically euchromatic. They found that state 1 (respectively state 6)
typically colocalizes with transcription start sites (TSS) (respectively transcription
termination sites (TTS)). States 3 and 7 are the most abundant states in gene bodies, with
the former one tending to be present with state 1 at the 5’ end of genic regions and the
latter one arising more frequently in larger transcriptional units. States 2 and 4 typically lie
within intergenic regions and they tend to be proximal and distal to the gene’s promoter,
respectively. Like state 2 and 4, state 5 is generally within intergenic regions, but it also
arises frequently in silenced genes with high levels of H3K27me3.

Because COs form between homologs, we also need to aggregate information about the
local synteny between Col-0 and Ler, the two parents of the F2 population (Rowan et al.,
2019) used to estimate the recombination landscape. We thus assign the state “SV” (for
Structural Variation) to the non syntenic regions. We then have a total of 10 different
“states” that we will study in the rest of this work, referring to them as “chromatin states”
even if that is not completely correct. The fraction of the genome covered by any of these
chromatin states varies between 5.8% and 13.6%, with state 4 being the most represented
and state 8 the least (cf. Fig. 2A, top).

To transform the trends found by Sequeira-Mendes et al. into quantitative patterns we
have generated the frequency profiles for each chromatin state as a function of position
within gene bodies and their flanking regions. For that task, we used the 25,708 genes
extracted from syntenic regions and also considered their extensions on both sides, going
out to 3 kb upstream of the TSS and downstream of the TTS. The computed profiles (Fig.
2B (top)) reveal that there is a clear gradient in the chromatin state content along the gene
bodies and also along their flanking regions. For instance, the frequency of state 1 has a
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very sharp rise as one enters the gene on the 5’ side while the frequency of state 7 has a
steep fall as one exits the gene on the 3’ side. We performed the analogous computations
for intergenic regions and find that the frequency profiles there (cf. Fig. 2C (top)) have
much less variation than in gene bodies.

A simple quantitative model of recombination rate based on discrete chromatin
states and structural variations
In contrast to the quantitative factors used in Eq. 1, the state classifier approach identifies
discrete states. These can be used as qualitative factors in a model of recombination rate
by assuming that each state has its own specific recombination rate. This framework both
allows for a direct biological interpretation and is mathematically particularly simple.
Comparing the genomic fraction of each chromatin state to the observed CO fraction for
that state (top and bottom of Fig. 2A) determines the 10 average recombination rates:
3.08, 4.78, 2.16, 6.37, 5.14, 3.48, 1.5, 3.35, 0.7 and 0.57 cM/Mb. Hereafter, these values
are referred to as the “experimentally measured state-specific recombination rates”. They
are to be compared to the genome-wide average recombination rate of 3.3 cM/Mb. As
expected, recombination is strongly suppressed in states 9 and SV.

Second, how well does this “model” predict recombination rates? In Supplementary Fig.
S2 we compare experimental and predicted recombination rates when segmenting the
genome into bins of size 100 kb. Then the fraction of the variance in the experimental
recombination rates that is explained by the model is R2 = 0.24. This value is lower than
that of the additive model using Eq. 1 (cf. Supplementary Table S2) but note that when
using the experimentally measured state-specific recombination rates there are no
adjustable parameters. Furthermore, this “model” based on chromatin states overcomes
the defect of predicting negative recombination rates when gene density is high.

The model with discrete chromatin states predicts fine-scale recombination patterns
Fig. 2B (bottom) shows the recombination rate pattern along genes and their 3 kb flanking
regions (same syntenic genes and binning methodology as for the top of that figure).
Regions just upstream of the TSS are richer in crossovers than regions downstream of the
TTS which themselves are richer than gene bodies. Interestingly, these recombination
patterns can be quite well predicted by the proportions of each chromatin state (top of Fig.
2B) using the experimentally measured state-specific recombination rates as displayed by
the continuous blue curve in Fig. 2B (bottom).

We performed the analogous analysis on intergenic regions as shown in Fig. 2C (bottom).
Again the experimental behavior is well predicted by our model that assigns one
recombination rate to each chromatin state (cf. blue curve).

Recombination rate is suppressed in small intergenic regions
The profiles and patterns in Fig. 2B and C pool gene bodies or intergenic regions, ignoring
their sizes. To further test the model, we have considered the possibility that recombination
rate patterns might vary as a function of the size of the region. For instance, the content in
exons and introns is quite different for small and large genes and so this could potentially
affect recombination rates.

To study the possible influence of gene body size, we divided the genes into size quantiles
and recalculated the corresponding state occurrence profiles and recombination rate
patterns. As illustrated in Supplementary Fig. S3, gene body size strongly affects
chromatin state content. Furthermore, recombination rate patterns become more
contrasted as gene size increases, with a concomitant decrease in the average
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recombination rate. Nevertheless, the model of 10 chromatin states correctly predicts
these trends as shown by the blue curves.

The analogous study for intergenic region size is summarized in Supplementary Fig. S4,
S5 and S6, treating separately the three possible orientations of the genes flanking the
intergenic region: divergent, convergent and parallel. In contrast to the gene body case,
the 10 chromatin state model’s predictions (blue curves) are not so good: the model
significantly over-estimates the recombination rates when the size of the intergenic region
is small.

To quantify this result, consider how the average recombination rate within intergenic
regions depends on region size. In Fig. 3 we display this dependence, for all intergenic
regions pooled (top) or separated according to the orientation of their flanking genes
(bottom). There is a clear suppression of recombination rate when the size of the
intergenic regions is less than 1.5 kb, while beyond 2.5 kb the curves are rather flat, with
perhaps a trend to decrease beyond 10 kb. Fig. 3 also displays the recombination rates
predicted when using the 10 state chromatin model. Clearly, the predictions over-estimate
the recombination rate when the size of intergenic regions is small, in agreement with the
trends seen in Supplementary Fig. S4, S5 and S6.

These results motivated us to improve the model by including a modulation factor taking
into account the sizes of intergenic regions. We parameterize such an effect by multiplying
the recombination rate ri of a segment in state i by the factor

1 / ( + exp(- ℓ)) (Eq. 4)

whenever the segment lies within an intergenic region of size ℓ kb. The detailed form of
this modulation function is not so important but it should go smoothly from its minimum at ℓ
=0 to its maximum at large ℓ. The quantities , and are free parameters that we
can adjust to minimize the deviation between observed and predicted recombination rates
over all intergenic regions. The red curves in Fig. 3 show the corresponding improved
predictions when including this modulation effect.

Recombination rate is suppressed in regions of low SNP density
A high divergence between homologs suppresses recombination rate, a trend that is
visible in the top left of Fig. 4 where SNP density is used as a proxy for divergence
between homologs. However we see that low SNP density is also associated with reduced
recombination. To confirm that this is not an artefact of the Rowan et al. (2019) dataset, we
examined 5 other crosses published by Blackwell et al. (2020) who had found the same
effect. The minor differences between our panels and those in their paper come from using
different choices in the analysis pipelines: including or not the pericentromeric regions,
using a bin size of 100 kb vs of 1 Mb, applying different filtering criteria to the remapped
reads to define SNPs, and forbidding or not the fitting function to have negative values.
The important point is that the two independent analyses reach the same conclusion: low
SNP density is associated with lower recombination rate.

Low SNP density may be a causal factor of recombination rate suppression
In natural populations undergoing panmictic reproduction and subject to spontaneous
mutations, drift generates linkage disequilibrium depending on recombination rate. Indeed,
if a region of the genome has lower than average recombination rate, it will sustain larger
haplotypic blocs and so its SNP density will be below average, producing the kind of
correlation found in the top of Fig. 4. However Arabidopsis thaliana is a selfer, so linkage
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disequilibrium and thus the pattern of accumulation of mutations should not be affected by
recombination. Specifically, if we consider the most recent common ancestor to Col-0 and
Ler, it produced two separate lineages by successive generations of selfings, lineages in
which mutations have accumulated independently. Under such dynamics, recombination
cannot influence SNP density unless recombination itself generates mutations. This last
possibility has long been downplayed because homologous recombination was considered
to be nearly error-free (Guirouilh-Barbat et al., 2014), but it is now known that CO
formation produces mutations in human (Arbeithuber et al. 2015, Halldorsson et al., 2019).
In the absence of any such evidence in plants, we formalized as follows a test for the
possibility that SNP density influences recombination.

Our statistical test based on the 5 F2 populations provided by Blackwell et al. (2020). In
our framework (see M&M), we compare two hypotheses, H0 and H1. Under H0, we
assume that there is an (unknown) “reference” recombination landscape, likely driven by
genomic or epigenomic features, but common to all crosses. Under H1, this common
landscape is modulated by the divergence between the homologs present, thus differently
in each cross. We confront H0 to H1 by asking whether a good fit to the data necessitates
the suppressive effect at low SNP density. We thus compare the chi-square goodness of fit
using H1 to what would be expected if there were no causal suppressive effect (the H0
hypothesis). In the bottom of Fig. 4 we display the distribution of chi-square values under
H0. Also shown is the chi-square value obtained using H1. The conclusion is that H1 is
favored over H0 with a p-value smaller than 0.001.

A state-based quantitative model with multiple factors modulating recombination
rate has good predictive power
Our quantitative model builds on the framework of 10 discrete chromatin states by
assigning to each an adjustable base recombination rate but also by applying three
context-dependent modulating factors. The first factor is associated with intergenic size ℓ:
we parameterize the multiplicative modulation via the function 1/( + exp(- ℓ)) where
ℓ is the size of the intergenic region in kb. The second factor is associated with SNP
density ρ: we multiply the recombination rate by the factor (1 + ρ) exp(- ρ). Lastly, at
the whole chromosome level, it is known that CO numbers are tightly regulated with the
result that genetic lengths hardly vary with genome size, independently of chromatin
states. This regulation arises through both CO “interference” (COs tend to be well
separated) and the obligatory CO (there is at least one CO per bivalent). As a result, the
recombination rate of a specific genomic segment will be significantly higher if it belongs to
a small chromosome than if it belongs to a large one. To incorporate this
chromosome-wide effect, we rescale all predicted recombination rates within a
chromosome to enforce its experimentally measured genetic length.

Overall our model has 15 adjustable parameters: the 10 base recombination rates and the
5 additional parameters for the modulation effects (the chromosome-specific rescalings do
not require introducing any parameters or fits). To calibrate the resulting quantitative
model, we compute a sum of squares which quantifies the deviation between the model’s
predicted rates and the experimental ones from Rowan et al. (2019) when using a binning
along the genome (see M&M for details). The optimized parameters are provided in
Supplementary Table S3 when calibrating the model over the whole genome using various
bin sizes. In Supplementary Fig. S7 we compare the predictions of recombination rate in
our quantitative model to the experimental ones when using bins sizes ranging from 50 to
500 kb. One can also do the comparison at the level of the recombination landscapes: in
Fig. 5 we show the predicted and experimental landscapes for chromosome 1 when using
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bins of size 100 kb (cf. Supplementary Fig. S8 for the other chromosomes). We see that
the adjusted model reproduces much of the qualitative structure of the landscape. The
inset in Fig. 5 provides a zoom on a region in the right arm, allowing one to better see the
small scale trends. Even for this bin size which is rather large compared to the typical
distance between genes, the model and experimental landscapes are far from smooth.
Furthermore, both in the inset and in the main part of the figure we see that though there is
quite a lot of concordance between the two curves for local minima and maxima, the
model’s landscape generally underestimates the observed variance. This is partly due to
the experimental landscape being subject to the stochasticity of CO numbers but it may
also point to other determinants that could be missing in our analysis or data.

Finally, to test the predictive power of our modeling approach and ensure that it does not
introduce overfitting, we have calibrated the model on one chromosome and then used
that calibration to predict recombination on the other chromosomes. Supplementary Table
S4 gives the corresponding values of R². For comparison, we perform the same test in
Supplementary Tables S5 and S6 when using the additive model (Eq. 1) or its extension
with interactions (Eq. 3). Clearly our model has significantly higher predictive power than
those other models.

Discussion and conclusions
Aggregated chromatin states as predictors of recombination rate
The genome-wide distribution of COs is expected to follow largely from the degree to
which the double strand break machinery can access the DNA. This will depend of course
on the state of the chromatin and indeed many genomic and epigenomic features are
empirically found to correlate with recombination rate. Unfortunately, the associated
relations are typically non monotonic as displayed in Fig. 1. As a result, recombination rate
modeling using these features as quantitative factors requires non linearities and leads to
an unmanageable combinatorial complexity (cf. the 46 parameters in Eq. 3), not to
mention problems for interpreting the resulting models and low prediction power(cf.
Supplementary Tables S5 and S6). To overcome this difficulty, we use a classifier
approach to automatically aggregate 16 genomic and epigenomic features into discrete
classes (Sequeira-Mendes et al., 2014). This defines the starting point of our modeling
wherein each position of the genome is considered to be in one of 10 chromatin states.
Using the genome-wide recombination rates in each of these 10 states, Figs. 2B,C show
that recombination patterns around genes and in intergenic regions are rather well
predicted at a qualitative level. In particular, near the ends of genes, this simple modeling
leads to enhanced recombination rates, in agreement with experiment (Choi et al., 2013;
Kianian et al., 2018; Marand et al., 2017).

Intergenic region size modulates recombination rate
The simple model using genome-wide recombination rates in each of the 10 states does
not adequately predict the suppressed recombination rate in small intergenic regions (cf.
Fig. 3). This suppression effect could be the consequence of a local context affecting
chromatin accessibility for biophysical reasons. A first such reason could be that small
intergenic regions are partly hidden from the double strand break machinery by their
flanking regions when these are in dense chromatin. A second such reason could be the
way chromatin loops are organised in meiosis; if denser chromatin (e.g. containing gene
bodies) is preferentially tethered to the base of those loops, it will pull along with it adjacent
stretches of open chromatin, hiding these from the double strand break machinery.
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Lack of any sequence divergence may drive lower recombination rate
The empirical data in multiple crosses show that regions with very low divergence between
homologs typically have low recombination rate (cf. Fig. 4). That is expected in panmictic
populations where recombination shapes linkage disequilibrium and thus SNP density.
However A. thaliana is a selfing species with a very low rate of outcrossing of about 2%
(Hoffmann et al., 2003; Platt et al., 2010). That leads to low genetic divergence within
given habitats which is further exacerbated by adaptive pressures, so recombination in the
wild will hardly do any allelic shuffling. We thus argue that the data in this species might be
explained if an absence of divergence between homologs causally suppresses COs.
Clearly, such an effect makes sense from an evolutionary perspective: if a genomic region
has no underlying sequence diversity, there is little point in producing COs there.

Interestingly, a reduction of recombination rate caused by near perfect sequence
homology was demonstrated by two previous works on A. thaliana. First, Ziolkowski et al.
(2015) considered a heterozygous block within an otherwise homozygous chromosome
and found that CO frequency was enhanced in the heterozygous region. Second,
Blackwell et al. (2020) showed that msh2, a mutant of mismatch repair, redistributed COs
towards regions of low SNP density, suggesting that, in wild type, perfect sequence
homology represses CO formation. The behaviors found in both of these works can be
interpreted as the large-scale manifestation of the causal SNP effect we hypothesize.

A quantitative model of recombination rate with good predictive power
Our full model integrates local genomic and epigenomic features but also
context-dependent information. All of its 15 parameters have very direct interpretations. It
has good predictive power as shown in Supplementary Tables S4 to S6 and is able to
reproduce much of the variation in rates arising in the recombination landscape (cf. Fig. 5
and Supplementary Fig. S8). Clearly not all of the variation is captured by our model. First,
there is statistical noise inherent to the experimental landscape. Second, although the
model predicts major peaks and troughs in the landscape, it tends to underestimate their
amplitude. This may suggest a form of competition between sites for recruiting the
machinery that produces double strand breaks. There are also other caveats to our
modeling. The most obvious one is that because of lack of appropriate data, we had to use
measurements of epigenetic marks in Col-0 only and from tissues such as leaf or root
rather than from meiocytes. Fortunately, it seems that the epigenetic landscape is largely
shared between somatic and germline tissues, the differences being restricted to a small
fraction of the genome (Walker et al., 2018). We did a systematic investigation of this point
using published data (cf. Fig. S1) and showed that the epigenomic patterns are
surprisingly similar between somatic and germline tissues. Another limitation of our
modeling is that it necessarily ignores any sex-dependent differences in recombination
landscapes, focusing only on the female-male average. Similarly, we have not included
CO interference, another factor that shapes recombination landscapes. Lastly but perhaps
very importantly, we take no account of the well known fact that meiotic chromosomes are
organised in loops tethered to an axis. This structural aspect of meiotic chromosomes may
be important for modulating recombination rates and it is tempting to conjecture that these
loops may be responsible for the large peaks seen in the recombination landscape (cf. Fig.
5 and Supplementary Fig. S8). Unfortunately, very little is known about these loops, in
particular concerning their size, position and variability across genetic backgrounds.
Hopefully these uncertainties will be lifted in the near future, given that standard
chromosome conformation capture techniques applied to meiotic cells should provide the
required information quite directly.
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MAIN FIGURES AND CAPTIONS

Figure 1. The correlations between recombination rate and 9 genomic or epigenomic
features taken from somatic tissues (cf. titles). Each dot represents the values for a 100-kb
bin. The x-axis shows the density of each feature, and the y-axis is the recombination rate
based on a total of 17,077 crossovers from the Col-0-Ler F2 population. Dots in red, blue
or green are located in arms, pericentromeric regions or the transition regions between
arms and pericentromeric regions, respectively. The fitted black lines were produced by
the cubic smoothing spline “smooth.spline” function of the statistical package R. R2

corresponds to the fraction of explained variance when using the interpolating splines (Eq.
2). To ensure that the points fill most of the space, the scale is set to display only 95 % of
the data, cutting the 2.5 % extremities on both sides of the x-axes in all these plots.
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Figure 2. Relations between our 10 chromatin states, genes, intergenic regions, and
recombination rate. A) The top pie chart shows the genome-wide occupation percentages
of each of the 10 states. “SV” refers to low synteny regions or structural variations between
Col-0 and Ler. The lower pie chart shows the percentage of crossover occurrences
identified in the 10 states. B) Two plots, giving respectively the profiles of cumulated
fractions of occurrences of the 10 different states (top) and the recombination rate pattern
(bottom) in cM per Mb, along gene bodies and their 3 kb flanking regions. In the absence
of SV, the entire 3-kb flanking region was used, otherwise it was truncated. The gene body
goes from the TSS (transcription starting site) to the TTS (transcription termination site) as
given in TAIR 10. Only non transposable element coding genes satisfying the synteny filter
have been included in the analysis. For the gene body region, the X axis represents
relative position, that is the distance from the TSS divided by the distance between TTS
and TSS. That procedure allows one to pool genes of different sizes. For the flanking
regions, X axis represents position relative to the TSS or TTS in kb. The blue curve is the
predicted recombination rate when using the chromatin state profiles at the top together
with the genome-wide recombination rates derived from A. C) Two plots as in B but now
for the intergenic regions. Again the blue curve is the predicted recombination rate when
using the chromatin state profiles at the top together with the genome-wide recombination
rates derived from A. (The cases of convergent, divergent and parallel transcription have
been pooled in this figure, see Supplementary Figs. S4,5,6 for when the three orientations
are kept separate.) The legend in the middle of Fig 2B and 2C indicates the corresponding
chromatin state of each color used in plotting the chromatin-state profiles.
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Figure 3. The relationship between the size of intergenic regions and their average
recombination rate. These bar charts were constructed using all intergenic regions, but in
the bottom the regions were divided into three categories according to the transcription
orientations of the two flanking genes, corresponding to convergent, divergent and parallel
transcriptions. In all cases, the X axis gives the size of the intergenic regions in kb, and the
Y axis gives the corresponding averaged recombination rate (cM/Mb). Binning of the
intergenic region sizes was applied every 500 bases up to a total size of 10 kb. For
example, the leftmost bin covers intergenic regions of size 0 to 0.5 kb. However we also
include a rightmost bar on each chart to cover intergenic regions of sizes larger than 10
kb. Error bars are errors on the mean computed by the jackknife method (only the top
segments are displayed). In both top and bottom figures, the blue curves give the
predicted recombination rates using the genome-wide recombination rates of the 10
chromatin states as obtained from Fig. 2A. The red curves show the predicted
recombination rates when one includes the modulation based on the size of the intergenic
regions as specified in Eq. 4.
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Figure 4. The relationship between recombination rate and SNP density. Top: The Col-0
genome was decomposed into bins of 100 kb. For each cross starting with that of Rowan
et al. (2019), SNPs and COs were inferred from reads produced from the F2 populations
by mapping to the Col-0 genome. SNP density and recombination rate were then
determined for each bin and displayed as a scatter plot. The 5 additional crosses are from
Blackwell et al. (2020). The continuous red curves are fits when using the function (a + b
x) exp(- cx) based on minimizing the chi-square. All crosses show a reduced
recombination rate at low SNP density. Bottom: Low SNP density is likely
causally-responsible for reduced recombination rate. The hypothesis of no causal relation
within the first two quantiles of SNP density is tested by shuffling the SNP content between
the 5 F2 populations of Blackwell et al. (2020). X axis is chi-square (measuring goodness
of fit) when allowing a position-dependent reference recombination rate to be modulated
by SNP density using the same function as above. Y axis gives counts of simulations with
shuffled SNPs, these counts being proportional to the probability density of chi-square
under H0. The red vertical line is the actual chi-square value in the experimental dataset
(unshuffled SNPs), showing that the recombination rate modulation, when using the SNPs
between the parents of each separate cross, improves the fit far more than expected by
chance (p-value ≼ 0.001).
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Figure 5. Experimental and predicted recombination landscapes of chromosome 1.
Landscapes using 100 kb bins obtained from the Rowan et al. dataset (red) and predicted
from our calibrated model based on chromatin states (blue). Inset: a zoom in the right arm.
For landscapes of all chromosomes, see Supplementary Fig. S8.
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