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Abstract

In the human gut microbiome, specific strains emerge due to within-host evolution and
can occasionally be transferred to or from other hosts. Phenotypic variance among such
strains can have implications for strain transmission and interaction with the host.
Surveilling strains of the same species, within and between individuals, can further our
knowledge about the way in which microbial diversity is generated and maintained in
host populations. Existing methods to estimate the biological relatedness of similar
strains usually rely on either detection of single nucleotide polymorphisms (SNP), which
may include sequencing errors, or on the analysis of pangenomes, which can be limited
by the requirement for extensive gene databases. To complement existing methods, we
developed SynTracker. This strain-comparison tool is based on synteny comparisons
between strains, or the comparison of the arrangement of sequence blocks in two
homologous genomic regions in pairs of metagenomic assemblies or genomes. Our
method is executed in a species-specific manner, has a low sensitivity to SNPs, does
not require a pre-existing database, and can correctly resolve strains using complete or
draft genomes and metagenomic samples using <5% of the genome length. When
applied to metagenomic datasets, we detected person-specific strains with an average
sensitivity of 97% and specificity of 99%, and strain-sharing events in mother-infant
pairs. SynTracker can be used to study the population structure of specific microbial
species between and within environments, to identify evolutionary trajectories in
longitudinal datasets, and to further understanding of strain sharing networks.

Introduction

Strains of the same microbial species (conspecific strains) often present large
phenotypic differences, despite having very similar genotypes (Van Rossum et al.
2020). Previously published examples for phenotypic differences between strains of the
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same species include pathogenicity (Pierce and Bernstein 2016), commensalism
(Leimbach, Hacker, and Dobrindt 2013), drug response (Maier et al. 2018) and
susceptibility to infection by phages (Holmfeldt et al. 2007). In host associated microbial
communities, species can stably coexist for years (Faith et al. 2013; Lloyd-Price et al.
2017), potentially evolving into host-specific strains (S. Zhao et al. 2019). Occasionally,
host specific strains could be transferred to or from other hosts,  along familial networks
(Yassour et al. 2018), through the built environment (Brooks et al. 2017) or following
fecal microbiota transplantation (Li et al. 2016; Smillie et al. 2018). The ability to identify
and follow conspecific strains is required to understand the mechanisms of
between-host strain transmission, within-host evolution, and how these forces interact to
shape microbial communities.

Methods to track strains using short-read data currently belong to one of two main
classes: de-novo assembly of contigs from metagenomes, and methods relying on
alignment of genomic sequences to a reference database (reviewed in (Anyansi et al.
2020)). Methods in both classes usually rely on detection of single nucleotide
polymorphisms (SNPs). In assembly-based methods, high sequencing depth is required
to overcome sequencing errors and natural variation in the population, making these
tools more suitable for the study of low-complexity microbial communities (Anyansi et al.
2020). Moreover, identifying SNPs based on metagenomic assembled genomes
(MAGs) can introduce errors in low quality MAGs (Van Rossum et al. 2020).  On the
other hand, methods based on comparisons to a reference database usually require
lower sequencing depth, although SNP detection in these methods can be limited by
natural variation in the population and the degree of similarity between the community
members and the reference genome (Bush et al. 2020). Moreover, reference-based
methods can only track strains belonging to well-studied species, for which a suitable
reference database has been generated.

To complement methods relying on SNP information, we developed SynTracker, an
approach to identify and track closely-related strains using genome microsynteny (the
local conservation of genetic-marker order in genomic regions). Gene synteny
(organization of genes along two chromosomes) has been used to estimate
evolutionary distances between genomes (Lemoine, Lespinet, and Labedan 2007;
Alexeev and Alekseyev 2017; T. Zhao et al. 2021) and to identify horizontal gene
transfer events (Adato et al. 2015). SynTracker uses pairwise comparisons of
homologous genomic regions in either metagenomic, or genomic assemblies, followed
by scoring the average synteny per pair of strains. SynTracker is relatively insensitive to
SNPs, and requires only a single reference genome per species (either complete or
draft and with no regard to its annotation level). Here, we apply SynTracker to compare
the within-population synteny of in-silico evolved bacterial populations and to reproduce
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known within-species phylogenies of E. coli, using a fraction of the entire genome
length. Additionally, we define a synteny-score cutoff to identify strains residing in the
same hosts’ gut microbiomes over time. Finally, we apply SynTracker to a gut
microbiome metagenomic dataset consisting of samples obtained from mothers and
their infants (Bäckhed et al. 2015), and describe a high degree of strain sharing
between mothers and their infants in species which colonize the infant gut.

Results

Pipeline description

SynTracker is based on the identification of synteny blocks in pairs of homologous
genomic regions derived from isolate genomes, metagenomic assemblies or
metagenome-assembled genomes (MAGs). The pipeline accepts as input a reference
genome per species of interest, either fully or partially assembled, and a collection of
metagenomic assemblies (or genomes, if single genomes are to be compared). In the
first step of the pipeline (Figure 1A, methods), the reference genome is fragmented to
create a collection of 1 kbp genomic regions, located 4kbp apart (“central-regions”).
Next, we convert the collection of per-sample metagenomic assemblies (or genomes) to
a BLAST (Altschul et al. 1990) database and use the central-regions as queries for a
high stringency BLASTn search (Identity=97%, minimal query coverage=70%) to
minimize the possibility of receiving either multi-species hits or hits located within
regions with high copy number variation. Next, For each BLAST hit we retrieve the
target sequence and the flanking 2 Kbp regions upstream and downstream of the target
sequence. This strategy results in high specificity when identifying homologs to the
central regions, while allowing for high variance in the sequence composition of the
flanking regions.

Next, each collection of homologous ~5Kbp regions (i.e., derived from a BLAST search
using the same central-region query) is assigned to a region-specific bin (Figure 1B).
Within each bin we perform an all vs. all pairwise sequence alignment to identify
synteny blocks using the DECIPHER R-package (Wright 2016). Then, for each pairwise
alignment we calculate the region-specific pairwise synteny score (see Methods). This
score is based on two parameters: the number of synteny blocks identified in each
pairwise sequence alignment, and the overlap between the two sequences. The
synteny score is inversely proportional to the first and directly proportional to the
second.

A single synteny block in a pairwise alignment can stem from two genomic regions with
a high sequence similarity. A high number of synteny blocks can result from insertions,

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.06.463341doi: bioRxiv preprint 

https://paperpile.com/c/WKf7nJ/K6v8
https://paperpile.com/c/WKf7nJ/abJnH
https://paperpile.com/c/WKf7nJ/xNBJ
https://doi.org/10.1101/2021.10.06.463341
http://creativecommons.org/licenses/by-nd/4.0/


deletions, recombination events or several SNPs located within a close proximity in just
one of the two sequences. The sequence overlap is defined as the ratio of the
accumulative length of all blocks to the length of the shorter DNA region in each
pairwise comparison. The region-specific pairwise synteny has a maximal value of 1,
reflecting identification of a single synteny block and overlap of 100% (Figure 1C). After
calculating the per-region synteny scores in all bins, we randomly subsample n regions
per a single comparison of metagenomic samples (or genomes), and determine the
Average Pairwise Synteny Score (APSS, Figure 1D).

Analysis of in-silico evolved bacterial population reveals low sensitivity to SNPs

While numerous tools to study conspecific strains are available, most rely on SNP data
(Anyansi et al. 2020). Since the synteny approach was designed with the aim of
complementing existing methods, we minimized the effect of SNPs on the APSS values.
Our approach was designed to give a higher weight to insertions, deletions and
recombination events, which are less abundant than SNPs, and are less likely to result
from sequencing errors (Schirmer et al. 2016).

To examine the performance of our approach and estimate the effect of different
genomic variations on the synteny scores, we used in-silico simulations of the evolution
of bacterial populations. To generate simulated population data, we used Bacmeta
(Sipola, Marttinen, and Corander 2018), a simulator for genomic evolution in bacterial
metapopulations. We performed two types of simulations: in the first, the population
evolved by introducing SNPs exclusively, with a frequency of 1*10-6   substitutions per
nucleotide per generation. In the second simulation, we introduced both insertions and
deletions, each with a frequency of 5*10-8 mutations per nucleotide per generation. In
both simulations we set the population size to 10000 bacterial cells and analyzed three
genomic regions, each with a length of 20 Kbp. We carried out the simulation for 3,000
generations and randomly subsampled 20 cells every 300 generations.

At each timepoint, for each genomic region, we calculated all pairwise synteny scores in
addition to all pairwise sequence identities (Figure 2). In simulations using SNPs, the
minimal average blast identities were 99.48%, 99.46% and 99.5%, for regions 1, 2 and
3, correspondingly. The lowest average BLAST identities in simulations based on
insertions and deletions were higher, at 99.79%, 99.78% and 99.84%. In accordance
with the expectation that the synteny approach is more robust to changes in SNPs than
to indels, the synteny scores in SNP-based simulations were higher (0.905, 0.849 and
0.863) than in indel-based simulations (0.067, -0.0589, 0.0093). It is important to
emphasize that this difference was achieved even though the mutation frequency in
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SNP based simulation was x10 higher than the Indel-based simulations. The lower
synteny scores of genomic regions in the indel-based simulations further support the
higher sensitivity of the synteny-based approach to indels, which are used as a
“genomic fingerprint” in our method.

The synteny method can reconstruct phylogenies using a fraction of the
reference genome

We examined the performance of SynTracker for the comparison of closely related
genomes and to use the resultant APSS values as a basis for generating phylogentic
trees. We used a recently published whole genome MASH based classification of >10K
E.coli genomes that identified 14 distinct phylogroups (Abram et al. 2021). We randomly
selected 10 genomes per phylogroup, for a total of 140 E.coli genomes. We analyzed
the set of genomes eight times, and in each iteration, we randomly selected a different
number of 5 kbp regions per pairwise comparison (15-200 regions/pairwise comparison,
representing ~1.4-18.5% of the E.coli O157:H7 genome length) to create the final
matrices holding the APSS values (Figure 1D). These matrices were used to generate
UPGMA phylogenetic trees based on the APSS distances (see methods). With
subsampling of 200 regions/pairwise comparison, we recapitulated the classifications of
139/140 E. coli genomes to the published phylogenetic groups. When reducing the
number of regions used per pairwise comparison to 40 (roughly equal to 3.6% of the full
genome’s length) the phylogeny we obtained matched the published one, with the same
taxa forming the previously designated groups, except for 4 genomes (Figure 3). These
results underscore the utility of the synteny approach in the analysis and comparison of
bacterial genomes, even at a very low levels of genome completeness.

Assessment of the method’s performance in identifying within-host strains

We tested SynTracker for the detection of closely-related bacterial strains within
whole-community metagenomic samples. As bacterial strains can reside in the human
gut for years (Schloissnig et al. 2013; Faith et al. 2013), we applied SynTracker to
differentiate between within-individual bacterial strains and conspecific strains inhabiting
different hosts. We calculated the APSS values of closely related strains, classified to
one of 38 different bacterial species (table s1), in 223 gut metagenomes collected from
84 healthy westernized human donors (Poyet et al. 2019) (table s2).
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For each of the studied species, we used a publicly available reference genome (table
s1), which was fragmented into a collection of 1 kbp “central regions”, as described
above. Next, we performed a per-sample, de novo metagenomic assembly to construct
our “search-space” (methods, Figure 1). The metagenomic assemblies were divided
randomly into training and testing sets (117 and 106 samples, obtained from 45 and 43
donors, respectively). For both sets, we calculated eight different final APSS matrices
per species, after randomly selecting n regions per pairwise comparison (n=15-200 5
kbp regions; see methods). Following the calculation of the APSS matrices for each
species, we classified pairwise comparisons in the training set to those originating from
the same host at different time points (within-host) and those that originate from different
hosts (between-host, Figure 4a). With the classification of pairwise comparisons in the
training set used as ground-truth, we created a receiver operating characteristic curve
(ROC) (Fawcett 2006) for each combination of species and subsampling value (Figure
4B).

ROC plots are created by assessing the sensitivity and specificity (proportional to the
percent of true positive and false positive observations) of a classifier while using
different discrimination values, which in this analysis was APSS. To determine the APSS
values that optimally discriminate between strains residing in the same host and strains
identified in different hosts, we calculated the J-index (Youden 1950) for each
combination of species and subsampling depth. Finally, we used these APSS
thresholds to determine the specificity and sensitivity of our method, by introducing
them to the testing set . Not surprisingly, we found a direct correspondence between the
number of subsampled regions per pairwise comparison and the sensitivity and
specificity of our method (Figure 4c, Table 1), with maximal sensitivity and specificity of
99% and 97%, for comparisons calculated using 200 regions/pairwise-comparison.
While using a small number of regions/pairwise-comparison mostly results in lower
accuracy, the decision to use such values may be justified by the inclusion of additional
samples in the analysis. Therefore, it is up to the researcher to decide whether to
prioritize increased accuracy or sample size for any given analysis.

Identifying mother-infant strain transmission

After verifying that the synteny method can be used to track host-specific strains in
human gut metagenomes with high accuracy, we used this method to identify
strain-sharing events between hosts. Our overarching goal was  to study the role of
vertical strain transmission (i.e., transmission from mother to infant) in the colonization
of the human gut at early infanthood. Previously, vertical strain transmission was
studied using culture-based techniques (Milani et al. 2015; Makino et al. 2013), which
are inherently limited to specific taxa. More recently, vertical strain transmission was
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studied by identifying SNP profiles in metagenomic data(Nayfach et al. 2016; Yassour et
al. 2018).

To study mother-infant strain transmission using strain synteny, we analyzed the dataset
collected by Bäckhed and colleagues (Bäckhed et al. 2015). These data contain
stool-derived metagenomes obtained from 98 mothers and their infants, sampled at
ages of 4 days, 4 months and 1 year post-birth. We assembled the metagenomic
samples de-novo (see methods) and calculated the APSS scores, for a collection of 38
bacterial species (Figure 1). In order to maximize the number of samples included in
per-species analyses, we used 30 regions per pairwise comparison.

We expected the gut microbiome of 4-day old infants to contain strains vertically
transmitted from their mothers. Therefore, we predicted that true mother-infant-pairs
(MIP) will show significantly higher APSS values compared to unrelated MIP, in
comparisons of mothers and newborn infants. Therefore, for each analyzed species, we
grouped mother-infant comparisons by the relatedness of the pair and compared the
APSS values of the two groups (i.e., true MIP  and unrelated MIP). We only considered
species with at least 6 pairwise comparisons as suitable for statistical hypothesis testing
(Wilcoxon rank test, single tailed, Benjamini-Hochberg multiple testing corrected
(Benjamini and Hochberg 1995)) . Only a small subset of 9 species passed our criterion
in the newborn age group, which could be explained by the low complexity of the
newborn gut microbiome and is in agreement with previous findings regarding the
maturation of the infant gut microbiome (Koenig et al. 2011). As expected, most species
in this age group (7/9) had significantly higher APSS values in true MIP (q-value<0.05,
figure 5). Additionally, 80/84 of the strain comparisons in true MIP had APSS value >
0.94, and therefore were considered as a vertical strain transmission, based on the
APSS threshold described above.

We observed that in the 4- and 12- month age groups, strains of species identified in
the newborn group remained similar to those of the mothers, in true MIP (adjusted
p-value < 5*10-4 in the 12-months group, Figure 5). In contrast, late colonising species,
identified only in later samples, did not have significantly higher APSS values in true
MIP compared to unrelated MIP. Overall, in the 12-months old group, we compared 240
strains in true MIP pairs, out of which 126 could be considered as resulting from a
strain-sharing event.

Discussion
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In this report we introduce SynTracker, a method for tracking closely related microbial
strains using genome synteny. SynTracker requires as input a collection of genomes or
per-sample assembled metagenomic contigs, a reference genome file, and a metadata
file. The SynTracker code can be used as a standalone tool or as a part of a custom
pipeline.

We designed SynTracker to complement other existing methods that track closely
related strains, which mostly rely on SNP profiles or on analysis of specific sets of
genes. In studies tracking strains across individuals, reliance on SNP information could
be potentially limiting: environmental changes can spur the emergence of hypermutator
strains (Travis and Travis 2002; Swings et al. 2017), increasing the point-mutation rate
by a factor of up to 150-fold (Wielgoss et al. 2013). To avoid the limitations of these
tools, we intentionally set the default pairwise-alignment parameters in our pipeline to
have low sensitivity to SNPs, which may be erroneously identified due to sequencing
and amplification errors. When examining SynTracker’s performance using in-silico
evolved bacterial populations, we observed that, as expected, populations that evolve
exclusively through introduction of SNPs had a marginal reduction in the synteny scores
compared to populations that evolved through introduction of insertions and deletions at
a lower mutation frequency. This characteristic of our approach makes it a good
candidate to complement existing SNP-based tools and also makes it ideal to track
closely related strains in data produced using long-read sequencing methods, as the
error rate of these methods is higher than in methods based on short-reads
(Amarasinghe et al. 2020).

While some popular tools for conspecific strain analysis require a pre-existing gene
database, our approach requires only a single reference genome per species, either
fully assembled or as a collection of contigs. This feature is advantageous, as it allows
for tracking strains of relatively understudied species. As state-of-the-art methods for
assembly of genomes from metagenomes yield ever larger collections of MAGs, we
propose a potential workflow, in which the MAG collection is clustered to create “species
representative genomes”, which could be used as the reference genome in our pipeline.
This approach, which is also utilized in the InStrain program (Olm et al. 2021), can
expand our ability to study strains of novel species.

One of the most important assets of our approach is its ability to track closely related
strains using only a small fraction of the full length of the genome. We were able to
reconstruct the phylogeny of 140 E.coli strains using <20% of the length of the
reference genome and to identify within-host strains with an average sensitivity of 97%
and specificity of 99%, using the same accumulative length of the compared regions.
The ability to track strains using a fraction of the full genome length is especially
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important when analyzing MAGs with low completeness values or less abundant taxa in
metagenomic assemblies.

We examined the performance of our method by identifying strains residing in the same
human hosts over time periods of a few weeks to two years. We observed a decrease in
the performance of the approach with the reduction in the number of regions used per
pairwise comparison. On the other hand, reducing the number of regions could increase
the number of samples included in the final analysis. The SynTracker pipeline provides
a number of average-synteny score tables, prepared using 20-200
regions/pairwise-comparison. It is up to the user to select the relevant table, based on
their specific needs and dataset.

When investigating low abundance taxa, metagenome assembly might yield relatively
short contigs. In those instances, the likelihood of identifying a sufficient number of
overlapping 5 kbp regions in any given two metagenomic assemblies is reduced. In
such cases, it could be beneficial for the user to perform the synteny-based analysis on
shorter genomic regions. This could be easily achieved by reducing both the length of
the flanking-regions and the spacing between the “central-regions” (Figure 1A,
methods).

To demonstrate the use of SynTracker we analyzed the metagenomic dataset collected
by Bäckhed et al (Bäckhed et al. 2015), who followed a cohort of mothers and their
infants from birth to one year of age. Since SynTracker uses pairwise comparisons of
homologous genomic regions, the number of pairwise comparisons increases
exponentially with increasing numbers of samples. To reduce the overall running time of
our pipeline without losing relevant information (i.e., comparisons of true MIP and
comparisons of longitudinal samples), we divided the dataset into 20 bins, while keeping
all same-family samples in the same bin. Using this strategy, we were able to reduce the
number of pairwise comparisons by a factor of ~21 at the cost of losing some
between-family comparisons, which were only used in our analysis as a control group,
relative to the true MIP group. We strongly recommend this strategy to researchers
analyzing larger datasets consisting of hundreds of metagenomic samples and dozens
of reference genomes.

Our analysis of the Backhed et al. dataset showed that early colonizing species, that
inhabit the guts of both the mothers and the newborn infants, had higher APSS values
in comparisons of MIPs, compared to unrelated MIPs. Moreover, a striking majority of
the strains tracked in true MIPs (newborn age group) had APSS scores high enough to
be considered within-host strains. In the 12-month-old group, early colonizing species
maintained the higher APSS values in true MIPs, compared to unrelated MIPs, while no
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significant difference was observed for late colonizing species. These results suggest
that vertical strain transmission plays a role in the acquisition of early colonizing
species, while late colonizers could be obtained from additional sources as well.

Conclusions
We have introduced SynTracker, a tool for tracking conspecific strains and to evaluate
their relatedness using genome synteny, in both genomes and metagenomic
assemblies. To our knowledge, this is the first tool which is entirely based on this level of
biological organization. SynTracker’s attractive features include that it does not require
pre existing databases, and has a minimal sensitivity to sequencing errors and natural
variation in microbial populations. SynTracker performs well when classifying isolate
genomes and when tracking strains in longitudinal metagenomes. SynTracker could be
used as a standalone tool or combined with existing tools in a multi-tool pipeline setup.

Acknowledgements: We thank Nick Youngblut for providing comments on a previous
version of this work.
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Figures

Figure 1: Illustration of the SynTracker pipeline. A. The reference genome is
fragmented to yield “central-regions”, i.e., 1 kbp long regions located 4kbp apart. B.
Each central region is used as a query for a BLAST search against a collection of
sample-specific assemblies (or genomes, if isolates are analyzed). C. BLAST hits are
retrieved with 2 kbp on each side of the hit. All bins resulting from the same BLAST
search are placed in the same Region-specific bin. D. Within each bin, all-versus-all
pairwise alignment is performed to identify synteny blocks in pairs of sequences.
Synteny scores are calculated based on the number of blocks and their accumulative
length. E. For each pair of samples (or genomes) n regions are sampled and their
synteny scores are averaged to yield the average pairwise synteny score (APSS).
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Figure 2: Analysis of the genomic diversity of in-silico evolved bacterial populations.
Simulations were carried out for 3000 generations. In each time point, 20 cells were
sampled, and a pairwise comparison of the same 20 kbp region was performed using
BLASTn (top panels) and SynTracker (bottom panels). Horizontal black lines mark the
group median, the red lines correspond to the group mean. Left plots show analyses of
a representative simulation carried through the exclusive introduction of SNPs at a
frequency of 1*10-6   substitutions per nucleotide per generation. Right panels show a
simulation based on indels at a frequency of 1*10-7   substitutions per nucleotide per
generation.

12

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.06.463341doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.06.463341
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: Phylogenetic trees of 140 E. coli genomes, belonging to 14 different
phylogroups, based on Average Pairwise Synteny Scores (APSS). A. A tree based on
200 regions/pair (accumulative length of ~1 mbp) correctly classified 139 genomes. B. A
tree based on 40 regions/pair shows correct classification of 136 genomes.
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Figure 4: identifying within-host strains. A. Representative synteny-based analyses of
B. fragilis strains in longitudinal metagenomic samples, obtained from the same host
(cyan) and different hosts (pink), using 200 and 40 regions/pairwise-comparison.
Dashed red lines represent the APSS threshold differentiating between strains residing
in the same host and strains residing in different hosts, as calculated in B. B. ROC plots
of the same analyses shown in A. Red dots correspond to the Youden point and give
the APSS score that yields the optimal combination of specificity and sensitivity. C. The
mean specificity and sensitivity of the synteny approach, calculated at different numbers
of regions/pairwise-comparison. R/P- regions/pairwise comparison, TP- True Positive,
FP- False Positive.

Figure 5: Vertical strain transmission in Mother-Infant Pairs. The Synteny of strains
residing in mothers and their infants at ages 4 days, 4 and 12 months (True MI, blue
boxes) was compared with the synteny of strains in unrelated Mothers and Infants
(unrelated MI, grey boxes). Comparisons to the right of the dashed red lines are
considered as vertical transmission event. Stars correspond to Benjamini-Hochberg
corrected p-values (Wilcoxon-Mann-Whitney test): q-value <5*10-2, <5*10-3, <5*10-5.

Figure 5: Vertical strain transmission in Mother-Infant Pairs. The Synteny of strains
residing in mothers and their infants at ages 4 days, 4 months and 1 year (True MI, blue
boxes) was compared with the synteny of strains in unrelated mothers and infants
(unrelated MI, grey boxes). Comparisons to the right of the dashed red lines are
considered as vertical transmission events. Stars correspond to Benjamini-Hochberg
corrected p-values (Wilcoxon-Mann-Whitney test): q-value * <5x10-2, ** < 5x10-3, ***
<5x10-5.
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Methods:

SynTracker Pipeline:

The SynTracker pipeline consists of three main parts. In the first part, SynTracker
accepts a collection of reference genomes (a single genome per species), either fully
assembled or as a collection of contigs. Each per-species reference is fragmented into
a collection of 1kbp central-regions, which are binned and stored together.

In the second part SynTracker creates a blast Database, based on a user-provided
collection of metagenomic assemblies or genomes. Next, it performs a blast search, for
each of the central regioins, against the newly created blast database with a minimal
identity of 97% and a minimal query coverage of 70%, i.e., 700bp. In the final step of
this part, hits for each blast search are retrieved, using the blastcmddb command, in
addition to a 2kbp region on each side of the blast hit. Hits with <2kbp both downstream
and downstream to the hit are excluded from further analysis. Each retrieved sequence
is denoted by its sample of origin and matching region in the reference genome.

In the third part of the pipeline genomic fragments are grouped by their matching region
in the reference genome, and pairwise alignment is conducted to identify synteny blocks
in each pair of sequences. The identification of synteny blocks in each pairwise
alignment is performed using the “FindSynteny” function, in the “DECIPHER” R package
(Wright 2016), with parameters “maxGap” and “maxSep” both set to 15. Additionally,
only pairwise comparisons with a minimal overlap 4800 bp are considered for
downstream analysis. Next, per each pairwise alignment, a synteny score is calculated,
as described in equation 1:

Eq. 1 SynScore=1+  log10 〖(Ov/len)/B〗

Where Ov stands for the accumulative length of the overlapping synteny blocks
identified in the pairwise alignment, len denotes the length of the shorter sequence in
each pair and B stands for the number of synteny blocks identified in each pairwise
alignment.

In the final step of the third part of the pipeline, for each reference genome n genomic
regions are randomly selected, per pair of metagenomic samples or genomes. APSS
(average pairwise synteny scores) are calculated by averaging the individual pairwise
synteny scores. Pairs of samples/genomes with <n regions are excluded from
downstream analysis.
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In-silico evolutionary simulations:

Calculation of the synteny scores per group of sampled cells was performed as
described above, however, as the length of the genomic fragments used in the
simulation was limited to 20kbp, synteny scores were based on a single alignment of
the ~20kbp region, per pair of simulated genomes.

Classification of bacterial genomes:

Calculation of APSS values for E.Coli strain pairs was performed as described above
and using the E.coli str. K-12 substr. MG1655 genome as a reference (NCBI Reference
Sequence: NC_000913.3).

Phylogenetic trees were generated by conversion of APSS values to synteny distances,
which equal to 1-APSS. All pairwise synteny distances were placed in a symmetric
matrix which was used to calculate UPGMA phylogenetic trees, by employing the
“phangorn” R-package (Schliep 2011).

Tracking within-person strains:

Longitudinal metagenomes were obtained from the NCBI-SRA database, and were
quality filtered as described previously (Youngblut et al. 2020). Metagenomic samples
were de-novo assembled using metaSPades (Nurk et al. 2017), with a maximal number
of 20M reads/sample. ROC curves and matching APSS thresholds for each
combination of species and sampling depth, in the testing set, were calculated using the
R-programing language “pROC” package (Robin et al. 2011).

Mother-infant strain transmission:

Metagenomic samples were downloaded from the NCBI-SRA database, and were
quality filtered and assembled as described above, however, as for some samples only
one of the two matching read files passed our quality filtration, we performed the
metagenomic assembly using single-end reads.
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Table 1: sensitivity and specificity of SynTracker using different numbers of
genomic regions per pairwise comparison.

Regions/pairwise
Average

Sensitivity (%)
Average

Specificity (%)

15 89.0 89.7

20 89.2 92.2

30 91.9 94.5

40 94.7 95.1

60 93.3 98.0

80 98.1 98.2

100 97.1 97.8

200 96.7 99.0
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Table S1: Reference genomes used in metagenomic analyses

Species NCBI Reference Sequence:

Acidaminococcus intestini NC_016077.1

Akkermansi muciniphila NZ_CP021420.1

Akkermansia muciniphila NZ_CP021420.1

Alistipes finegoldii NC_018011.1

Alistipes onderdonkii NZ_AP019734.1

Alistipes putredinis NZ_DS499581.1

Alistipes shahii NC_021030.1

Bacteroides cellulosilyticus NZ_CP012801.1

Bacteroides eggerthii NZ_UFSX01000001.1

Bacteroides fragilis NC_003228.3

Bacteroides massiliensis NZ_KB905475.1

Bacteroides ovatus NZ_SPFU01000010.1

Bacteroides salyersiae NZ_JH724307.1

Bacteroides thetaiotaomicron NZ_CP012937.1

Bacteroides uniformis NZ_CZAF01000001.1

Bacteroides vulgatus NC_009614.1

Bacteroides xylanisolvens NZ_RCXZ01000001.1

Barnesiella intestinihominis NZ_JH815206.1

Bifidobacterium adolescentis NZ_CP028341.1

Bifidobacterium bifidum NZ_AKCA01000001.1

Bifidobacterium longum NZ_CP026999.1

Bifidobacterium pseudocatenulatum NZ_CP025199.1

Blautia wexlerae NZ_CYZN01000001.1

Collinsella aerofaciens NZ_CP048433.1
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Dorea formicigenerans NZ_QSFS01000001.1

Eubacterium rectale CP001107.1

Faecalibacterium prausnitzii NZ_CP030777.1

Lachnospira eligens NZ_WKRD01000010.1

Parabacteroides distasonis NZ_CP050956.1

Parabacteroides merdae NZ_SPGG01000001.1

Phocaeicola dorei NZ_LR699004.1

Prevotella copri NZ_VZBY01000077.1

Roseburia hominis NZ_LR699011.1

Roseburia intestinalis NZ_WNAJ01000001.1

Tyzzerella nexilis NZ_JAAIUD010000001.1
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Table S2: Metagenomic samples used to evaluate the performance of SynTracker

NCBI Biosample Individual Sample name set

SAMN11950002 ab ab-0140_MG Testing

SAMN11950003 ab ab-0168_MG Testing

SAMN11950006 ad ad-0002_MG Testing

SAMN11950007 ad ad-0005_MG Testing

SAMN11950014 ae ae-0008_MG Testing

SAMN11950017 ae ae-0011_MG Testing

SAMN11950025 ae ae-0022_MG Testing

SAMN11950026 ae ae-0024_MG Testing

SAMN11950029 ae ae-0027_MG Testing

SAMN11950031 ae ae-0029_MG Testing

SAMN11950047 ae ae-0052_MG Testing

SAMN11950063 ae ae-0073_MG Testing

SAMN11950069 ag ag-0001_MG Testing

SAMN11950070 ag ag-0005_MG Testing

SAMN11950073 ai ai-0002_MG Testing

SAMN11950074 ai ai-0019_MG Testing

SAMN11950077 ak ak-0001_MG Testing

SAMN11950078 ak ak-0010_MG Testing

SAMN11950107 am am-0027_MG Testing

SAMN11950123 am am-0061_MG Testing

SAMN11950159 am am-0097_MG Testing

SAMN11950172 am am-0110_MG Testing

SAMN11950229 am am-0172_MG Testing

SAMN11950234 am am-0177_MG Testing

SAMN11950254 am am-0199_MG Testing

SAMN11950261 am am-0206_MG Testing
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SAMN11950297 an an-0017_MG Testing

SAMN11950299 an an-0023_MG Testing

SAMN11950322 an an-0051_MG Testing

SAMN11950332 an an-0063_MG Testing

SAMN11950339 an an-0071_MG Testing

SAMN11950341 an an-0073_MG Testing

SAMN11950354 ao ao-0007_MG Testing

SAMN11950356 ao ao-0009_MG Testing

SAMN11950366 ao ao-0026_MG Testing

SAMN11950391 ao ao-0057_MG Testing

SAMN11950402 ao ao-0069_MG Testing

SAMN11950403 ao ao-0070_MG Testing

SAMN11950406 ao ao-0073_MG Testing

SAMN11950414 ao ao-0081_MG Testing

SAMN11950466 bp bp-0002_MG Testing

SAMN11950467 bp bp-0004_MG Testing

SAMN11950472 bs bs-0001_MG Testing

SAMN11950473 bs bs-0008_MG Testing

SAMN11950488 ca ca-0001_MG Testing

SAMN11950489 ca ca-0012_MG Testing

SAMN11950500 cg cg-0001_MG Testing

SAMN11950501 cg cg-0014_MG Testing

SAMN11950506 cj cj-0001_MG Testing

SAMN11950507 cj cj-0004_MG Testing

SAMN11950523 ct ct-0001_MG Testing

SAMN11950524 ct ct-0005_MG Testing

SAMN11950527 cv cv-0001_MG Testing

SAMN11950528 cv cv-0018_MG Testing
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SAMN11950551 dg dg-0001_MG Testing

SAMN11950552 dg dg-0008_MG Testing

SAMN11950555 di di-0001_MG Testing

SAMN11950556 di di-0009_MG Testing

SAMN11950559 dk dk-0001_MG Testing

SAMN11950560 dk dk-0003_MG Testing

SAMN11950513 cn cn-0006_MG Testing

SAMN11950512 cn cn-0002_MG Testing

SAMN11950511 cm cm-0022_MG Testing

SAMN11950510 cm cm-0001_MG Testing

SAMN11950509 ck ck-0028_MG Testing

SAMN11950508 ck ck-0001_MG Testing

SAMN11950499 cf cf-0037_MG Testing

SAMN11950498 cf cf-0001_MG Testing

SAMN11950497 ce ce-0007_MG Testing

SAMN11950496 ce ce-0001_MG Testing

SAMN11950495 cd cd-0050_MG Testing

SAMN11950494 cd cd-0001_MG Testing

SAMN11950485 by by-0059_MG Testing

SAMN11950484 by by-0002_MG Testing

SAMN11950483 bx bx-0057_MG Testing

SAMN11950482 bx bx-0001_MG Testing

SAMN11950463 bn bn-0038_MG Testing

SAMN11950462 bn bn-0002_MG Testing

SAMN11950461 bm bm-0013_MG Testing

SAMN11950460 bm bm-0002_MG Testing

SAMN11950459 bl bl-0009_MG Testing

SAMN11950458 bl bl-0003_MG Testing
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SAMN11950457 bk bk-0025_MG Testing

SAMN11950456 bk bk-0002_MG Testing

SAMN11950455 bi bi-0026_MG Testing

SAMN11950454 bi bi-0001_MG Testing

SAMN11950453 bh bh-0112_MG Testing

SAMN11950450 be be-0085_MG Testing

SAMN11950449 be be-0001_MG Testing

SAMN11950448 bd bd-0033_MG Testing

SAMN11950447 ba ba-0002_MG Testing

SAMN11950446 ba ba-0001_MG Testing

SAMN11950443 ay ay-0058_MG Testing

SAMN11950442 ay ay-0001_MG Testing

SAMN11950441 ax ax-0090_MG Testing

SAMN11950440 ax ax-0001_MG Testing

SAMN11950439 aw aw-0036_MG Testing

SAMN11950438 aw aw-0001_MG Testing

SAMN11950433 at at-0044_MG Testing

SAMN11950432 at at-0004_MG Testing

SAMN11950431 as as-0033_MG Testing

SAMN11950430 as as-0002_MG Testing

SAMN11950427 aq aq-0015_MG Testing

SAMN11950426 aq aq-0004_MG Testing

SAMN11950425 ap ap-0037_MG Testing

SAMN11950424 ap ap-0001_MG Testing

SAMN11950000 aa aa-0154_MG Training

SAMN11950001 aa aa-0163_MG Training

SAMN11950004 ac ac-0002_MG Training

SAMN11950005 ac ac-0038_MG Training
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SAMN11950008 ae ae-0001_MG Training

SAMN11950012 ae ae-0005_MG Training

SAMN11950019 ae ae-0014_MG Training

SAMN11950023 ae ae-0020_MG Training

SAMN11950027 ae ae-0025_MG Training

SAMN11950028 ae ae-0026_MG Training

SAMN11950032 ae ae-0030_MG Training

SAMN11950067 af af-0003_MG Training

SAMN11950068 af af-0060_MG Training

SAMN11950071 ah ah-0002_MG Training

SAMN11950072 ah ah-0028_MG Training

SAMN11950075 aj aj-0001_MG Training

SAMN11950076 aj aj-0061_MG Training

SAMN11950079 al al-0002_MG Training

SAMN11950080 al al-0025_MG Training

SAMN11950135 am am-0073_MG Training

SAMN11950158 am am-0096_MG Training

SAMN11950180 am am-0118_MG Training

SAMN11950190 am am-0128_MG Training

SAMN11950238 am am-0181_MG Training

SAMN11950250 am am-0195_MG Training

SAMN11950262 am am-0207_MG Training

SAMN11950288 an an-0002_MG Training

SAMN11950295 an an-0015_MG Training

SAMN11950301 an an-0026_MG Training

SAMN11950303 an an-0028_MG Training

SAMN11950334 an an-0065_MG Training

SAMN11950336 an an-0067_MG Training
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SAMN11950346 an an-0080_MG Training

SAMN11950347 an an-0081_MG Training

SAMN11950358 ao ao-0011_MG Training

SAMN11950359 ao ao-0012_MG Training

SAMN11950392 ao ao-0058_MG Training

SAMN11950393 ao ao-0059_MG Training

SAMN11950404 ao ao-0071_MG Training

SAMN11950405 ao ao-0072_MG Training

SAMN11950418 ao ao-0085_MG Training

SAMN11950470 br br-0001_MG Training

SAMN11950471 br br-0002_MG Training

SAMN11950480 bw bw-0001_MG Training

SAMN11950481 bw bw-0033_MG Training

SAMN11950492 cc cc-0002_MG Training

SAMN11950493 cc cc-0023_MG Training

SAMN11950502 ch ch-0001_MG Training

SAMN11950503 ch ch-0008_MG Training

SAMN11950514 cp cp-0001_MG Training

SAMN11950515 cp cp-0009_MG Training

SAMN11950525 cu cu-0001_MG Training

SAMN11950526 cu cu-0009_MG Training

SAMN11950541 db db-0001_MG Training

SAMN11950542 db db-0015_MG Training

SAMN11950553 dh dh-0001_MG Training

SAMN11950554 dh dh-0010_MG Training

SAMN11950557 dj dj-0001_MG Training

SAMN11950558 dj dj-0016_MG Training

SAMN11950561 dl dl-0001_MG Training
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SAMN11950562 dl dl-0006_MG Training

SAMN11950517 cq cq-0035_MG Training

SAMN11950516 cq cq-0001_MG Training

SAMN11950505 ci ci-0052_MG Training

SAMN11950504 ci ci-0001_MG Training

SAMN11950491 cb cb-0051_MG Training

SAMN11950490 cb cb-0001_MG Training

SAMN11950487 bz bz-0033_MG Training

SAMN11950486 bz bz-0001_MG Training

SAMN11950479 bv bv-0024_MG Training

SAMN11950478 bv bv-0001_MG Training

SAMN11950477 bu bu-0080_MG Training

SAMN11950476 bu bu-0001_MG Training

SAMN11950475 bt bt-0039_MG Training

SAMN11950474 bt bt-0001_MG Training

SAMN11950469 bq bq-0068_MG Training

SAMN11950468 bq bq-0002_MG Training

SAMN11950465 bo bo-0122_MG Training

SAMN11950464 bo bo-0001_MG Training

SAMN11950452 bf bf-0108_MG Training

SAMN11950451 bf bf-0003_MG Training

SAMN11950445 az az-0036_MG Training

SAMN11950444 az az-0001_MG Training

SAMN11950437 av av-0107_MG Training

SAMN11950436 av av-0006_MG Training

SAMN11950435 au au-0066_MG Training

SAMN11950434 au au-0002_MG Training

SAMN11950429 ar ar-0039_MG Training
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SAMN11950428 ar ar-0002_MG Training

SAMN11950423 ao ao-0090_MG Training

SAMN11950350 ao ao-0001_MG Training

SAMN11950349 an an-0083_MG Training

SAMN11950287 an an-0001_MG Training

SAMN11950286 am am-0231_MG Training

SAMN11950116 am am-0054_MG Training

SAMN11950550 df df-0030_MG Training

SAMN11950549 df df-0001_MG Training

SAMN11950548 de de-0031_MG Training

SAMN11950547 de de-0001_MG Training

SAMN11950546 dd dd-0041_MG Training

SAMN11950545 dd dd-0001_MG Training

SAMN11950544 dc dc-0028_MG Training

SAMN11950543 dc dc-0001_MG Training

SAMN11950540 da da-0044_MG Training

SAMN11950539 da da-0001_MG Training

SAMN11950538 cz cz-0039_MG Training

SAMN11950537 cz cz-0001_MG Training

SAMN11950536 cy cy-0037_MG Training

SAMN11950534 cy cy-0001_MG Training

SAMN11950533 cx cx-0014_MG Training

SAMN11950532 cx cx-0001_MG Training

SAMN11950531 cw cw-0053_MG Training

SAMN11950529 cw cw-0001_MG Training

SAMN11950522 cs cs-0029_MG Training

SAMN11950520 cs cs-0001_MG Training

SAMN11950519 cr cr-0043_MG Training
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SAMN11950518 cr cr-0001_MG Training
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